Sequence Modeling

CS 288 Spring 2026 Berkel
UC Berkeley CLkCley

cal-cs2388.github.lo/sp26 EECS

BAIR

https://cal-cs288.github.io/sp26/

Joday's Question:
What is a Sequence Model?

* The classifier model we saw last lecture treats a sentence as a bag of words.
 But it ignores the ordering of words in a sentence

Sequence modeling

* Building models that understand inputs where order matters and where each element
depends on what came before.

 Unlike a perceptron or an MLP, it can represent order, context, or dependencies across time.

Plans for this lecture:

* Survey sequence modeling tasks

* Architecture for sequence modeling: Recurrent neural networks (RNNSs)!
* |n theory, infinite context
 Motivates attention (next week!)

Berkeley CS 288

Sequence modeling tasks

Berkeley CS 288

Sequence modeling tasks

Technically, all NLP tasks benefit from sequence modeling!

o Classification: Text — Label
 Language modeling: Text — Next word

¢ Sequence-to-sequence: Text — Text (e.g., machine translation, question
answering, ... more in the next week’s lecture)

o Sequence labeling: Text (a sequence of n words) — a sequence of n labels
(one label per word)

 What are some examples?

Berkeley CS 288

Part-of-speech (POS) tagging

She

Berkeley CS 288

PRP: Personal pronoun

VBZ: Verb, 3rd person
singular present

NN: singular noun
NNS: plural noun

IN: preposition or
subordinating
conjunction
DT: determiner

Named Entity Recognition

Person n m Org n Event B Date n Other B

Barack Hussein Obama Il * flele]ial August 4, 1961 * |RSER attorney and

politician who served as the 44th President of ' the United States £ from

January 20, 2009 * B®Y January 20, 2017 » WNSWOIFSRON Democratic Party » HatS

was the first to serve as president. He was previously a

e R e 1o gk from lllinois &2 and a member of the Hl RS CI GRS,

Berkeley CS 288 Image: https://www.analyticsvidhya.com/blog/2021/11/a-beginners-introduction-to-ner-named-entity-recognition/ e

Semantic role labeling

Mary loaded the truck with hay at the depot on Friday.
load.O1

AO loader AM-LOC
A1 bearer AM-TMP
A2 cargo AM-PRP

A3 Instrument AM-MNR

Mary loaded hay onto the truck at the depot on Friday.

https://devopedia.org/semantic-role-labelling

Berkeley CS 288

NILP pipeline

.‘-IIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIII.

>tk>> tagger> parser) e >)

.III'

o)+

‘IIIIIIII

NAME COMPONENT CREATES DESCRIPTION Piicatapasie
G5 G0 [MENS (KB ()(COERRINED RE) JUURLEE]
. . _ l Mrs. Clinton previously worked for Mr. Obama. but she is now distancing herself from him . l
tokenizer Tokenizer = Doc Segment text
into tokens. Named entity recognition: |
‘ Mrs. Clinton previously worked for Mr. Obama, but she is now distancing herself from him. l
tagger Tagger = Token.ta Assign part-of-
99 - 2 onp Co-reference: @ ... A e ‘
speech tags. : iy GEEEED ¥ emeTapezasE :
-m,._ ((Ment] @ IMen'tlonl L,.:M:]
parser DependencyPa rser = Token.head , Assign] Mrs. Clinton previously worked for Mr. Obama, but she is now distancing herself from him. ‘
Token.dep , dependency Basic dependencies: conj
cC
Doc.sents, labels. , nmod by nmod
nsubj case aux
Doc.noun_chunks compound_ [[J_r;] iﬁ“’“‘”""" |1 4 1
NP [RB N [N Q!@@@ VBa - nD
i N _ Mrs. Clinton previously worked for Mr. Obama, butshe is now distancing herself from
ner EntityRecognizer = Doc.ents, Detect and label
Token.ent_iob, named entities.

