Text Classification

CS 288 Spring 2026 Berkel
UC Berkeley ———

cal-cs238.github.io/sp26 EECS

BAIR

https://cal-cs288.github.io/sp26/

Joday's Question:
How to Train a Text Classifier!?

| astlecture, we learned about word representations.

 Once we have word representations, how does a model combine
them to make decisions?

 WEe’ll look into this through a task of text classification

Berkeley CS 288

Another theme:
Word embeddings to neural networks

| —]

| —

“" s

—0.224 —0.124

| 0130 b | 0430 T

cat —0.290 o5 —0.200 a ™
0.276 0.329 Neural Network

_ J

0.234 0.290 (0.31) (0.01) (1.87) (-3.17) (1.23)
0.266 —0.441 —(0.28 —0.91 0.03 —0.18 1.59

Uthe = | 939 [“ansuwaze = | (762 T T T T T
—0.199 0.982 I don’t like this movie

Berkeley CS 288

Text Classification

 One of the most basic NLP tasks
 |nput: a text
 Qutput: a label from a predefined set

* Learning problem: estimate the parameters of a function that maps
a text to its label

Berkeley CS 288

Example |: Spam vs. Ham

Email

\ / Machine Learning
y Model

Not Spam

* |nput: email 99

* Output: spam/ham

e Setup:
- Get a large collection of example emails, each labeled “spam” or “ham”
- Note: someone has to hand label all this data!
- Goal: learn to predict labels of new, future emails

Berkeley CS 288

Example 2: Topic Classification

Goal: classify documents into broad semantic topics (e.g., politics, sports, business,

technology)
Obama is hoping to rally support California will open the 2009
for his $825 billion stimulus season at home against
package on the eve of a crucial Maryland Sept. 5 and will play a
House vote. Republicans have total of six games in Memorial
expressed reservations about Stadium in the final football
the proposal, calling for more tax schedule announced by the
cuts and less spending. GOP Pacific-10 Conference Friday.

* Which one is the POLITICS document? Did this require a deep analysis?

Berkeley CS 288

Example 3: Sentiment Analysis

Goal: detect the overall sentiment of the text

This movie was great! Will watch again =/
Not bad at all! but not a masterpiece)
Could never enjoy, even with closed eyes -

* Did this require more reasoning compared to categorization?

Berkeley CS 288

Example 3: Sentiment Analysis

Goal: detect the overall sentiment of the text

//“
()
>

:

This movie was great! Will watch again

Not bad at all! but not a masterpiece)

Could [REVERERIY cven with closed eyes ry

* Did this require more reasoning compared to categorization?

* Just spotting individual words is not enough

Berkeley CS 288

Text classification

Inputs:
» A document d —
Movie was |
terrible ? Classify | —— Negative
- A set of classes C (m classes) |
Output: N .
Amazing |_____ > > Positive
: acting
 Predicted class ¢ € C for document d g —+

Berkeley CS 288

Rule-based text classification

IF there exists word w in document d such that w in [good, great, extra-ordinary, ...],

THEN output Positive

IF email address ends in [ithelpdesk.com, makemoney.com, spinthewheel.com, ...]

THEN output

+ Can be very accurate (if rules carefully refined by expert, especially in narrow domains)

+ Interpretable

- Rules may be hard to define (and some even unknown to us!)

- Expensive

- Not easily generalizable

Berkeley CS 288

VADER-Sentiment-Analysis

VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool that
Is specifically attuned to sentiments expressed in social media. It is fully open-sourced under the [MIT License]

https://github.com/cjhutto/vaderSentiment 10

http://ithelpdesk.com
http://makemoney.com
http://spinthewheel.com

Berkeley CS 288

Supervised training: Let’s use statistics!

Let the machine figure out the best patterns using data

Inputs:

« Set of m classes C

- Set of n ‘labeled’ documents: {(d;,¢,),(d5,¢5),...,(d, ,c,)},

deD,c,eC
Output: /Key questions:
a) What is the form of F?
- Trained classifier, ' : 9 — C b) How do we learn F?

