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Today’s Question:
What is a Sequence Model?

• The classifier model we saw last lecture treats a sentence as a bag of words.

• But it ignores the ordering of words in a sentence


Sequence modeling

• Building models that understand inputs where order matters and where each element 

depends on what came before.

• Unlike a perceptron or an MLP, it can represent order, context, or dependencies across time.


Plans for this lecture:

• Survey sequence modeling tasks

• Architecture for sequence modeling: Recurrent neural networks (RNNs)!


• In theory, infinite context

• Motivates attention (next week!)
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Sequence modeling tasks
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Technically, all NLP tasks benefit from sequence modeling!


• Classification: Text  Label


• Language modeling: Text  Next word


• Sequence-to-sequence: Text  Text (e.g., machine translation, question 
answering, … more in the next week’s lecture)


• Sequence labeling: Text (a sequence of n words)  a sequence of n labels 
(one label per word)


• What are some examples?

→
→

→

→
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Part-of-speech (POS) tagging
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PRP: Personal pronoun

VBZ: Verb, 3rd person 
singular present

NN: singular noun

NNS: plural noun

IN: preposition or 
subordinating 
conjunction


DT: determiner
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Named Entity Recognition

6Image: https://www.analyticsvidhya.com/blog/2021/11/a-beginners-introduction-to-ner-named-entity-recognition/
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Semantic role labeling

7https://devopedia.org/semantic-role-labelling
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NLP pipeline
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https://spacy.io/usage/processing-pipelines https://stanfordnlp.github.io/CoreNLP/pipeline.html
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Deeper dive I: Parts of speech
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• Tag each word in a sentence with its part of speech

• Disambiguation task: each word might have different functions in different contexts

• Consider a word “man” — what would be a POS tag?

• The/DT man/NN bought/VBD a/DT boat/NN

• The/DT old/NN man/VBP the/DT boat/NN

Same word,  
different tags

Some words have 
many functions!

JJ: adjective, NN: single or mass noun, VBP: Verb, non-3rd person singular present
VB: Verb, base form, RP: particle, RB: adverb
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Deeper dive I: Parts of speech
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How many part of speech tags do you think English has?


A) < 10

B) 10 - 20

C) 20 - 40

D) > 40

The answer is (D) - well, depends on definitions!
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Penn treebank part-of-speech tagset
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(Marcus et al., 1993)
45 tags

Other corpora: Brown, Switchboard

based on Wall Street 
Journal (WSJ)
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A simple baseline
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• Most frequent class: Assign each word to the class it occurred most in the 
training set. (e.g. man/NN)


• How accurate do you think this baseline would be at tagging words?

(A) <50%

(B) 50-75%

(C) 75-90%

(D) >90%

The answer is (D) 
• This baseline accurately tags 92.34% of word tokens on 

Wall Street Journal (WSJ)!

• State of the art ~ 97% (also human-level acc)

• Average English sentence ~14 words

• Sentence level accuracies: with 0.9214 per word is 

31% vs 0.9714 per word is 65%
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Model: Hidden Markov Model (HMM)
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• We don’t normally see sequences of POS tags in text 

• However, we do observe the words!

• The HMM allows us to jointly reason over both hidden and observed events.

• Assume that each position has a tag that generates a word

s1 s2 s3 s4

the cat sat on

Tags

Words

(hidden events)

(observed events)
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Deeper dive II: Named entity recognition
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Named entities
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• Named entity, in its core usage, means anything that can be referred to with a 
proper name. 


• NER is the task of 1) finding spans of text that constitute proper names; 2) 
tagging the type of the entity


• Most common 4 tags: 


• PER (Person): “Marie Curie” 


• LOC (Location): “New York City” 


• ORG (Organization): “Princeton University”


• MISC (Miscellaneous): nationality, events, ..
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Named entities
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Steve Jobs founded Apple with Steve Wozniak .

PER PER O ORG O PER PER O

O = not an entity
If multiple words constitute a named entity, they will be labeled with the same tag.

O LOC O LOC O PER O O O
Only France and Britain backed Fischler ’s proposal  .