Tnken _ent tvne

https://spacy.io/usage/processing-pipelines https://stanfordnlp.github.io/CoreNLP/pipeline.html

Berkeley CS 288 3

Deeper dive |: Parts of speech

- Tag each word in a sentence with its part of speech
- Disambiguation task: each word might have different functions in different contexts

- Consider a word “man” — what would be a POS tag?
* The/DT man/NN bought/VBD &/DT boat/NN ™~ gome word
+ The/DT old/NN man/VBP the/DT boat/NN . — different tags

earnings growth took a back/JJ seat
a small building in the back/NN

a clear majority of senators back/VBP the bill
Dave began to back/VB toward the door Some words have

enable the country to buy back/RP about debt many functions!
I was twenty-one back/RB then

JJ: adjective, NN: single or mass noun, VBP: Verb, non-3rd person singular present

Berkeley CS 288 VB: Verb, base form, RP: particle, RB: adverb

Deeper dive |: Parts of speech

How many part of speech tags do you think English has??

The answer is (D) - well, depends on definitions!

Berkeley CS 288

Noun

10

Penn treebank part-of-speech tagset

Tag Description Example Tag Description Example Tag Description Example

CC coordinating and, but, or PDT predeterminer all, both VBP verb non-3sg eat
conjunction present

CD cardinal number one, two POS possessive ending s VBZ verb 3sg pres eats

DT determiner a, the PRP personal pronoun 1, you, he WDT wh-determ. which, that

EX existential ‘there’ there PRPS$ possess. pronoun your, one’s WP wh-pronoun what, who

FW foreign word mea culpa RB adverb quickly WP$ wh-possess. whose

IN preposition/ of, in, by RBR comparative faster WRB wh-adverb how, where
subordin-conj adverb

JJ adjective yellow RBS superlatv. adverb fastest $ dollar sign $

JJIR comparative adj bigger RP particle up, off # pound sign #

JJS superlative adj wildest SYM symbol +,%, & “ left quote “or

LS list item marker [, 2, One TO “to” to ” right quote “or”’

MD modal can, should UH interjection ah, oops (left paren LA, <

NN sing or mass noun [lama VB verb base form eat) right paren 1), }, >

NNS noun, plural [lamas VBD verb past tense ate : comma :

NNP proper noun, sing. IBM VBG verb gerund eating sent-end punc . ! ?

NNPS proper noun, plu. Carolinas VBN verb past part. eaten sent-mid punc : ;... —-

Berkeley CS 288

Other corpora: Brown, Switchboard

45 tags
(Marcus et al., 1993)

based on Wall Street
Journal (WSJ)

11

A simple baseline

- Most frequent class: Assign each word to the class it occurred most in the
training set. (e.g. man/NN)
- How accurate do you think this baseline would be at tagging words?

(A) <50%

(B) 50-75%

(C) 75-90% The answer is (D)

(D) >90% » This baseline accurately tags 92.34% of word tokens on

Wall Street Journal (WSJ)!
State of the art ~ 97% (also human-level acc)
Average English sentence ~14 words

Sentence level accuracies: with 0.9214 per word is
31% vs 0.9714 per word is 65%

Berkeley CS 288

12

Model: Hidden Markov Model (HMM)

e (O (o)— ()
(hidden events)
Words
(observed events) o ° e o

We don’t normally see sequences of POS tags in text

However, we do observe the words!
The HMM allows us to jointly reason over both hidden and observed events.
Assume that each position has a tag that generates a word

Berkeley CS 288

13

Deeper dive |l: Named entity recognition

=1 B3 L K3 K3

Barack Hussein Obama Il * f{elelga] August 4, 1961 * |ESER attorney and

politician who served as the 44th President of ' the United States & from

NERUEAORV VSRR 10 IRERIEAORAVER. A member of the , he

was the first to serve as president. He was previously a

e R e e c e gl from lllinois &2 and a member of the RIS CI R CRS.

Berkeley CS 288

Named entities

» Named entity, in its core usage, means anything that can be referred to with a
proper name.

* NER is the task of 1) finding spans of text that constitute proper names; 2)
tagging the type of the entity

* Most common 4 tags:
* PER (Person): “Marie Curie”
» LOC (Location): “New York City”
* ORG (Organization): “Princeton University”

- MISC (Miscellaneous): nationality, events, ..