11

Types of supervised classifiers

S

B

p(ylx)

N
ANB

Naive Bayes Logistic regression

d‘
/
/¢>

Berkeley CS 288 Support vector machines neural networks 12

Logistic regression

Berkeley CS 288

Berkeley CS 288

Logistic regression

» Powerful supervised model
- Baseline approach for many NLP tasks

 Boundary » It’s not a regression model (!)

« False samples

« True samples

« Binary (two classes) or multinomial (>2 classes)

 Foundation of neural networks

https://machine-learning.paperspace.com/wiki/logistic-regression

14

Generative vs. discriminative models

- Nalve Bayes is a generative model

* Logistic regression is a discriminative model argmax,.c P(c ‘ d)

Suppose we're distinguishing cat from dog images

imagenet imagenet

Berkeley CS 288

15

Generative classifiers

» Build a model of what is in a cat image
» Knows about whiskers, ears, eyes

» Assigns a probability to any image -
how cat-y is this image?

» Also build a model for dog images

* Now given a new image:

 Run both models and see which one fits better

Berkeley CS 288

10

Discriminative classifiers

Just try to distinguish dogs from cats

N

Oh look, dogs have collars!
Let's ignhore everything else

Berkeley CS 288 17

Overall process: Discriminative classifiers

Input: a set of labeled documents {(d;,y;)}'_,

Training phrase: y; = 0 or 1 (binary)
y; = 1,..., m (multinomial)
1. Convert d; into a vector representation x;

2. Classification function to compute y using P(y | x)

3. Loss function for learning e.g., cross-entropy

4. Optimization algorithm to minimize loss function e.g., stochastic gradient descent

Test phase: Apply parameters to predict class given a new input x (feature
representation of testing document d)

Berkeley CS 288

18

Overall process: Discriminative classifiers

Input: a set of labeled documents {(d;,y;)}'_,

- Training phrase: y; = 0or 1 (binary)

. Convert d; into a vector representation x; |

2. Classification function to compute y using P(y | x)
3. Loss function for learning e.g., cross-entropy

4. Optimization algorithm to minimize loss function e.g., stochastic gradient descent

Test phase: Apply parameters to predict class given a new input x (feature
representation of testing document d)

Berkeley CS 288

19

Naive option: Bag of words

Bag of words

m it
I
| love this movie! It's sweet, N z/ the

but with satirical humor. The it to

fair}f[always loveig' and
dialogue is great and the - Whimsical it seen

and ggen are
adventure scenes are fun... friend anyone yet
nhappy

It manages to be whimsical dﬁgfogrﬁ?nend would
and romantic while laughing advir\],bgreet of satirical whimsical
at the conventions of the - Wh_‘t) | g to movie. it - times
fairy tale genre. | would Sev'era| - ygt 4 | sweet

recommend it to just about again i the humor satirical

' the adventure
anyone. |'ve seen it several g would

U (S (S U U U e I e g e Y \S G I SO I N ¢ I 0)

I
: the manages enre
times, and I'm always happy fun | the 4 es 4 2 ?airy
to see it again whenever | and apout anwh”e humor
have a friend who hasn't whenever —— paye | have
. _conventions
seen it yet! Q with great

X =[x, %, ..., %]

x;: how many times the word “love” appears in d

In BoW representations, k = | V| and the vector has many zeros.
Berkeley CS 288

Berkeley CS 288

Hand-crafted features

Var Definition
x; count(positive lexicon) € doc)
xp count(negative lexicon) € doc)

{ 1 if “no” € doc

O otherwise
x4 count(Ist and 2nd pronouns € doc)
{ 1 if “!” € doc
X5 :
O otherwise

x¢ log(word count of doc)

21

Example: Sentence classification

-

Bt
-~ X3 -l ~~~~~~~~~~~
It's @There are virtually @Jsurprises , and the writing isGecond-rate.

So why was 1t so@loyzﬂﬂa For one thing , the cast 1s
Anothetouch is the music (Dwas overcome with the urge to get off
the co‘uch and start,dancmg [t sucked@ln xa,\nd 1t'll do the same to to_ou) .