Limitation: Can’t distinguish from having two named entities adjacent to each other?
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NER: BIO Tagging
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B: token that begins a span
I: tokens that inside a span
O: tokens outside of a span
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Sequence Modeling
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The capital city Californiaof is Sacramento

fθ

 where  is a hidden statefθ(x1, ⋯, xT) = h1, ⋯, hT hT ∈ ℝd

Why? How do we do an end task from here?

Let’s look at three tasks: classification, sequence labeling (e.g., POS tagging),

and language modeling!
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Sequence Modeling: (1) Text Classification

“Neutral”

1.  where  is a hidden state 

2. Summarize all hidden states into one vector 

•  

•  

•  

3.

fθ(x1, ⋯, xT) = h1, ⋯, hT hT ∈ ℝd

h̄ = MeanPool(h1, ⋯, hT)
h̄ = MaxPool(h1, ⋯, hT)
h̄ = hT

̂y = argmaxWoh̄⊺

The capital city Californiaof is Sacramento

fθ

(We’ll assume this for the rest of the class)
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Sequence Modeling: (2) Part-of-Speech Tagging
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The capital city Californiaof is Sacramento

fθ

1.  where  is a hidden state 

2.

fθ(x1, ⋯, xT) = h1, ⋯, hT hT ∈ ℝd

̂yt = argmaxWoh⊺
t

NNPDT JJ NN IN NNP VBZ
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Recurrent Neural Network
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RNN RNN RNN

How do we actually model  ? 

• : Initial hidden state (usually zeros) 

• , where  

• , where  

• , where 

fθ(x1, ⋯, xT) = h1, ⋯, hT

h0

h1 = σ(Whh0 + Wxx1 + b) x1 = E(x1)
h2 = σ(Whh1 + Wxx2 + b) x2 = E(x2)
h3 = σ(Whh2 + Wxx3 + b) x3 = E(x3)

 

Parameters: 

 

ht = σ(Whht−1 + Wxxt + b)

E ∈ R|V|×din,
Wh ∈ Rd×d, Wx ∈ Rd×din, b ∈ Rd
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Recurrent Neural Network: (1) Text Classification
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1. : Initial hidden state (usually zeros) 

2. , where  

3. , where  

4. , where  

5.

h0

h1 = σ(Whh0 + Wxx1 + b) x1 = E(x1)
h2 = σ(Whh1 + Wxx2 + b) x2 = E(x2)
h3 = σ(Whh2 + Wxx3 + b) x3 = E(x3)
̂y = argmaxWoh⊺

3

h0

RNN

h1

RNN

h2

RNN

h3

Label y

Parameters: 

 

 

E ∈ R|V|×din,
Wh ∈ Rd×d, Wx ∈ Rd×din,
b ∈ Rd, Wo ∈ RC×d

Training: 

• Training data:  

•  

•

< (x1, ⋯, xT), c >

ŷ = softmax (Woh⊺
T) ∈ ℝC

ℒ(θ) = − log (ŷ(c))
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Recurrent Neural Network: (2) Part-of-Speech Tagging
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1. : Initial hidden state (usually zeros) 

2.   

3.   

4.  

h0

h1 = σ(Whh0 + Wxx1 + b) → ̂y1 = argmaxWoh⊺
1

h2 = σ(Whh1 + Wxx2 + b) → ̂y2 = argmaxWoh⊺
2

h3 = σ(Whh2 + Wxx3 + b) → ̂y3 = argmaxWoh⊺
3

h0

RNN

h1

y1

RNN

h2

y2

RNN

h3

y3

Parameters: 

 

 

E ∈ R|V|×din,
Wh ∈ Rd×d, Wx ∈ Rd×din,
b ∈ Rd, Wo ∈ RC×d

Training: 

• Training data:  

•  

•

< (x1, ⋯, xT), (y1, ⋯, yT) >
ŷt = softmax (Woh⊺

t ) ∈ ℝC

ℒ(θ) = −
T

∑
t=1

log ( ̂yt(yt))
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Recurrent Neural Network: (3) Language modeling
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RNN RNN RNN

h0 h1 h2 h3

y1 y2 y3

Parameters: 

 

 

E ∈ R|V|×din,
Wh ∈ Rd×d, Wx ∈ Rd×din,
b ∈ Rd, Wo ∈ R|V|×d

1. : Initial hidden state (usually zeros) 

2.   