Berkeley CS 288

15

Named entities

Steve Jobs founded Apple with Steve Wozniak .
PER PER O ORG O PER PER O

Only France and Britain backed Fischler ’s proposal .
O LOC O LOC O PER O O O

O = not an entity
If multiple words constitute a named entity, they will be labeled with the same tag.

Limitation: Can’t distinguish from having two named entities adjacent to each other?

Berkeley CS 288

10

NER: BIO Tagging

[PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines Holding] ,
said the fare applies to the [LOC Chicago] route.

Words BIO Label

Jane B-PER

111 I-PER '
Xfl anueva o B: token that begins a span
United B-ORG : Al
A e |: tokens that inside a span
Holding I-ORG O: tokens outside of a span
discussed O
the O
Chicago B-LOC
route O

O

Berkeley CS 288

17

Neural Sequence Modeling

Berkeley CS 288

Sequence Modeling

fo(xy, o, x7) = hy, -, hrwhere h, € R?is a hidden state

Why*? How do we do an end task from here?
Let’s look at three tasks: classification, sequence labeling (e.g., POS tagging),
and language modeling!

The capital city of California is Sacramento

Berkeley CS 288 19

Sequence Modeling: (1) Text Classification

1. foxy, -+, x7) = hy, -, h where h;, € R?is a hidden state
2. Summarize all hidden states into one vector
e h = MeanPool(h;, ---, h;)
e h = MaxPool(h,, ---, h;) “Neutral”

e h = hT (We'll assume this for the rest of the class)

3. $=argmaxW hT

The capital city of California is Sacramento

Berkeley CS 288

Sequence Modeling: (2) Part-of-Speech Tagging

1. foxy, -+, x7) = hy, -, h where h;, € R?is a hidden state
2.y, = argmaxW h/

The capital city of California is Sacramento

Berkeley CS 288 21

Recurrent Neural Network

How do we actually model fy(xi, =+, x7) = h, -, h;? h =o6(Wh,_,+Wx +b)

® h,: Initial hidden state (usually zeros)

Parameters:

® hl — U(Whho —+ Wxxl —+ b), Where Xl — E(xl) E = RlVlein’
® h2 = G(Whhl + WXX2 + b), where X, = E(Xz) Wh = RdXd, W € RdXdin, b e R?
® h3 — U(Whhz + WXX3 + b), where X3 — E(X3)

ho h1 ho h3
RNN - -1 RNN - | RNN

Berkeley CS 288

Recurrent Neural Network: (1) Text Classification

Parameters:
E € R!VIxdin
W, € R4 W e R,

1. hy: Initial hidden state (usually zeros)

. hy =0(W,;hy + W x; +b), where x; = E(x)
. hy, =c6(W,h, + W X, + b), where x, = E(x,)
. hy; =0(W;h, + W x5 + b), where x5 = E(x3)

A

.y = argmaxW h;

o B~ W N

Training:

® Training data: < (xq, ***,Xp),C >
e V = softmax (WOhTT) e RC RNN
e Z(0) = —log (§(c)) T

Berkeley CS 288

beR{W, e R

23

Recurrent Neural Network: (2) Part-of-Speech Tagging

Parameters:
E € R!VIxdin

1. hy: Initial hidden state (usually zeros)

2. hy =6(W,hy+ W x, +b) - y, = argmaxW _h!
1 = 0(Wiho+ WX, +b) —), = arg o W, € R W_e R,
3. h, =6(W,h; + W.x,+b) — y, =argmaxW h
4. hy = o(W;h, + W x5 +b) — §; = argmaxW h;
— * Y2 Y3
Training:
® Training data: < (xq, ***, X7), (V{, ***, V) > dj dj
® y = softmax (WohtT) e R¢ h, h3
T
o Z(0)=— Z log (yz()’z»] | RNN
=1 T
T1 L2 L3

Berkeley CS 288

24

Recurrent Neural Network: (3) Language modeling

1. hy: Initial hidden state (usually zeros) Parameters:
= D, = " E € R!VIXd
2. hy =o(W;hy+ W x, +b) -y, = argmaxW h ’
‘ dxd dxd,
3. G(Whhl —+ W X2 —+ b) —> y2 al‘gmaXW h2 Wh < R X 9WX — R X ,
d |V|%xd
4. hy = o(W;hy + W,x; +b) — §; = argmaxW,h! beRW,eR