\ - /’

~ ,/ ~

\X1:3 X5=0 Xg=4. 15 X4 7
Var Definition Value 1n Fig. 5.2
X1 count(positive lexicon) € doc) 3
xp count(negative lexicon) € doc) 2
“ { l if “no” € doc , Remember that the
O otherwise / values make up the
x4 count(lst and 2nd pronouns € doc) 3 feature vector!
. { 1 if “!” € doc 0
. 0 otherwise
x¢ log(word count of doc) In(64) =4.15

Berkeley CS 288

Overall process: Discriminative classifiers

Input: a set of labeled documents {(d;,y;)}'_,

Training phrase: y; = 0 or 1 (binary)
y; = 1,..., m (multinomial)
1. Convert d; into a vector representation x;

2. Classification function to compute y using P(y | x) |
3. Loss function for learning e.g., cross-entropy

4. Optimization algorithm to minimize loss function e.g., stochastic gradient descent

- Test phase: Apply parameters to predict class given a new input x (feature
representation of testing document d)

Berkeley CS 288

23

Classification function

- Given: Input feature vector X = [x{, X,, ..., x]

- Output: P(y = 1|x) and P(y = 0|x) (binary classification)

Weight vectorw = [w;,w,, ..., w] bias

\ 7

» Given input featuresX: z=w-X+ b

1 1
. vV — — — . — @)= 1=
Therefore, y=P(y=1|Xx)=0(w-X+ D) p—yy ‘ /’
1 ify>0.5
. Decision boundary: = { Y J

0 otherwise

Berkeley CS 288 24

Berkeley CS 288

Example: Sentence classification

Var Definition Value 1n Fig. 5.2
X1 count(positive lexicon) € doc) 3
X9 count(negative lexicon) € doc) 2

1 1f “no” € doc

3 { 0 otherwise !

x4 count(1st and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0
. 0 otherwise
x¢ log(word count of doc) In(64) =4.15

+ Assume weights w = [2.5, — 5.0, — 1.2,0.5,2.0,0.7] and bias b = 0.1
p(+lx) =P =1Jx) = o(w-x+b)
= o([2.5,-5.0,—1.2,0.5,2.0,0.7] -(3,2,1,3,0,4.15| +0.1)
= 0(.805)
= 0.69
p(—|x)=P(Y =0|x) = 1—oc(w-x+Db)
= 0.31

20

Overall process: Discriminative classifiers

Input: a set of labeled documents {(d;,y;)}'_,

Training phrase: y; = 0 or 1 (binary)
y; = 1,..., m (multinomial)
1. Convert d; into a vector representation x;

2. Classification function to compute y using P()Az | x)
3. Loss function for Iearnlng e. g Cross- entropy

4 Optlmlzatlcn algorlthm to minimize |OSS functlon e. g stochastlc gradient descent

- Test phase: Apply parameters to predict class given a new input x (feature
representation of testing document d)

Berkeley CS 288

20

Loss function

+ For n data points (x;,y,), y;=0o0r1,y. = P(y, =1 | x,)

. Classifier probability: IT._, P(y; | x;) = TTi_ $7(1 — §)L

=

~ Loss: —logHP(yi\xi) = — Z log P(y;|x;)
i=1 i=1

Lep=—) [ylog$;+ (1 = y)log(l — $,)]
=1

Berkeley CS 288

27

Properties of CE loss

Lep = — Z [y;logy; + (1 — y)log(l — ;)]
=1

What values can this loss take?

A) 0 to o0 B) —00 to o0 C)—o0to0 D) 1 to o0

« The answer is A) - Ranges from 0 (perfect predictions) to oo

Berkeley CS 288 28

Overall process: Discriminative classifiers

Input: a set of labeled documents {(d;,y;)}'_,

Training phrase: y; = 0 or 1 (binary)
y; = 1,..., m (multinomial)
1. Convert d; into a vector representation x;

2. Classification function to compute y using P(y | x)

3. Loss function for Iearnlng e. g Cross- entropy

| 4 Optlmlzatlen algorlthm to minimize Iess funetlon e. g stochastlc gradlent descent .

