
Sequence Modeling

CS 288 Spring 2026
UC Berkeley

cal-cs288.github.io/sp26

https://cal-cs288.github.io/sp26/

Berkeley CS 288 2

Today’s Question:
What is a Sequence Model?

• The classifier model we saw last lecture treats a sentence as a bag of words.

• But it ignores the ordering of words in a sentence

Sequence modeling

• Building models that understand inputs where order matters and where each element

depends on what came before.

• Unlike a perceptron or an MLP, it can represent order, context, or dependencies across time.

Plans for this lecture:

• Survey sequence modeling tasks

• Architecture for sequence modeling: Recurrent neural networks (RNNs)!

• In theory, infinite context

• Motivates attention (next week!)

Berkeley CS 288

Sequence modeling tasks

Berkeley CS 288

Sequence modeling tasks

4

Technically, all NLP tasks benefit from sequence modeling!

• Classification: Text Label

• Language modeling: Text Next word

• Sequence-to-sequence: Text Text (e.g., machine translation, question
answering, … more in the next week’s lecture)

• Sequence labeling: Text (a sequence of n words) a sequence of n labels
(one label per word)

• What are some examples?

→
→

→

→

Berkeley CS 288

Part-of-speech (POS) tagging

5

PRP: Personal pronoun

VBZ: Verb, 3rd person
singular present

NN: singular noun

NNS: plural noun

IN: preposition or
subordinating
conjunction

DT: determiner

Berkeley CS 288

Named Entity Recognition

6Image: https://www.analyticsvidhya.com/blog/2021/11/a-beginners-introduction-to-ner-named-entity-recognition/

Berkeley CS 288

Semantic role labeling

7https://devopedia.org/semantic-role-labelling

Berkeley CS 288

NLP pipeline

8

https://spacy.io/usage/processing-pipelines https://stanfordnlp.github.io/CoreNLP/pipeline.html

Berkeley CS 288

Deeper dive I: Parts of speech

9

• Tag each word in a sentence with its part of speech

• Disambiguation task: each word might have different functions in different contexts

• Consider a word “man” — what would be a POS tag?

• The/DT man/NN bought/VBD a/DT boat/NN

• The/DT old/NN man/VBP the/DT boat/NN

Same word,  
different tags

Some words have
many functions!

JJ: adjective, NN: single or mass noun, VBP: Verb, non-3rd person singular present
VB: Verb, base form, RP: particle, RB: adverb

Berkeley CS 288

Deeper dive I: Parts of speech

10

How many part of speech tags do you think English has?

A) < 10

B) 10 - 20

C) 20 - 40

D) > 40

The answer is (D) - well, depends on definitions!

Berkeley CS 288

Penn treebank part-of-speech tagset

11

(Marcus et al., 1993)
45 tags

Other corpora: Brown, Switchboard

based on Wall Street
Journal (WSJ)

Berkeley CS 288

A simple baseline

12

• Most frequent class: Assign each word to the class it occurred most in the
training set. (e.g. man/NN)

• How accurate do you think this baseline would be at tagging words?

(A) <50%

(B) 50-75%

(C) 75-90%

(D) >90%

The answer is (D)
• This baseline accurately tags 92.34% of word tokens on

Wall Street Journal (WSJ)!

• State of the art ~ 97% (also human-level acc)

• Average English sentence ~14 words

• Sentence level accuracies: with 0.9214 per word is

31% vs 0.9714 per word is 65%

Berkeley CS 288

Model: Hidden Markov Model (HMM)

13

• We don’t normally see sequences of POS tags in text

• However, we do observe the words!

• The HMM allows us to jointly reason over both hidden and observed events.

• Assume that each position has a tag that generates a word

s1 s2 s3 s4

the cat sat on

Tags

Words

(hidden events)

(observed events)

Berkeley CS 288

Deeper dive II: Named entity recognition

Berkeley CS 288

Named entities

15

• Named entity, in its core usage, means anything that can be referred to with a
proper name.

• NER is the task of 1) finding spans of text that constitute proper names; 2)
tagging the type of the entity

• Most common 4 tags:

• PER (Person): “Marie Curie”

• LOC (Location): “New York City”

• ORG (Organization): “Princeton University”

• MISC (Miscellaneous): nationality, events, ..

Berkeley CS 288

Named entities

16

Steve Jobs founded Apple with Steve Wozniak .

PER PER O ORG O PER PER O

O = not an entity
If multiple words constitute a named entity, they will be labeled with the same tag.