Training:
® Training data: X, X,, ***, X7
® This is equivalent to having supervised training datasets
< (X)), (%) >, < (X1, %), (X3) >, < (X1, X9, X3), (Xg) > =+, < (Xy, =+, X7), (X7) >
® §, = softmax (W,h!) € R

T—1
o Z(0) = — Z log (§,(x,4))

=1
Berkeley CS 288)) 25

Recurrent Neural Network: (3) Language modeling

1. hy: Initial hidden state (usually zeros) Parameters:

AW N

Berkeley CS 288

= argmaxW h;

. d.
- h1 =o(W,hy+ WXx,+b) —)71 = argmaxW hy E € RV,
= o(W, h, + WXX3 +b) — y;

W, € R>4 W e R,
beRYW, RV

= argmax W h2

fd,_=d, E € R!V>and W _ e RIV* have the

same shape — can we merge them?

Yes!! Called "weight tying.” It works better

empirically and becomes a common practice (except

for very large models)

20

Feedforward NNs vs. RNNs

Feed-Forward Neural Network
Recurrent Neural Network

h, = gWx + b)) € RM

— h
h2 — g(w(z)hl + b(Z)) (- RhZ ht _ g(Wht—l + Uxt + b) e R

Berkeley CS 288 217

RNNs: Results

On the Penn Treebank (PTB) dataset
Metric: perplexity

KNS: Kneser-Ney 5-gram

Model Individual
KNS5 141.2
KNS5 + cache 125.7

Feedforward NNLM | 140.2
Log-bilinear NNLM 144.5

Syntactical NNLM 131.3
Recurrent NNLM 124.7
RNN-LDA LM 113.7

Berkeley CS 288 (Mikolov and Zweig, 2012): Context dependent recurrent neural network language model

RNNs: Results

On the Penn Treebank (PTB) dataset
Metric: perplexity

Model #Param Validation Test
Mikolov & Zweig (2012) — RNN-LDA + KN-5 + cache oM+ - 92.0
Zaremba et al. (2014) - LSTM 20M 86.2 82.7
Gal & Ghahramani (2016) — Variational LSTM (MC) 20M - 78.6
Kim et al. (2016) — CharCNN 19M E 78.9
Merity et al. (2016) — Pointer Sentinel-LSTM 2IM 72.4 70.9
Grave et al. (2016) — LSTM + continuous cache pointer' - - 72.1
Inan et al. (2016) — Tied Variational LSTM + augmented loss 24M 75.7 73.2
Zilly et al. (2016) — Variational RHN 23M 67.9 65.4
Zoph & Le (2016) — NAS Cell 25M - 64.0
Melis et al. (2017) — 2-layer skip connection LSTM 24M 60.9 58.3
Merity et al. (2017) — AWD-LSTM w/o finetune 24M 60.7 58.8
Merity et al. (2017) - AWD-LSTM 24M 60.0 57.3
Ours — AWD-LSTM-MoS w/o finetune 22M 58.08 55.97
Ours — AWD-LSTM-MoS 22M 56.54 54.44
Merity et al. (2017) - AWD-LSTM + continuous cache pointer’ 24M 53.9 52.8
Krause et al. (2017) — AWD-LSTM + dynamic evaluation' 24M 51.6 51.1
Ours — AWD-LSTM-MoS + dynamic evaluation' 22M 48.33 47.69

Berkeley CS 288 (Yang et al, 2018): Breaking the Softmax Bottleneck: A High-Rank RNN Language Model

RNNs: Pros and cons

Advantages:

* Can process any length input

 Computation for step t can (in theory) use information from many steps back
 Model size doesn’t increase for longer input context

Disadvantages:
* Recurrent computation is slow (can’t parallelize) Transformers can!