- Test phase: Apply parameters to predict class given a new input x (feature
representation of testing document d)

Berkeley CS 288

29

Optimization

« \We have our classification function and loss function - how do we find the best w
and b?

» (Cross entropy loss for logistic regression is convex (i.e. has only one global minimum)
so gradient descent is guaranteed to find the minimum.

» Stochastic gradient descent: Use a mini-batch of training examples!

Berkeley CS 288

30

Berkeley CS 288

Regularization

n
Training objective: 6A’ = arg max 2 log P(y, | X;)
0
i=1

This might fit the training set too well! (including noisy features), and lead
to poor generalization to the unseen test set — Overfitting

L2 regularization:

" d
0 = arg max [ZlOgP()’i\xi) — 0‘2 6}2]
0
i=1 J=1

31

Berkeley CS 288

Multinomial logistic regression

What if we have more than 2 classes?

Need to model P(y =c|x) Vce {l,...,m}

Recall: Binary logistic regression
P(y=1|x)=0(z) where z=w - X+5b
P(y=0[x)=1-P@y =1[x)

Multinomial logistic regression
e

P(y=c|x) = where z. =w, - X+ b,
e’
j=1

Multinomial CE loss

Lep(3.y) ==), Uy =cllog Py = ¢|x)

c=1

32

Multilayer Perceptron (MLP)
(Neural Networks!)

eeeeeeeeeeeee

A little about Neural Networks
for NLP

Berkeley CS 288

Berkeley CS 288

[nputs

Oggi

non

mi

sento
molto
bene
EMO_SAD

Neural networks in NLP

Feed-forward NNs

Hidden

Input oyt

Output
layer

Outputs

Convolutional NNs

1 1 ~

e m——m ~
V. A== ~
Le—dl——d e
i I
:'_'.I“-'---T---u--- —
]
R ——
I
= 1 1
[EEE BT CEE
== __1__
1 1 1 _,—"'
: I -
bl
1 1
e e
1 1
1 1

embeddings
for each word with
multiple filters

convolutional layer — .

. tron
pooling

with dropout

Multilayer percep-

Recurrent N

& ®
1

:

Ns

:

®)
:
b

—> A — A — —>
Output
Probabilities
t
| Softmax |}
| Linear |}
(
Transformer (ot Yo}
Feed
Forward
—
s | ~\ | Add & Norm Je=
~>| Add &'Norm | Mut-Head
Feed Attention
Forward T 7) N x
| Jo
Add & Norm
N x I
~| Add &_Norm | T
Multi-Head Multi-Head
Attention Attention
t -t
_ J \ —
Positional Positional
‘ & @ :
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

NN “dark ages”

 Neural network algorithms date from the 80s

e ConvNets: applied to MNIST by LeCun in 1998

C3: 1. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5

INPUT
ok 6@28x28
‘13,‘;"0'"9' 7S layer ouTPUT

LAONN

Full connection Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

e Long Short-term Memory Networks (LSTMs): Hochreiter
and Schmidhuber 1997

e Henderson 2003: neural shift-reduce parser, not SOTA

Berkeley CS 288 Slide credit: Greg Durret6

2008—2013: A glimmer of light = =:-=

K ,.K K
Feature K wy wy .. Wy

Lookup Table
LTyw: A~

e (Collobert and Weston 2011: “NLP (almost) from
Scratch”

e Feedforward NNs can replace “feature engineering”

LTVV K

N~
v

Linear (
Ml x® A~

<4

e 2008 version was marred by bad experiments,
claimed SOTA but wasn’t, 2011 version tied SOTA

{4

e Krizhevskey et al, 2012: AlexNet for ImageNet Classification

e Socher 2011-2014: tree-structured RNNs working okay

not very good...
a b C

Berkeley CS 288 Slide credit: Greg Durrett’

20 14: Stuff starts working

e Kim (2014) + Kalchbrenner et al, 2014: sentence classification

e ConvNets work for NLP!

e Sutskever et al, 2014: sequence-to-sequence for neural MT
e LSTMs work for NLP!