O LOC O LOC O PER O O O
Only France and Britain backed Fischler ’s proposal .

Limitation: Can’t distinguish from having two named entities adjacent to each other?

Berkeley CS 288

NER: BIO Tagging

17

B: token that begins a span
I: tokens that inside a span
O: tokens outside of a span

Berkeley CS 288

Neural Sequence Modeling

Berkeley CS 288

Sequence Modeling

19

The capital city Californiaof is Sacramento

fθ

 where is a hidden statefθ(x1, ⋯, xT) = h1, ⋯, hT hT ∈ ℝd

Why? How do we do an end task from here?

Let’s look at three tasks: classification, sequence labeling (e.g., POS tagging),

and language modeling!

Berkeley CS 288

Sequence Modeling: (1) Text Classification

“Neutral”

1. where is a hidden state

2. Summarize all hidden states into one vector

•

•

•

3.

fθ(x1, ⋯, xT) = h1, ⋯, hT hT ∈ ℝd

h̄ = MeanPool(h1, ⋯, hT)
h̄ = MaxPool(h1, ⋯, hT)
h̄ = hT

̂y = argmaxWoh̄⊺

The capital city Californiaof is Sacramento

fθ

(We’ll assume this for the rest of the class)

Berkeley CS 288

Sequence Modeling: (2) Part-of-Speech Tagging

21

The capital city Californiaof is Sacramento

fθ

1. where is a hidden state

2.

fθ(x1, ⋯, xT) = h1, ⋯, hT hT ∈ ℝd

̂yt = argmaxWoh⊺
t

NNPDT JJ NN IN NNP VBZ

Berkeley CS 288

Recurrent Neural Network

22

RNN RNN RNN

How do we actually model ?

• : Initial hidden state (usually zeros)

• , where

• , where

• , where

fθ(x1, ⋯, xT) = h1, ⋯, hT

h0

h1 = σ(Whh0 + Wxx1 + b) x1 = E(x1)
h2 = σ(Whh1 + Wxx2 + b) x2 = E(x2)
h3 = σ(Whh2 + Wxx3 + b) x3 = E(x3)

Parameters:

ht = σ(Whht−1 + Wxxt + b)

E ∈ R|V|×din,
Wh ∈ Rd×d, Wx ∈ Rd×din, b ∈ Rd

Berkeley CS 288

Recurrent Neural Network: (1) Text Classification

23

1. : Initial hidden state (usually zeros)

2. , where

3. , where

4. , where

5.

h0

h1 = σ(Whh0 + Wxx1 + b) x1 = E(x1)
h2 = σ(Whh1 + Wxx2 + b) x2 = E(x2)
h3 = σ(Whh2 + Wxx3 + b) x3 = E(x3)
̂y = argmaxWoh⊺

3

h0

RNN

h1

RNN

h2

RNN

h3

Label y

Parameters:

E ∈ R|V|×din,
Wh ∈ Rd×d, Wx ∈ Rd×din,
b ∈ Rd, Wo ∈ RC×d

Training:

• Training data:

•

•

< (x1, ⋯, xT), c >

ŷ = softmax (Woh⊺
T) ∈ ℝC

ℒ(θ) = − log (ŷ(c))

Berkeley CS 288

Recurrent Neural Network: (2) Part-of-Speech Tagging

24

1. : Initial hidden state (usually zeros)

2.

3.

4.

h0

h1 = σ(Whh0 + Wxx1 + b) → ̂y1 = argmaxWoh⊺
1

h2 = σ(Whh1 + Wxx2 + b) → ̂y2 = argmaxWoh⊺
2

h3 = σ(Whh2 + Wxx3 + b) → ̂y3 = argmaxWoh⊺
3

h0

RNN

h1

y1

RNN

h2

y2

RNN

h3

y3

Parameters:

E ∈ R|V|×din,
Wh ∈ Rd×d, Wx ∈ Rd×din,
b ∈ Rd, Wo ∈ RC×d

Training:

• Training data:

•

•

< (x1, ⋯, xT), (y1, ⋯, yT) >
ŷt = softmax (Woh⊺

t) ∈ ℝC

ℒ(θ) = −
T

∑
t=1

log (̂yt(yt))

Berkeley CS 288

Recurrent Neural Network: (3) Language modeling

25

RNN RNN RNN

h0 h1 h2 h3

y1 y2 y3

Parameters:

E ∈ R|V|×din,
Wh ∈ Rd×d, Wx ∈ Rd×din,
b ∈ Rd, Wo ∈ R|V|×d

1. : Initial hidden state (usually zeros)

2.