* |n practice, difficult to access information from many steps back (optimization issue)
* We will see some advanced RNNs (e.g., LSTMs, GRUs, SSMs)

Berkeley CS 288

30

Berkeley CS 288

RNNSs in Code (1/2)

class RNNCell(torch.nn.Module):

def __init_(self, d_input, d_hidden):
super(). _init__ ()
self.d_input - d_input
self.d _hidden d_hidden
self.Wh —- torch.nn.Linear(d_hidden, d_hidden, bias False)

self.Wx = torch.nn.Linear(d_input, d_hidden, bias True)
self.activation - torch.nn.Tanh()

def call (self, x, h):
h self.activation(self.Wh(h) self.Wx(h))

h

31

RNNs in Code (2/2)

class RNN(torch.nn.Module):

def __init__ ([self, vocab_sizd, d_input, d_hidden, n_labels):

super(). 1n1t

self.embeddlng nn Embedding(vocab_size, d_input)
self.rnn = RNNCell(d_input, d_hidden)

self.output — nn.Linear(d_hidden, n_labels)
self.d_hidden - d_hidden

__call_ (self, x, hidden=None):

hidden None:
hidden = self.init hidden(x.size(0))

X = self.embedding(x)

outs - []
i range(x.size(1)):
hidden — self.rnn(x[:, i:i+1], hidden)
out = self.output(hidden)
outs.append(out)

outs - torch.cat(outs, dim-1)
outs, hidden

def init hidden(self, batch size):
torch.zeros(batch_size, 1, self.hidden_size)

Berkeley CS 288

The Unreasonable Effectiveness of Recurrent Neural
Networks

May 21, 2015

You can train an RNN-LM on any kind of text, then generate text in that style.

\begin{proof}

We may assume that \mathcal{I} is an abelian sheaf on $\mathcal{C}S$.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$

is an injective and let $\mathfrak g$ be an abelian sheaf on XS.

Let \mathcal{F} be a fibered complex. Let \mathcal{F} be a category.
\begin{enumerate}

\item \hyperref[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}

Let $S\mathcal{F}$ be an abelian quasi-coherent sheaf on $\mathcal{C}S.
Let \mathcal{F} be a coherent $\mathcal{O} X$-module. Then
S\mathcal{F} is an abelian catenary over $\mathcal{C}S$.

\item The following are equivalent

\begin{enumerate}

\item \mathcal{F} is an $\mathcal{0} X$-module.

\end{lemma}

N

Berkeley CS 288 https://karpathy.github.io/2015/05/21/rnn-effectiveness/ 33

Multi-layer RNINs

0 @ 0 0 0)
RNN layer 3 : : > : > : : :
o) J L o O LJ
ol [s] (o] (o] (o] [e
RNN layer 2 0 0 o/ |8 e 0 The hidden states from RNN layer |
N " N 5 3 Y

are the inputs to RNN layer i + 1

-

T T

the movie was terribly exciting

RNN layer 1

A 4

—n
—(0000]
—(0000]

S
O
O
O

‘T‘

!

* |[n practice, using 2 to 4 layers is common (usually better than 1 layer)
* Transformer networks can be up to 24 layers with lots of skip-connections

Berkeley CS 288

Issues of RN Training

Berkeley CS 288

Training of RNNs

Backword pass:
 Backpropagation? Yes, but not that simple

RGLU Y, 1 L Y, [L Y " Ls

Rel U
(WD)‘\ ’fb o . i T
@ wd h h, h, }—»h

wW® w -2

(D \® e

x |,
s
=

&

The algorithm is called Backpropagation Through Time (BPTT)

Berkeley CS 288

36

Backpropagation through time

Recall:
h; = o(W,hy + W x; + b), where x; = E(x;)
h, = 6(W,h; + W x, + b), where X, = E(x,) y = softmax (WOhD € R®
h; = 6(W,h, + W x5 + b), where X5 = E(x3) Z(0) = —log (37(6))

In order to do backpropagation, you need; i

oW,

0L _ 0% ohy
OW, oh, oW,

More generally:

If kK and t are far away, the gradients can grow/shrink exponentially

Berkeley CS 288 (called the gradient exploding or gradient vanishing problem)

37

Berkeley CS 288

Backpropagation through time

Quiz: What will happen if the gradients become too large or too small?

a) If too large, the model will become difficult to converge
b) If too small, the model can’t capture long-term dependencies

c) If too small, the model may capture a wrong recent dependency

(
(
(C)

(d) All of the above

Answer is (d). All of these are correct :)

33

Backpropagation through time: Solution

One solution for gradient exploding is called gradient clipping — if the norm of the

gradient is greater than some threshold, scale it down before applying SGD update.

