
Assignment 1: n-gram LM & Neural Classifier 
 

Release date: 01/27 (Tue) 
Due date: 02/10 (Tue) 05:59PM 

Latest possible due date with late days: 02/13 (Fri) 05:59PM 

 
 
This assignment consists of two parts. The starting code for the assignment can be found in this 
repository - https://github.com/akshat57/cs288-sp26-a1 
 
 
NOTE : You are only allowed to make 5 submissions to gradescope. No further 
submissions will be allowed and the score of your final submission will be kept, so use 
them sparingly. 
 
 

Part 1: Train an n-gram language model (30 points) 
In Part 1, you will implement and train an n-gram LM and a neural n-gram LM, using wikitext102. 
 
Complete the following notebook 
https://github.com/akshat57/cs288-sp26-a1/blob/main/Part1.ipynb, and submit the following files 
on gradescope: 
 
Deliverables: 

●​ Part1.ipynb 
●​ bigram predictions.npy (15 points) 
●​ neural trigram predictions.npy (15 points) 

 
Refer to the following resources for help with this assignment: 

●​ PyTorch: https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html  
●​ N-Gram Language Models: https://web.stanford.edu/~jurafsky/slp3/3.pdf  
●​ Neural Language Models: https://web.stanford.edu/~jurafsky/slp3/7.pdf  

 
 
 
 

Part 2: Train a perceptron classifier (70 points) 
 

 

https://github.com/akshat57/cs288-sp26-a1
https://github.com/akshat57/cs288-sp26-a1/blob/main/Part1.ipynb
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://web.stanford.edu/~jurafsky/slp3/3.pdf
https://web.stanford.edu/~jurafsky/slp3/7.pdf


SUBMISSION NOTE: Submit the final code for part 2 in a zip file (Part2.zip) containing the 
final code of the final submission. We are looking for your final codebase used to 
generate gradescope submission for MLP.  
 
You should create two separate files, one for each of the two datasets with the final 
architecture and hyperparameters baked in. We will only run the following commands to 
evaluate your code:  

​ python3 perceptron_newsgroups.py 
​ python3 perceptron_sst.py 

python3 multilayer_perceptron_newsgroups.py 
​ python3 multilayer_perceptron_sst.py 
 

We will randomly select submissions and run your codebase with only the above two 
commands. We expect the scores to be within 1% of the gradescope scores.  
 
Use of pre-trained embeddings is NOT allowed for this assignment. 
 
Starter Code : https://github.com/akshat57/cs288-sp26-a1/tree/main/Part2 
 
Deliverables: 

●​ Perceptron_newsgroups_test_predictions.csv (15 points) 
●​ Perceptron_sst2_test_predictions.csv (15 points) 
●​ Mlp_newsgroups_test_predictions.csv (20 points) 
●​ Mlp_sst2_test_predictions.csv (20 points) 
●​ Part2.zip (codebase)  

 
Expected Scores: 

1.​ The target scores on the test set is 70% for perceptron and 75% for MLP.  
2.​ Note that there will be a big gap (11-13%) between the dev accuracy and the test 

accuracy on gradescope (test accuracy will be lower) 
 
 
In Part 2, you will (1) implement and train a simple linear perceptron model from scratch, and (2) 
implement a neural bag-of-words (NBOW) multilayer perceptron (MLP). 
 
The starter repository contains training and development data for the Stanford Sentiment 
Treebank (sst2) and 20 Newsgroups (newsgroups) datasets, in the data/ directory. You will also 
find the test data for these two datasets without the labels. 
 
The starter repository contains data and evaluation utilities in utils.py, feature extractors in 
featurize.py, and finally classification models in perceptron.py and multilayer_perceptron.py. We 
recommend filling in #TODO in this order. There are corresponding unit tests. 
 

 

https://github.com/akshat57/cs288-sp26-a1/tree/main/Part2


Model 1: Perceptron (30 points) 
Implement a simple linear perceptron model from scratch. Remember, instead of having to 
compute the derivative over the entire training set, the perceptron simply picks examples in 
sequence, and tries to classify them given the current weight vector. If it gets them right, it 
simply moves on to the next examples, otherwise it updates the weight vector with the 
difference of the feature counts in the correct labels and in the prediction. You are required to 
only use simple Python code for this task, without any other packages/libraries. An efficient 
implementation with bag-of-words features only should take <1 seconds/epoch for the sentiment 
analysis dataset on a modern laptop. 
 
For the perceptron model, you need to develop features to train your models with. At the least, 
you must experiment with bag-of-words features and design at least two feature sets beyond 
that for each dataset that improve your performance (a feature set can be counted for both, if it’s 
used this way with positive impact on performance). 
 
Features are individual measurable properties or characteristics of the example used as input to 
a model. Some examples that are not considered as additional feature sets: bag-of-words 
unigrams or higher order n-grams (you already have this), preprocessing to remove words, or 
filtering the vocabulary (to remove rare words). These are all potentially useful techniques, 
which you may want to experiment with, but they are not considered different feature sets. 
Please try to think why the above are not considered features. 
 