Convolutional Neural Networks for Sentence Classification

Yoon Kim
New York University
yhk255@nyu.edu

e Chen and Manning 2014: dependency parsing
e Even feedforward networks work well for NLP!

A Fast and Accurate Dependency Parser using Neural Networks

Dangqi Chen Christopher D. Manning
Computer Science Department Computer Science Department
Stanford University Stanford University
dangi@cs.stanford.edu manning@stanford.edu

e 2015: explosion of neural networks for everything under the sun

e 2018-2019: NLP has entered the era of pre-trained models (ELMo, GPT, BERT)

e 2020+: the emergence of large language models (GPT-3, ChatGPT, OpenAl o1/DeepSeek R1)

Berkeley CS 288

33

Why didn’t they work before!?

e Datasets too small: for machine translation, not really better until you have
1M+ parallel sentences (and really need a lot more)

 Optimization not well understood: good initialization, per-feature scaling +
momentum (Adagrad/Adam) work best out-of-the-box

e Regularization: dropout is pretty helpful
e Computers not big enough: can’t run for enough iterations

* |nputs: need word embeddings to have the right continuous semantics

Berkeley CS 288 Slide credit: Greg Durret89

The “promise” of deep learning

e Most NLP works in the past focused on human-designed representations and input

features
Var Definition Value in Fig. 5.2
x; count(positive lexicon) € doc) 3
xp count(negative lexicon) € doc) 2

. I if “no” € doc
3 0 otherwise

x4 count(1st and 2nd pronouns € doc) 3
. { 1 1if “!I” € doc 0
. 0 otherwise
x¢ log(word count of doc) In(64) =4.15

e Representation learning attempts to automatically

|earn gOOd featureS and representatiOnS Low-level features Mid-level features Abstract-level features
U0 QR ACEIN [zem 5
. . W R UL!‘ =k |- |
 Deep learning attempts to learn multiple levels of s JEA I=ai

representations on increasing complexity/abstraction = “ .A W= ,UM
3 ! Vembh @l K

Berkeley CS 288 40

Multilayer Perceptron (MLP)
(Neural Networks!)

eeeeeeeeeeeee

MLP

e The units are connected with no cycles
e The outputs from units in each layer are passed to units in the next higher layer
* No outputs are passed back to lower layers

Fully-connected (FC) layers:

All the units from one layer are fully
connected to every unit of the next layer.

iInput layer

hidden layer 1 hidden layer 2

1. We’ll assume we already have the input vector X € R with fixed d (here, d = 3), and
learn how MLP works.

2. After that, we’ll learn how to get X & R for the text input.

Berkeley CS 288 42

Berkeley CS 288 Bias term omitted for simplicity

iInput layer

hidden layer 1 hidden layer 2

Quick quiz: For h = WIx, what is the size of W(1)?
(@ dXxd, b)d, xd

Answer is (b).

Berkeley CS 288 Bias term omitted for simplicity 44

Activation functions

RelLU
sigmoid tanh (rectified linear unit)
1 e — 1 f(z) = max(0, z)
/(2) = 1 +e? flz) = e2% + 1

- -
1.0 |- | | |
/ﬁ R(z) =max(0, z)
. . . .
/
05 /
/ :
05 0.0 |- /
J
//
05} /-
//
4
e
I I '10 _l——-—-—’._‘_'_l'_’i
_ n | | !

Activation function f is applied element-wise: f([zl, 29, 23]) = [f(21), f(Zz), f(ZB)]
Berkeley CS 288

Matrix notations

iInput layer

hidden layer 1 hidden layer 2

d: input dimension, d,, d,: hidden dimensions

C: number of classes

Berkeley CS 288

 |nput layer: x

* Hidden layer 1:
hy = f(WWx + b)) e R%
W ¢ RAxd K1) ¢ R

* Hidden layer 2:
hy, = f(W®h; +b®) e R%
W) ¢ RI2xdi |H(2) ¢ R

e Qutput layer:

y = Woh, W) ¢ RE*4:

46

Quick quiz

RelLU RelLU

(Bias terms omitted in
1 the next few slides
D !