Algorithm 1 Pseudo-code for norm clipping
A o0&
g < 30
if ||g|| > threshold then

A threshold ~
< R
B gl 8
end if

Intuition: take a step in the same direction but a smaller step!

Gradient vanishing is a harder problem to solve.

Berkeley CS 288

39

Truncated backpropagation through time

* Run forward and backward through chunks of the sequence instead of whole sequence

» Carry hidden states forward in time forever, but only back-propagate for some smaller
number of steps

Berkeley CS 288

40

Advanced RNN variants

(“Gated” architectures)

Berkeley CS 288

Advanced RNN variants: Overview

Vanilla RNN h =oc(W,h_,+Wx +Db)
Long Short-Term Memory (LSTMs) Gated Recurrent Unit (GRU)
i, =c(Wh,_, +Ux, +b) € R’
f, = o(Wsh,_, +Upx, + b)) € R r,=c(Wh,_, +Ux +b)e R
Ot — G(WOht—l -+ UOXZ‘ -+ bO) - Rd Zl‘ = G(thl‘—l —+ UZXZ‘ —+ bZ) - Rd

g, =0(Wh,_ +Ux +b,)e R4

anh (W (r, 0 h,_,) + Ux, + b)

h =t
ht (1 - Zt) th—l +Zt®Bt

c,=f0oc_+1,0g
h, = o, © tanh (ct)

Berkeley CS 288

Long Short-Term Memory RNNs (LSTMs)

A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the

vanishing gradients problem.

* Everyone cites that paper but really a crucial part of the modern LSTM is from Gers

et al. (2000)

LONG SHORT-TERM MEMORY

NEURAL COMPUTATION 9(8):1735-1780, 1997

Sepp Hochreiter Jirgen Schmidhuber
Fakultat fur Informatik IDSIA
Technische Universitat Miinchen Corso Elvezia 36
80290 Miinchen, Germany 6900 Lugano, Switzerland
hochreit@informatik.tu-muenchen.de juergen@idsia.ch

http://www7.informatik.tu-muenchen.de/ hochreit http://www.idsia.ch/ juergen

Berkeley CS 288

Learning to Forget: Continual Prediction with LSTM

Felix A. Gers
Jiirgen Schmidhuber

Fred Cummins
IDSIA, 6900 Lugano, Switzerland

43

Recap:Vanishing gradients

Recall:
h; = o(W,;h, + W.x; + b), where X; = E(x)
h, = 6(W,h; + W x, + b), where X, = E(x,)
h; = o(W,;h, + W x5 + b), where X; = E(x3) Z(0) = — log ()A’(C))

y = softmax (WOhD e R¢

When these are small, the gradient signals get
In order to do backpropagation, you need: smaller and smaller as it back propagates further

0L _ 0% ohy |
OW oh; oW

More generally:

If kK and t are far away, the gradients can grow/shrink exponentially
Berkeley CS 288 (called the gradient exploding or gradient vanishing problem)

44

Recap:Vanishing gradients

J2)(9) J1 ()

h(3)

: 4 4 II: h”
O O
O O

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are basically updated only with respect to near effects, not long-term effects.

Serkeley CS 288 Slide credit: Chris Manning -

LSTMs: The intuition

Key idea: adding a “cell” state as a long-term memory wire, updated with an “additive”

updates (instead of multiplication) and and using “gates” to control how much
information to add/erase

~ B
C O — + — C
: , . t-1 T A t
« We write to/erase information from ¢, after f
each step t o
P — \
» We read h, from ¢, W—(] 6
N > stack l .
t1 L y O O —_ ht
‘
X

Berkeley CS 288

46

LSTMs: The formulation

Input gate (how much to write)
i =c(Wh,_,+Ux. +b)eR?