1.​ Bag of words, n-grams. Start with a bag-of-words classifier. You may want to experiment 
with using binary (presence/absence) features instead of count features and excluding 
stopwords (e.g., the, is, a) to improve your accuracy.1 How does performance change as 
you vary the size of n used in your word n-grams? Does it make sense to filter out some 
features based on counts in the training data? 

2.​ Your own features. Develop and use task-specific features of your own design in order to 
improve your accuracy. 

Model 2: Multilayer Perceptron (40 points) 
Implement a neural bag-of-words (NBOW) multilayer perceptron (MLP). You will use PyTorch for 
this model, but no other packages. Auxiliary packages to PyTorch (e.g., for text processing) are 
also not allowed). The allowed PyTorch package is specified in the requirements.txt file in the 
assignment repository. One big advantage of deep learning frameworks, such as PyTorch, is in 
abstracting away the details of error backpropagation, allowing you to focus on designing your 
network’s architecture.2 
 
Matrix operations in deep learning frameworks are very similar to NumPy. Your MLP must have 
multiple hidden layers, although the exact number is for you to determine through your 

2 If you want to learn about backpropagation, see this. 
 

1 The file stopwords.txt in the starter repository provides some English stop words. You may extend this 
list through your analysis. 

 

https://www.cs.cornell.edu/courses/cs5740/2016sp/resources/%20backprop.pdf


data-driven development process. Hint: your feature vectors will probably be sparse, so it is 
more efficient (and even critical) to use embedding look-up tables rather than large matrix 
multiplications. An efficient implementation with a moderately sized MLP should take <5 
seconds/epoch on a modern laptop. 
 
When designing your MLP, experiment with different activation functions. Activation functions 
add nonlinearity to your MLP, allowing it to capture more complex aspects of your training data. 
You should use at least ReLU, sigmoid, and tanh activation functions. 
 
In your final layer, you will want to transform the output of your network to a probability 
distribution (using the softmax function) and compare this distribution to your training labels. 
 
Finally, you should experiment with different optimizers and learning rates to see if they allow 
faster training and/or better results. The standard approach is to use gradient descent, but 
PyTorch, for example, comes with others built in, such as AdaGrad and ADAM. 
 
You will need to explicitly experiment with batching your MLP computation. Please conduct 
explicit experiments on a GPU to time your learning and inference speed with and without 
batching. Measure your speed in how many wall-time seconds it takes you to process 1,000 
examples. You can conduct these experiments with a subset of the data. The goal is to measure 
computation speed, not model accuracy. Batching is expected to have no impact on the 
computation itself (i.e., the computation should be identical regardless of the batch size), but 
show speedups up to a certain batch size. You just need to make sure you get enough 
measurements to reliably estimate your speed, ideally averaging across many measurements 
and reporting both average and standard deviation. Your benchmarking must be consistent 
between no batching (batch size = 1) and batching. Experiment with multiple batch sizes. 
This experiment is only required for the MLP. 
 

Additional Details: 
 
Sentiment Analysis: Sentiment classification is the task of determining the sentiment - often 
positive, negative or neutral - expressed in a given text. In general, this requires using a variety 
of cues such as the presence of emotionally charged words such as “vile” or “amazing,” while 
taking into account the full context of word use or phenomena like negation or sarcasm. In this 
assignment, you will write classifiers for the Stanford Sentiment Treebank dataset, which 
contains snippets taken from Rotten Tomatoes movie reviews, where the sentiment is aligned 
directly with the review score. You will train classifiers on a filtered version of the dataset 
containing only full sentences and with neutral reviews removed, reducing the task to binary 
classification of positive and negative sentiment. 
 
Newsgroup Classification: The 20 Newsgroups dataset contains 18,846 newsgroup 
documents written on a variety of topics. You will use the text of each document to predict its 
newsgroup. Unlike the binary sentiment analysis task, each document could belong to one of 

 



twenty newsgroups. Additionally, many of these newsgroups share similar themes, such as 
computing, science, or politics (see Table 1 for the full list). However, the distributions of words 
across each of these newsgroups are also fairly distinctive. For example, a document that uses 
the names of weapons will likely be in talk.politics.guns, a document mentioning “computer” will 
probably be in a comp.* group, and if a document uses the word “ice,” it was likely written for 
rec.sport.hockey rather than talk.politics.mideast. 
 
Third-party Packages: This assignment emphasizes building from scratch when possible. The 
two models allow different third-party packages. Please follow these directions carefully. There 
is a heavy penalty for using packages beyond these specified below. 
 
Development Environment and Third-party Tools: All allowed third-party tools are specified 
in the requirements.txt file in the assignment repository. The goal of the assignment is to 
gain experience with specific methods, and therefore using third-party tools and frameworks 
beyond these specified is not allowed. Please follow these directions carefully. We will penalize 
heavily for using packages beyond these specified below. Please consult the course generative 
AI policy with regard to using such tools. 
 
You may only import packages that are specified in the requirements.txt file or that 
come with Python’s Standard Library. The version of Python allowed for use is 3.10.x. Do not 
use older or newer version. We strongly recommend working within a fresh virtual environment 
for each assignment. For example, you can create a virtual environment using conda and install 
the required packages: 
 
conda create -n cs288a1 python=3.10 
conda activate cs288a1 
python -m pip install -r requirements.txt 
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