Forx; = X, = X3 = 1, what is the value of hl(l)?
@0 (b)-1 ()1 (d)2

Correct: (a), because of the RELU:
max@2x1+(-3)x1+0x1,0 =max(-1,0)=0

Berkeley CS 288 47

Berkeley CS 288

Quick quiz

RelLU RelLU

] (Bias terms omitted in
GE

5 - the next few slides)
: O

h') = ReLUW/"Wx) What is the matrix WD?

P A— |
2 =3 0 1 2
() [—3 |] (b) [] (C) []
0 2 -1 1 2 2 =2

Correct: (b). W is a 2 x 3 matrix.

48

Y — W(O)hz

y = softmax(y) softmax(y), =

Training loss:

MLP Objective

exp(y;)

C y:[}ﬁ,YQ,---a)’c]

=1 eXp(y])

min ~ — Z logy,
W WO W© (x.y)ED

Training feedforward NNSs:
stochastic gradient descent!

Berkeley CS 288

Neural networks are difficult to optimize.
SGD can only converge to local minimum.
Initializations and optimizers matter a lot!

49

Backpropagation
Forward propagation:
from Input to output layer |Forward step 1: Forward step 2:

Compute hl(l)’ hz(l) Compute hl(Z)’ h2(2) Forward step 3:
Compute yy, ¥,, Y3 and

[j\}la j\/Za 5\73] — SOftmaX[yla Y25 y?)]

Given: xl, X2, X3

and the class

labely RelU RelU
(@ single training

Forward step 4
example) , —
N . Compute loss
@ wix — w@® WY Y @

W® W@ _~ L=-1logy,
Goal DNy |
Back propagation:
oL @ Back step 2 from output to input layer
ow) Back step 3: Compute ' _
oL Back step 4: Compute Y Y4 Y Back step 1:
, Compute ol. oL OL Compute
oW oL T S oh®’ oh®’" oW©) oL OJL oJL
oL WD o~ ohy” oW dy; 0y, 0y
oW)

Berkeley CS 288

Back-propagation in Py lorch

O 00O O U B W IN =

[
S

11
12
13
14
15

def

def

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
__init_ (self):

super().__init__ ()

self.fcl = nn.Linear(784, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 10)

forward(self, x):

x = F.relu(self.fcl(x))
X = F.relu(self.fc2(x))
x = self.fc3(x)

return X

Ui & W N =

import torch.optim as optim

net = Net()
criterion = nn.CrossEntropylLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

W N =

outputs = net(inputs)

loss = criterion(outputs, labels)
loss.backward()

optimizerj;tep()

Berkeley CS 288

|

Py Torch did back-propagation for you in this one line of code!

51

inputs

: Image vs. text |

Comparison

output layer
-9
@
®

.«\Q?; N

o//« olﬁa ..p'f/ -:, &-. \\\...\ \s LI
%,,,. N \\\

000000000\\\\

a.,. .n........... ..“,e &\
XXX o%,,..,,o @

Uil
Gl 1RO TR T
A.Agg,%&cvov

N S e
/lﬂﬂ” . h” s lotlo Oooo.tfso.\ o\\ss\ \\““\ \\\

R RN E ALY
Joisiees s <o el i
\\\ \ \ \..0,0:0 > 0 030..0 ~ 0 '."//
r t\\o oo\ovﬁolo
W i s /M,

©(0(010)0)0) >

/ 4 SN s.w. LI \&»&\\

R R R P A7
ll/lo.o: " \\\\.

S
- l S e \
elka ;. s.’o’r.t.l..&.'. .\
A \.«\ ELREX S, .'
\?m“ % .. ’

e

up
s hs
““‘”4‘:‘

a sometimes tedious film

positive

label

| had to look away - this was god awful .

a gorgeous , witty , seductive movie .

e Images: fixed-size input, continuous values

e Text: variable-length input, discrete words

How do we get X & R for the text input? — We’ll look into this next!