3.   

4.  

h0

h1 = σ(Whh0 + Wxx1 + b) → ̂y1 = argmaxWoh⊺
1

h2 = σ(Whh1 + Wxx2 + b) → ̂y2 = argmaxWoh⊺
2

h3 = σ(Whh2 + Wxx3 + b) → ̂y3 = argmaxWoh⊺
3

Training: 

• Training data:  

• This is equivalent to having supervised training datasets 
 

•  

•

x1, x2, ⋯, xT

< (x1), (x2) > , < (x1, x2), (x3) > , < (x1, x2, x3), (x4) > ⋯, < (x1, ⋯, xT−1), (xT) >
ŷt = softmax (Woh⊺

t ) ∈ ℝ|V|

ℒ(θ) = −
T−1

∑
t=1

log ( ̂yt(xt+1))
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Recurrent Neural Network: (3) Language modeling
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RNN RNN RNN

h0 h1 h2 h3

y1 y2 y3

Parameters: 

 

 

E ∈ R|V|×din,
Wh ∈ Rd×d, Wx ∈ Rd×din,
b ∈ Rd, Wo ∈ R|V|×d

1. : Initial hidden state (usually zeros) 

2.   

3.   

4.  

h0

h1 = σ(Whh0 + Wxx1 + b) → ̂y1 = argmaxWoh⊺
1

h2 = σ(Whh1 + Wxx2 + b) → ̂y2 = argmaxWoh⊺
2

h3 = σ(Whh2 + Wxx3 + b) → ̂y3 = argmaxWoh⊺
3

If , and  have the 
same shape — can we merge them? 

Yes!! Called “weight tying.” It works better 
empirically and becomes a common practice (except 
for very large models)

din = d E ∈ R|V|×din Wo ∈ R|V|×d
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Feedforward NNs vs. RNNs

27
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RNNs: Results
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On the Penn Treebank (PTB) dataset

Metric: perplexity

(Mikolov and Zweig, 2012): Context dependent recurrent neural network language model
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RNNs: Results

29(Yang et al, 2018): Breaking the Softmax Bottleneck: A High-Rank RNN Language Model

On the Penn Treebank (PTB) dataset

Metric: perplexity
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RNNs: Pros and cons
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Advantages: 
• Can process any length input

• Computation for step t can (in theory) use information from many steps back

• Model size doesn’t increase for longer input context


Disadvantages: 
• Recurrent computation is slow (can’t parallelize)

• In practice, difficult to access information from many steps back (optimization issue)

Transformers can!

• We will see some advanced RNNs (e.g., LSTMs, GRUs, SSMs)
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RNNs in Code (1/2)
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RNNs in Code (2/2)
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Berkeley CS 288 33https://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Multi-layer RNNs
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The hidden states from RNN layer i 
are the inputs to RNN layer i + 1

• In practice, using 2 to 4 layers is common (usually better than 1 layer)

• Transformer networks can be up to 24 layers with lots of skip-connections
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Issues of RNN Training



Berkeley CS 288 

Training of RNNs
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Backword pass:

• Backpropagation? Yes, but not that simple

The algorithm is called Backpropagation Through Time (BPTT)
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Backpropagation through time
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Recall:

, where 


, where 


, where 


In order to do backpropagation, you need: 


More generally:

h1 = σ(Whh0 + Wxx1 + b) x1 = E(x1)
h2 = σ(Whh1 + Wxx2 + b) x2 = E(x2)
h3 = σ(Whh2 + Wxx3 + b) x3 = E(x3)

∂ℒ
∂Wh

∂ℒ
∂Wh

=
∂ℒ
∂h3

∂h3

∂Wh
+

∂ℒ
∂h3

∂h3

∂h2

∂h2

∂Wh
+

∂ℒ
∂h3

∂h3

∂h2

∂h2

∂h1

∂h1

∂Wh

∂ℒ
∂Wh

= −
1
n

T

∑
t=1

t

∑
k=1

∂ℒ
∂ht

t

∏
j=k+1

∂hj

∂hj−1


ŷ = softmax (Woh⊺
3) ∈ ℝC

ℒ(θ) = − log (ŷ(c))

If k and t are far away, the gradients can grow/shrink exponentially

(called the gradient exploding or gradient vanishing problem)
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Backpropagation through time
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Answer is (d). All of these are correct :)

Quiz: What will happen if the gradients become too large or too small?