3.

4.

h0

h1 = σ(Whh0 + Wxx1 + b) → ̂y1 = argmaxWoh⊺
1

h2 = σ(Whh1 + Wxx2 + b) → ̂y2 = argmaxWoh⊺
2

h3 = σ(Whh2 + Wxx3 + b) → ̂y3 = argmaxWoh⊺
3

Training:

• Training data:

• This is equivalent to having supervised training datasets

•

•

x1, x2, ⋯, xT

< (x1), (x2) > , < (x1, x2), (x3) > , < (x1, x2, x3), (x4) > ⋯, < (x1, ⋯, xT−1), (xT) >
ŷt = softmax (Woh⊺

t) ∈ ℝ|V|

ℒ(θ) = −
T−1

∑
t=1

log (̂yt(xt+1))

Berkeley CS 288

Recurrent Neural Network: (3) Language modeling

26

RNN RNN RNN

h0 h1 h2 h3

y1 y2 y3

Parameters:

E ∈ R|V|×din,
Wh ∈ Rd×d, Wx ∈ Rd×din,
b ∈ Rd, Wo ∈ R|V|×d

1. : Initial hidden state (usually zeros)

2.

3.

4.

h0

h1 = σ(Whh0 + Wxx1 + b) → ̂y1 = argmaxWoh⊺
1

h2 = σ(Whh1 + Wxx2 + b) → ̂y2 = argmaxWoh⊺
2

h3 = σ(Whh2 + Wxx3 + b) → ̂y3 = argmaxWoh⊺
3

If , and have the
same shape — can we merge them?

Yes!! Called “weight tying.” It works better
empirically and becomes a common practice (except
for very large models)

din = d E ∈ R|V|×din Wo ∈ R|V|×d

Berkeley CS 288

Feedforward NNs vs. RNNs

27

Berkeley CS 288

RNNs: Results

28

On the Penn Treebank (PTB) dataset

Metric: perplexity

(Mikolov and Zweig, 2012): Context dependent recurrent neural network language model

Berkeley CS 288

RNNs: Results

29(Yang et al, 2018): Breaking the Softmax Bottleneck: A High-Rank RNN Language Model

On the Penn Treebank (PTB) dataset

Metric: perplexity

Berkeley CS 288

RNNs: Pros and cons

30

Advantages:
• Can process any length input

• Computation for step t can (in theory) use information from many steps back

• Model size doesn’t increase for longer input context

Disadvantages:
• Recurrent computation is slow (can’t parallelize)

• In practice, difficult to access information from many steps back (optimization issue)

Transformers can!

• We will see some advanced RNNs (e.g., LSTMs, GRUs, SSMs)

Berkeley CS 288

RNNs in Code (1/2)

31

Berkeley CS 288

RNNs in Code (2/2)

32

Berkeley CS 288 33https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Berkeley CS 288

Multi-layer RNNs

34

The hidden states from RNN layer i
are the inputs to RNN layer i + 1

• In practice, using 2 to 4 layers is common (usually better than 1 layer)

• Transformer networks can be up to 24 layers with lots of skip-connections

Berkeley CS 288

Issues of RNN Training

Berkeley CS 288

Training of RNNs

36

Backword pass:

• Backpropagation? Yes, but not that simple

The algorithm is called Backpropagation Through Time (BPTT)

Berkeley CS 288

Backpropagation through time

37

Recall:

, where

, where

, where

In order to do backpropagation, you need:

More generally:

h1 = σ(Whh0 + Wxx1 + b) x1 = E(x1)
h2 = σ(Whh1 + Wxx2 + b) x2 = E(x2)
h3 = σ(Whh2 + Wxx3 + b) x3 = E(x3)

∂ℒ
∂Wh

∂ℒ
∂Wh

=
∂ℒ
∂h3

∂h3

∂Wh
+

∂ℒ
∂h3

∂h3

∂h2

∂h2

∂Wh
+

∂ℒ
∂h3

∂h3

∂h2

∂h2

∂h1

∂h1

∂Wh

∂ℒ
∂Wh

= −
1
n

T

∑
t=1

t

∑
k=1

∂ℒ
∂ht

t

∏
j=k+1

∂hj

∂hj−1

ŷ = softmax (Woh⊺
3) ∈ ℝC

ℒ(θ) = − log (ŷ(c))

If k and t are far away, the gradients can grow/shrink exponentially

(called the gradient exploding or gradient vanishing problem)

Berkeley CS 288

Backpropagation through time

38

Answer is (d). All of these are correct :)

Quiz: What will happen if the gradients become too large or too small?