Forget gate (how much to erase)
f, =o(Wsh,_ +Ux, +by) € RY

/
Output gate (how much to reveal) C, . -0 — +—» C,
o, =c6(Wh,, +Ux +b)ec R !
New memory cell (what to write) W > | —
N > stack .0
t-1 \ ?

Final memorycel: ¢, =1, ©Oc¢,_;+1, 0O g, |
Finally hidden cell: h, = 0, © tanh (c,) X

Berkeley CS 288

LSTMs: The formulation

Input gate (how much to write)
i =c(Wh,_,+Ux. +b)eR?

Forget gate (how much to erase)
ft — G(tht—l —+ Uth -+ bf) — Rd

Output gate (how much to reveal)
o, =c6(Wh,, +Ux +b)ec R

New memory cell (what to write)
g, =oc(Wh,_, +Ux +b,) e R

Final memorycal: ¢, =1 Oc¢,_;+1,0 g,
Finally hidden cell: h, = 0, ® tanh (c,)

Berkeley CS 288

Quick quiz: How many parameters?
Assuming embedding matrix E € R!VIX%n
output matrix W & RC*d

Answer:

| VIdy, + 4 (dd, +d*+d) + Cd

INRNNSs, |V|d, +dd., +d*+d+ Cd
Because it only had one linear computation —

h, = 6(W,h,_, + W.x,+ b)

48

LSTMs: The formulation

Uninterrupted gradient flow!

TE.

:—@
’

 |LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but it does
provide an easier way for the model to learn long-distance dependencies

 LSTMs were invented in 1997 but finally got working from 2013-2015.

 These ideas influenced later designs such as “residual connection”.

Berkeley CS 288

Gated Recurrent Units (GRUs)

Introduced by Kyunghyun Cho et al. in 2014:

Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation

Kyunghyun Cho
Bart van Merriénboer Caglar Gulcehre Dzmitry Bahdanau
Université de Montréal Jacobs University, Germany
firstname.lastname@umontreal.ca d.bahdanaul@jacobs—-university.de
Fethi Bougares Holger Schwenk Yoshua Bengio
Université du Maine, France Université de Montréal, CIFAR Senior Fellow
firstname.lastname@lium.univ-lemans.fr find.me@on.the.web

Simplified 3 gates to 2 gates: reset gate and update gate, without an explicit cell state

Berkeley CS 288

50

Gated Recurrent Units (GRUs)

Reset gate (how much to reset)
r,=c(Wh,_,+Ux. +b)eR’

Update gate (how much to update)
z,=c(Wh,_ +Ux,+b) e R

New hidden state

~J/

h, = tanh (W (r, 0 h,_,) + Ux, +b)
h, = (1 _Zt)th—l_l_Zt@Bt

Berkeley CS 288

hi—1

hf

X &
X 't Zt: ! ilt
9] 9} tanh
J

51

Gated Recurrent Units (GRUs)

Reset gate (how much to reset)
r,=c(Wh,_,+Ux. +b)eR’

Update gate (how much to update)
z,=c(Wh,_ +Ux,+b) e R

New hidden state

~J/

h, = tanh (W (r, 0 h,_,) + Ux, +b)
h, = (1 _Zt)th—l‘l'Zt@Bt

Berkeley CS 288

Quick quiz: How many parameters?
Assuming embedding matrix E € R!V1*¥n,

output matrix W, € R¢*¢

Answer:

| VIdy, + 3 (ddy, +d*+d) + Cd

INnRNNSs, |V|d, +dd., +d*+d+ Cd
nLSTMs, | V|d,, + 4 (dd,, +d*+d) + Cd

52

Advanced RNN variants: Overview

Vanilla RNN h =oc(W,h_,+Wx +Db)
Long Short-Term Memory (LSTMs) Gated Recurrent Unit (GRU)
i, =c(Wh,_, +Ux, +b) € R’
f, = o(Wsh,_, +Upx, + b)) € R r,=c(Wh,_, +Ux +b)e R
Ot — G(WOht—l -+ UOXZ‘ -+ bO) - Rd Zl‘ = G(thl‘—l —+ UZXZ‘ —+ bZ) - Rd

g, =0(Wh,_ +Ux +b,)e R4

anh (W (r, 0 h,_,) + Ux, + b)

h =t
ht (1 - Zt) th—l +Zt®Bt

c,=f0oc_+1,0g
h, = o, © tanh (ct)