(a) If too large, the model will become difficult to converge

(b) If too small, the model can’t capture long-term dependencies

(c) If too small, the model may capture a wrong recent dependency

(d) All of the above
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Backpropagation through time: Solution
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One solution for gradient exploding is called gradient clipping — if the norm of the 
gradient is greater than some threshold, scale it down before applying SGD update.

Intuition: take a step in the same direction but a smaller step!

Gradient vanishing is a harder problem to solve.
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Truncated backpropagation through time
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• Run forward and backward through chunks of the sequence instead of whole sequence


• Carry hidden states forward in time forever, but only back-propagate for some smaller 
number of steps
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Advanced RNN variants
(“Gated” architectures)
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Advanced RNN variants: Overview
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ht = σ(Whht−1 + Wxxt + b)

 

 

 







it = σ(Wiht−1 + Uixt + bi) ∈ ℝd

ft = σ(Wf ht−1 + Uf xt + bf ) ∈ ℝd

ot = σ(Woht−1 + Uoxt + bo) ∈ ℝd

gt = σ(Wght−1 + Ugxt + bg) ∈ ℝd

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh (ct)

 






rt = σ(Wrht−1 + Urxt + br) ∈ ℝd

zt = σ(Wzht−1 + Uzxt + bz) ∈ ℝd

h̃t = tanh (W (rt ⊙ ht−1) + Uxt + b)
ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t

Vanilla RNN

Long Short-Term Memory (LSTMs) Gated Recurrent Unit (GRU)
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Long Short-Term Memory RNNs (LSTMs)
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A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the 
vanishing gradients problem.


• Everyone cites that paper but really a crucial part of the modern LSTM is from Gers 
et al. (2000)
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Recap: Vanishing gradients
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Recall:

, where 


, where 


, where 


In order to do backpropagation, you need:


More generally:

h1 = σ(Whh0 + Wxx1 + b) x1 = E(x1)
h2 = σ(Whh1 + Wxx2 + b) x2 = E(x2)
h3 = σ(Whh2 + Wxx3 + b) x3 = E(x3)

∂ℒ
∂W

=
∂ℒ
∂h3

∂h3

∂W
+

∂ℒ
∂h3

∂h3

∂h2

∂h2

∂W
+

∂ℒ
∂h3

∂h3

∂h2

∂h2

∂h1

∂h1

∂W

∂ℒ
∂W

= −
1
n

T

∑
t=1

t

∑
k=1

∂ℒ
∂ht

t

∏
j=k+1

∂hj

∂hj−1


ŷ = softmax (Woh⊺
3) ∈ ℝC

ℒ(θ) = − log (ŷ(c))

If k and t are far away, the gradients can grow/shrink exponentially

(called the gradient exploding or gradient vanishing problem)

When these are small, the gradient signals get 
smaller and smaller as it back propagates further
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Recap: Vanishing gradients

45Slide credit: Chris Manning
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LSTMs: The intuition
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Key idea: adding a “cell” state as a long-term memory wire, updated with an “additive” 
updates (instead of multiplication) and and using “gates” to control how much 
information to add/erase

• We write to/erase information from  after 
each step t


• We read  from 

ct

ht ct
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LSTMs: The formulation
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Input gate (how much to write)




Forget gate (how much to erase) 



Output gate (how much to reveal) 



New memory cell (what to write) 



Final memory cell: 

Finally hidden cell: 

it = σ(Wiht−1 + Uixt + bi) ∈ ℝd

ft = σ(Wf ht−1 + Uf xt + bf) ∈ ℝd

ot = σ(Woht−1 + Uoxt + bo) ∈ ℝd

gt = σ(Wght−1 + Ugxt + bg) ∈ ℝd

ct = ft ⊙ ct−1 + it ⊙ gt
ht = ot ⊙ tanh (ct)
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LSTMs: The formulation
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Input gate (how much to write)