52

Berkeley CS 288

Jan 29 lecture starts from here

e (Class starts at 15:40!

e Questions about A1: Ed or GSI office hours!

o Lecture plan: Finish text classification (15min) — sequence models
(65min)

https://cal-cs288.github.io/sp26/
https://edstem.org/us/join/XvztdK

Recap: Text classification (1/2)

o Text classification: One of the basic NLP tasks!

e Input: a pice of text; Output: a class label y € C

e Examples: spam vs. ham, topic classification, sentiment analysis
e Traditionally rule-based systems — No! Let’s use statistics!
e Logistic regression
o Given: Input vector X = [x, x,, ..., x| (we’ll talk about how to get X in a sec)

y=Phy=1|X)=0c(W-X+b) =

Berkeley CS 288

50

Recap: Text classification (2/2)

e Multilayer perceptron — Neural networks!
o Given: Input vector X = [X{, Xy, ..., X;]

e Hidden layer 1:
h, = f(WWx + b)) e R%

W e Réaxd K1) ¢ g

* Hidden layer 2:
hy = f(W®h; +b?) ¢ R

W2 ¢ Réexd1 1(2) c Rz
e Qutput layer:

Input layer

hidden layer 1 hidden layer 2

y = Woh, W) ¢ RO*d=

y = softmax(y)
Berkeley CS 288

56

Remaining question: How to get X!

Berkeley CS 288

inputs

: Image vs. text |

Comparison

output layer
-9
@
®

.«\Q?; N

o//« olﬁa ..p'f/ -:, &-. \\\...\ \s LI
%,,,. N \\\

000000000\\\\

a.,. .n........... ..“,e &\
XXX o%,,..,,o @

Uil
Gl 1RO TR T
A.Agg,%&cvov

N S e
/lﬂﬂ” . h” s lotlo Oooo.tfso.\ o\\ss\ \\““\ \\\

R RN E ALY
Joisiees s <o el i
\\\ \ \ \..0,0:0 > 0 030..0 ~ 0 '."//
r t\\o oo\ovﬁolo
W i s /M,

©(0(010)0)0) >

/ 4 SN s.w. LI \&»&\\

R R R P A7
ll/lo.o: " \\\\.

S
- l S e \
elka ;. s.’o’r.t.l..&.'. .\
A \.«\ ELREX S, .'
\?m“ % .. ’

e

up
s hs
““‘”4‘:‘

a sometimes tedious film

positive

label

| had to look away - this was god awful .

a gorgeous , witty , seductive movie .

e Images: fixed-size input, continuous values

e Text: variable-length input, discrete words

58

One reason progress was slower in NLP than vision!

Berkeley CS 288

Neural networks for text classification

o Input: wi,wy,...,wg €V * |nput: dessert was great

e Output:ye C

e Qutput: positive C = {positive, negative, neutral}

Solution #1: You can construct a feature vector X from the input and simply feed the

vector to a neural network!

dessert
X; = word count
x, = # of positive lexicon words e
X3 = Gount of “no” great
X = [xl’ xz, x3] Input words

Deep learning has the promise to learn good
features automatically..

Berkeley CS 288

%

wordcount X
-3 1

positive lexicon x
_ 2
words = 1

count of “no” x
) 3

X

[nXx1]

[dth]

Y1
)

N

= p(t)

—p(-)

— p(neut)

U y

[3xdy] [3x1]

[dhx 1]

Input layer Hidden layer Output layer
n=3 features softmax

Important note: each input has a different K

59

Neural networks for text classification

o Input: wi,wy,...,wg €V * |nput: dessert was great

e QOutput: y € C e Qutput: positive C = {positive, negative, neutral}

Solution #2: Use word embeddings!

|\

 First, look up all the word embedding R
d — “dessert” —*@
E(w)), E(w,), ..., E(wg) € R? (d: w**="" s &
. L embeddinfg for _>i
» Use pooling: sum, mean, or max. Foi ¥~ w78 iy
1 K grea t_emtle;cii;,g, for__é/ f
x=—) Ew)€R he'
K Input words X W h U
=1 [dx1] [dXxd] [d, x1] [3xdy] [3x1]
Input layer Hidden layer Output layer
pooled softmax
embedding