(a) If too large, the model will become difficult to converge

(b) If too small, the model can’t capture long-term dependencies

(c) If too small, the model may capture a wrong recent dependency

(d) All of the above

Berkeley CS 288

Backpropagation through time: Solution

39

One solution for gradient exploding is called gradient clipping — if the norm of the
gradient is greater than some threshold, scale it down before applying SGD update.

Intuition: take a step in the same direction but a smaller step!

Gradient vanishing is a harder problem to solve.

Berkeley CS 288

Truncated backpropagation through time

40

• Run forward and backward through chunks of the sequence instead of whole sequence

• Carry hidden states forward in time forever, but only back-propagate for some smaller
number of steps

Berkeley CS 288

Advanced RNN variants
(“Gated” architectures)

Berkeley CS 288

Advanced RNN variants: Overview

42

ht = σ(Whht−1 + Wxxt + b)

it = σ(Wiht−1 + Uixt + bi) ∈ ℝd

ft = σ(Wf ht−1 + Uf xt + bf) ∈ ℝd

ot = σ(Woht−1 + Uoxt + bo) ∈ ℝd

gt = σ(Wght−1 + Ugxt + bg) ∈ ℝd

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh (ct)

rt = σ(Wrht−1 + Urxt + br) ∈ ℝd

zt = σ(Wzht−1 + Uzxt + bz) ∈ ℝd

h̃t = tanh (W (rt ⊙ ht−1) + Uxt + b)
ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t

Vanilla RNN

Long Short-Term Memory (LSTMs) Gated Recurrent Unit (GRU)

Berkeley CS 288

Long Short-Term Memory RNNs (LSTMs)

43

A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the
vanishing gradients problem.

• Everyone cites that paper but really a crucial part of the modern LSTM is from Gers
et al. (2000)

Berkeley CS 288

Recap: Vanishing gradients

44

Recall:

, where

, where

, where

In order to do backpropagation, you need:

More generally:

h1 = σ(Whh0 + Wxx1 + b) x1 = E(x1)
h2 = σ(Whh1 + Wxx2 + b) x2 = E(x2)
h3 = σ(Whh2 + Wxx3 + b) x3 = E(x3)

∂ℒ
∂W

=
∂ℒ
∂h3

∂h3

∂W
+

∂ℒ
∂h3

∂h3

∂h2

∂h2

∂W
+

∂ℒ
∂h3

∂h3

∂h2

∂h2

∂h1

∂h1

∂W

∂ℒ
∂W

= −
1
n

T

∑
t=1

t

∑
k=1

∂ℒ
∂ht

t

∏
j=k+1

∂hj

∂hj−1

ŷ = softmax (Woh⊺
3) ∈ ℝC

ℒ(θ) = − log (ŷ(c))

If k and t are far away, the gradients can grow/shrink exponentially

(called the gradient exploding or gradient vanishing problem)

When these are small, the gradient signals get
smaller and smaller as it back propagates further

Berkeley CS 288

Recap: Vanishing gradients

45Slide credit: Chris Manning

Berkeley CS 288

LSTMs: The intuition

46

Key idea: adding a “cell” state as a long-term memory wire, updated with an “additive”
updates (instead of multiplication) and and using “gates” to control how much
information to add/erase

• We write to/erase information from after
each step t

• We read from

ct

ht ct

Berkeley CS 288

LSTMs: The formulation

47

Input gate (how much to write)

Forget gate (how much to erase)

Output gate (how much to reveal)

New memory cell (what to write)

Final memory cell:

Finally hidden cell:

it = σ(Wiht−1 + Uixt + bi) ∈ ℝd

ft = σ(Wf ht−1 + Uf xt + bf) ∈ ℝd

ot = σ(Woht−1 + Uoxt + bo) ∈ ℝd

gt = σ(Wght−1 + Ugxt + bg) ∈ ℝd

ct = ft ⊙ ct−1 + it ⊙ gt
ht = ot ⊙ tanh (ct)

Berkeley CS 288

LSTMs: The formulation

48

Input gate (how much to write)

Forget gate (how much to erase)

Output gate (how much to reveal)

New memory cell (what to write)

Final memory call:

Finally hidden cell:

it = σ(Wiht−1 + Uixt + bi) ∈ ℝd

ft = σ(Wf ht−1 + Uf xt + bf) ∈ ℝd

ot = σ(Woht−1 + Uoxt + bo) ∈ ℝd

gt = σ(Wght−1 + Ugxt + bg) ∈ ℝd

ct = ft ⊙ ct−1 + it ⊙ gt
ht = ot ⊙ tanh (ct)

Quick quiz: How many parameters?