Forget gate (how much to erase) 



Output gate (how much to reveal) 



New memory cell (what to write) 



Final memory call: 

Finally hidden cell: 

it = σ(Wiht−1 + Uixt + bi) ∈ ℝd

ft = σ(Wf ht−1 + Uf xt + bf) ∈ ℝd

ot = σ(Woht−1 + Uoxt + bo) ∈ ℝd

gt = σ(Wght−1 + Ugxt + bg) ∈ ℝd

ct = ft ⊙ ct−1 + it ⊙ gt
ht = ot ⊙ tanh (ct)

Quick quiz: How many parameters?

Assuming embedding matrix 

output matrix 

E ∈ R|V|×din,
Wo ∈ RC×d

Answer: 




In RNNs, 

Because it only had one linear computation — 


|V |din + 4 (ddin + d2 + d) + Cd

|V |din + ddin + d2 + d + Cd

ht = σ(Whht−1 + Wxxt + b)
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LSTMs: The formulation
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• LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but it does 
provide an easier way for the model to learn long-distance dependencies


• LSTMs were invented in 1997 but finally got working from 2013-2015.


• These ideas influenced later designs such as “residual connection”.
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Gated Recurrent Units (GRUs)
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Introduced by Kyunghyun Cho et al. in 2014:

Simplified 3 gates to 2 gates: reset gate and update gate, without an explicit cell state
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Gated Recurrent Units (GRUs)
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Reset gate (how much to reset) 



Update gate (how much to update) 



New hidden state 



rt = σ(Wrht−1 + Urxt + br) ∈ ℝd

zt = σ(Wzht−1 + Uzxt + bz) ∈ ℝd

h̃t = tanh (W (rt ⊙ ht−1) + Uxt + b)
ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t
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Gated Recurrent Units (GRUs)
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Quick quiz: How many parameters?

Assuming embedding matrix 

output matrix 

E ∈ R|V|×din,
Wo ∈ RC×d

Answer: 




In RNNs, 

In LSTMs, 

|V |din + 3 (ddin + d2 + d) + Cd

|V |din + ddin + d2 + d + Cd
|V |din + 4 (ddin + d2 + d) + Cd

Reset gate (how much to reset) 



Update gate (how much to update) 



New hidden state 



rt = σ(Wrht−1 + Urxt + br) ∈ ℝd

zt = σ(Wzht−1 + Uzxt + bz) ∈ ℝd

h̃t = tanh (W (rt ⊙ ht−1) + Uxt + b)
ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t
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Advanced RNN variants: Overview
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ht = σ(Whht−1 + Wxxt + b)

 

 

 







it = σ(Wiht−1 + Uixt + bi) ∈ ℝd

ft = σ(Wf ht−1 + Uf xt + bf ) ∈ ℝd

ot = σ(Woht−1 + Uoxt + bo) ∈ ℝd

gt = σ(Wght−1 + Ugxt + bg) ∈ ℝd

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh (ct)

 






rt = σ(Wrht−1 + Urxt + br) ∈ ℝd

zt = σ(Wzht−1 + Uzxt + bz) ∈ ℝd

h̃t = tanh (W (rt ⊙ ht−1) + Uxt + b)
ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t

Vanilla RNN

Long Short-Term Memory (LSTMs) Gated Recurrent Unit (GRU)
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Comparison of LSTMs and GRUs
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Quiz: Let’s compare LSTMs and GRUs. Which of the following statements is correct?


(a) GRUs can be trained faster

(b) In theory LSTMs can capture long-term dependencies better

(c) LSTMs have a controlled exposure of memory content while GRUs don’t

(d) All of the above

Answer is (d). All of these are correct :)
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LSTMs vs. GRUs

55(Chung et al, 2014): Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

Music modeling
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LSTMs vs. GRUs

56(Chung et al, 2014): Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

Speech signal 
modeling
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Modern RNNs: State-space models
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• Much simpler recurrent update (linear)

• Long-range with large hidden units

• Efficiency: parallelizable on GPUs

(Gu et al, 2021): Efficiently Modeling Long Sequences with Structured State Spaces



Questions?
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