Important note: each input has a different K
Berkeley CS 288

Neural networks for text classification

* (+): This provides a simple and flexible way to handle variable-length input
* (+): It learns feature representations automatically from the data

* (+): It can generalize to similar inputs through word embeddings

e (-): The model throws away any sequential information of the text

it
I

| love this movie! It's sweet, | | the
but with satirical humor. The H fa'r}; always loveiq 't taon 5
dialogue is great and the " whimsical it |
and gegen are seen
adventure scenes are fun... s , anyone i
N ha dialogue ye
It manages to be whimsical PRy would
_ _ _ adventure €écommend
neural bag-of-words model (NBOW) and romantic while laughing nure o satiial whimsical
at the conventions of the Who™ =" o movie times
. it ' but'© romantic | ;
fairy tale genre. | would e yet) swee
recommend it to just about o 203t the THIRY 33“”0?'
anyone. I've seen it several seen would adventure
to scenes | he manage genre
times, and I'm always happy the .. .

. _ fun | times 5ng fairy
to see it again whenever | i and _pout e hurmor
have a friend who hasn't WREnever -~ have have

. . conventions
seen it yet! with great

15

Berkeley CS 288

L QS G G G G U QR Gy G e G el |, W G I GS I NS) B))

When training, how to handle £?

e Word embeddings can be treated as parameters too!

E € R!VIxd

« Common practice: initialize E using word embeddings (e.g. word2vec), and
optimize them jointly with other parameters, using SGD!

e \When the training data is small, don’t treat K as parameters!

e When the training data is very large (e.g., language modeling), initialization
doesn’t matter much either (= can use random initialization)

Berkeley CS 288

62

Deep Averaging Networks (DAN)

Deep Unordered Composition Rivals Syntactic Methods
(yyer et al., 2015) for Text Classification
DAN
softmax
ho = f(Wa - h1 + bs) Basically the same as NBOW
T but neural network is deeper!
hl = f(Wl - AV + bl)
T aw =3 & f: non-linearity
Predator is a masterpiece
C1 Co C3 Cq

Berkeley CS Zoo

03

Deep Averaging Networks (DAN)

DAN-RAND: no initialization
from GloVe

RecNN

softmax

T z3:f(W[§]+b)

1
2

softmax

\ 1 20 = f(W [Z] +b)

softmax

\ T z1 = f(W [ZZ] +b)

/N

Predator 18 a masterpiece
C1 C2 C3 Cq

Berkeley CS 288

Model RT SST SST IMDB Time
fine bin (s)
DAN-ROOT — 469 85.7 — 31
DAN-RAND 77.3 454 83.2 88.8 136
DAN 80.3 4777 86.3 89.4 136
NBOW-RAND 762 423 814 88.9 o1
NBOW 79.0 436 83.6 89.0 o1
31NE — 419 &3
NBSVM-bi 79.4
RecNN™ 777 43.2 82.4 — —
RecNTN™ — 457 854 — —
DRecNN — 498 86.6 — 431
TreeLSTM — 50.6 86.9 — —
DCNN* — 48.5 86.9 89 .4 —
PVEC™ — 48.77 87.8 92.6 —
CNN-MC 81.1 474 88.1 — 2,452
WRRBM* — — — 89.2 —

o4

Bonus slide: Neural Language Models

e Can be considered as | V|-way
classification!

e In particular, feedforward neural language
models approximate the probability based on
the previous m (e.qg., 5) words

Why concatenate, not mean-pool?

Why not concatenate in text classification?

Berkeley CS 288

the —

cat —»

sat —»

on —»

the—>

(©00) (©00) (000) (O00) (©OO0) &

¥

BN

N\ L

Ze
Ot
2.
>

(O0O0O000000) H

(eYeleYeYeloXe)eo)o)

d: word embedding size
h: hidden size

65

Questions!

Acknowledgement

Princeton COS 484 by Dangi Chen, Tri Dao, Vikram Ramaswamy
Cornell LM-class by Yoav Artzi
CMU Advanced NLP by Graham Neubig & Sean Welleck

https://lm-class.org/
https://cmu-l3.github.io/anlp-spring2025/