Assuming embedding matrix

output matrix

E ∈ R|V|×din,
Wo ∈ RC×d

Answer:

In RNNs,

Because it only had one linear computation —

|V |din + 4 (ddin + d2 + d) + Cd

|V |din + ddin + d2 + d + Cd

ht = σ(Whht−1 + Wxxt + b)

Berkeley CS 288

LSTMs: The formulation

49

• LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but it does
provide an easier way for the model to learn long-distance dependencies

• LSTMs were invented in 1997 but finally got working from 2013-2015.

• These ideas influenced later designs such as “residual connection”.

Berkeley CS 288

Gated Recurrent Units (GRUs)

50

Introduced by Kyunghyun Cho et al. in 2014:

Simplified 3 gates to 2 gates: reset gate and update gate, without an explicit cell state

Berkeley CS 288

Gated Recurrent Units (GRUs)

51

Reset gate (how much to reset)

Update gate (how much to update)

New hidden state

rt = σ(Wrht−1 + Urxt + br) ∈ ℝd

zt = σ(Wzht−1 + Uzxt + bz) ∈ ℝd

h̃t = tanh (W (rt ⊙ ht−1) + Uxt + b)
ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t

Berkeley CS 288

Gated Recurrent Units (GRUs)

52

Quick quiz: How many parameters?

Assuming embedding matrix

output matrix

E ∈ R|V|×din,
Wo ∈ RC×d

Answer:

In RNNs,

In LSTMs,

|V |din + 3 (ddin + d2 + d) + Cd

|V |din + ddin + d2 + d + Cd
|V |din + 4 (ddin + d2 + d) + Cd

Reset gate (how much to reset)

Update gate (how much to update)

New hidden state

rt = σ(Wrht−1 + Urxt + br) ∈ ℝd

zt = σ(Wzht−1 + Uzxt + bz) ∈ ℝd

h̃t = tanh (W (rt ⊙ ht−1) + Uxt + b)
ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t

Berkeley CS 288

Advanced RNN variants: Overview

53

ht = σ(Whht−1 + Wxxt + b)

it = σ(Wiht−1 + Uixt + bi) ∈ ℝd

ft = σ(Wf ht−1 + Uf xt + bf) ∈ ℝd

ot = σ(Woht−1 + Uoxt + bo) ∈ ℝd

gt = σ(Wght−1 + Ugxt + bg) ∈ ℝd

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh (ct)

rt = σ(Wrht−1 + Urxt + br) ∈ ℝd

zt = σ(Wzht−1 + Uzxt + bz) ∈ ℝd

h̃t = tanh (W (rt ⊙ ht−1) + Uxt + b)
ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t

Vanilla RNN

Long Short-Term Memory (LSTMs) Gated Recurrent Unit (GRU)

Berkeley CS 288

Comparison of LSTMs and GRUs

54

Quiz: Let’s compare LSTMs and GRUs. Which of the following statements is correct?

(a) GRUs can be trained faster

(b) In theory LSTMs can capture long-term dependencies better

(c) LSTMs have a controlled exposure of memory content while GRUs don’t

(d) All of the above

Answer is (d). All of these are correct :)

Berkeley CS 288

LSTMs vs. GRUs

55(Chung et al, 2014): Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

Music modeling

Berkeley CS 288

LSTMs vs. GRUs

56(Chung et al, 2014): Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

Speech signal
modeling

Berkeley CS 288

Modern RNNs: State-space models

57

• Much simpler recurrent update (linear)

• Long-range with large hidden units

• Efficiency: parallelizable on GPUs

(Gu et al, 2021): Efficiently Modeling Long Sequences with Structured State Spaces

Questions?

Acknowledgement
Princeton COS 484 by Danqi Chen, Tri Dao, Vikram Ramaswamy
CMU CS11-711 Advanced NLP by Graham Neubig & Sean Welleck