Berkeley CS 288

Comparison of LSTMs and GRUs

Quiz: Let’'s compare LSTMs and GRUs. Which of the following statements is correct?

a) GRUs can be trained faster
b) In theory LSTMs can capture long-term dependencies better

c) LSTMs have a controlled exposure of memory content while GRUs don’t

(
(
()

(d) All of the above

Answer is (d). All of these are correct :)

Berkeley CS 288

54

LSTMs vs. GRUs

Per epoch
4
— tanh train 10 T e~ tanh train
« -+ tanh valid ! : « -+ tanh valid
w—= GRU train 2 : =« GRU train
v -» GRU valid : : : : « -« GRUvalid |
LSTM train \ : f : +—+ LSTM train
LSTM valid NK ¢ -« |STM valid
‘.".".‘.‘ : . : i
.‘.-.:“‘.""’“0--.--'-- .. - - ..5.- ci@+=@e
'-‘?Jvtwrivilkiwklvilbiv&IMIJ
boemogiyigiy |
n . i I S S s \NW
M u S | C m Od el | n g 0 100 200 300 400 500 0 100 200 300 400 500
Wall Clock Time (seconds)
4
: «— tanh train 10 «— tanh train
: « - tanh valid « - tanh valid
=—a GRU train »—a GRU train
= = GRU valid = = GRU valid
| +— |LSTM train : : : +—& LSTM train
- ¢ -¢ LSTM valid ¢ - LSTM valid
p
'. ‘.
..
W

DS 234 35 2 2 X T e s

.. : 5
..-_#”ﬁ-'-'--“"_’:li'-‘ll"‘ I
9000000 "’~.-.....ﬁ._.

0 15000 30000
(a) Nottingham Dataset (b) MuseData Dataset

Berkeley CS 288 (Chung et al, 2014): Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling 55

LSTMs vs. GRUs

Per epoch
ﬁ : «— tanh train
« -+ tanh valid : « -+ tanh valid
»—« GRU train 102} | | i | »—= GRU train
» -= GRU valid ﬁ = -= GRU valid
: : +— |STM train : +—+ |STM train
10t} : : v ¢ -+ LSTM valid , ¢ -+ LSTM valid

10!

S. : :
" 8 - B .
P @8- @ @B -2 0 @-" 0 8 -mW

o 5-.-- a-a-
SR S SR TR TSR IR TR SR IR SR R 2 Sk o 2

10°}

Speech signal

0 200 400 600 800 0 200 400 600 800

modell Nng | | Wall Clock Time (seconds)

+—e tanh train | . f +—e tanh train
« -+ tanh valid | i « -+ tanh valid
== GRU trai.n 11 g (TSRS, N——— SRSUSURSURRRUUNE SRS »—= GRU trai.n
» = GRU valid 'f g » = GRU valid
+—+ LSTM train|| : +—+ LSTM train
¢ -+ LSTM valid : ¢ -+ LSTMvalid

- '
..’..I-...'.-.-l.l-lillifl :
MR R T e R A R s

100 s H » H
0 5000 10000 15000 0 5000 10000 15000 _ 20000
(a) Ubisoft Dataset A (b) Ubisoft Dataset B

Berkeley CS 288 (Chung et al, 2014): Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling 56

Berkeley CS 288

Modern RNNs: State-space models

& ®) 6
f] w f
A —b—ﬁ > A —>
‘| [_) J * Much simpler recurrent update (linear)
© ® © » Long-range with large hidden units
ND —— hy=Ah, 1+ Bz, ——1.p ° Efficiency: parallelizable on GPUs
1-D — Yt = Cihy

(Gu et al, 2021): Efficiently Modeling Long Sequences with Structured State Spaces

57

Questions!

Acknowledgement

Princeton COS 484 by Danqgi Chen, Tri Dao, Vikram Ramaswamy
CMU CS11-711 Advanced NLP by Graham Neubig & Sean Welleck

