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Lecture plan
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• What is an n-gram language model?


• Generating from a language model


• Evaluating a language model (perplexity)


• Smoothing: additive, interpolation, discounting
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What is a language model?
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• A probabilistic model of a sequence of words


• Joint probability distribution of words : w1, w2, …, wn

P (w1, w2, w3, ..., wn)

How likely is a given 
phrase, sentence, 
paragraph or even a 
document?
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Chain rule
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P (the cat sat on the mat) = P (the) ⇤ P (cat|the) ⇤ P (sat|the cat)

⇤P (on|the cat sat) ⇤ P (the|the cat sat on)

⇤P (mat|the cat sat on the)

Sentence: “the cat sat on the mat” 

Conditional probability:  
p(w ∣ w1, w2), ∀w ∈ V<latexit sha1_base64="ZmA+AYSbITSw+/HLlyERAe+qZfo="></latexit>

p(w1, w2, w3, . . . , wn) = p(w1)p(w2 | w1)p(w3 | w1, w2)⇥ · · ·⇥ p(wn | w1, w2, . . . , wn�1)
<latexit sha1_base64="ZmA+AYSbITSw+/HLlyERAe+qZfo="></latexit>

p(w1, w2, w3, . . . , wn) = p(w1)p(w2 | w1)p(w3 | w1, w2)⇥ · · ·⇥ p(wn | w1, w2, . . . , wn�1)
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Language models are everywhere

5
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Estimating probabilities
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Assume we have a vocabulary of size , 
how many sequences of length  do we have? 
A)  
B)  
C)  
D) 

V
n

n * V
nV

Vn

V/n

P (sat|the cat) =
count(the cat sat)

count(the cat)

P (on|the cat sat) =
count(the cat sat on)

count(the cat sat)

Maximum 
likelihood 
estimate


(MLE)
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Estimating probabilities
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• With a vocabulary of size V,  # sequences of length n = 


• Typical English vocabulary ~ 40k words


• Even sentences of length  results in more than  sequences. 
Too many to count!  


• (For reference, # of atoms in the earth )

Vn

≤ 11 4 × 1050

∼ 1050

P (sat|the cat) =
count(the cat sat)

count(the cat)

P (on|the cat sat) =
count(the cat sat on)

count(the cat sat)

Maximum 
likelihood 
estimate


(MLE)
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Markov assumption

8

• Use only the recent past to predict the next word


• Reduces the number of estimated parameters in exchange for modeling 
capacity


• 1st order


• 2nd order

P (mat|the cat sat on the) ⇡ P (mat|the)

P (mat|the cat sat on the) ⇡ P (mat|on the)

Andrey Markov
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k-th order Markov
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Consider only the last k words (or less) for context which implies the 
probability of a sequence is:

Need to estimate counts for up to (k+1) grams

(assume )wj = ϕ ∀j < 0
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n-gram models
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P (w1, w2, ...wn) =
nY

i=1

P (wi)

Larger the n, more accurate and better the language model  
(but also higher costs, prone to sparsity)

Unigram

P (w1, w2, ...wn) =
nY

i=1

P (wi|wi�1)Bigram

and Trigram, 4-gram, and so on.

e.g.   P(the) P(cat) P(sat)

e.g.  P(the) P(cat | the) P(sat | cat)
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Quick quiz: Estimating probabilities
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Consider the following corpus


<s> I like apples </s>


<s> You like strawberries </s>


<s> You like apples </s>


What’s the bigram probability P(apples | like) ?


(A) 1/3                (B) 2/3                 (C) 1/2                (D) 1

Note: <s> and </s> are 
starting and ending tokens

P(apples | like) = 
Count("like apples")

Count("like")
=

2
3
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Quick quiz: Estimating probabilities
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Consider the following corpus


<s> I like apples </s>


<s> You like strawberries </s>


<s> You like apples </s>


Using the bigram model, what’s the probability of the sentence “<s> I like 
strawberries </s>”? Ignore the probability of <s>.


(A) 4/9                (B) 1/3                 (C) 2/9                (D) 1/9


Note: <s> and </s> are 
starting and ending tokens

P(<s> I like strawberries </s>)


= P(I | <s>)  P(like | I)  P(strawberries | like)  P(</s> | strawberries) = ⋅ ⋅ ⋅
1
3

⋅ 1 ⋅
1
3

⋅ 1
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Generating from a language model
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Generating from a language model
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• Given a language model, how to generate a sequence?

P (w1, w2, ...wn) =
nY

i=1

P (wi|wi�1)Bigram

• Generate the first word w1 ∼ P(w)
• Generate the second word w2 ∼ P(w ∣ w1)

• Generate the third word w3 ∼ P(w ∣ w2)
• …
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Generating from a language model
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• Given a language model, how to generate a sequence?

Trigram

• Generate the first word w1 ∼ P(w)
• Generate the second word w2 ∼ P(w ∣ w1)

• Generate the third word w3 ∼ P(w ∣ w1, w2)

• Generate the fourth word  w4 ∼ P(w ∣ w2, w3)

• …

<latexit sha1_base64="YbbLxwhYWxt4tmuJmgD1SHDIrZw="></latexit>

P (w1, w2, . . . , wn) =
nY

i=1

P (wi | wi�2, wi�1)
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Generations
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- To him swallowed confess hear both. Which. Of save on 
trail for are ay device and rote life have

Unigram

- Why dost stand forth thy canopy, forsooth; he is this palpable 
hit the King Henry. Live king. Follow. 

- What means, sir. I confess she? then all sorts, he is trim, 
captain.

Bigram

- Fly, and will rid me these news of price. Therefore the 
sadness of parting, as they say, 

- This shall forbid it should be branded, if renown made it 
empty

Trigram

“The woman/man could not go to work that day 
because she/he had a doctor’s appointment”

Typical LMs are not sufficient to handle long-range dependencies
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Generations
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With the start of the new academic year, Princeton  has an opportunity to help provide a new 
generation of women with a diverse set of academic resources for higher education.
We are offering the resources of the Princeton-McGill program specifically to women with 
undergraduate degrees who would like to enhance their academic experience. Princeton-McGill 
offers a comprehensive suite of services for women and their families including a variety of graduate 
programs, support programs, and the opportunity to serve as leaders in their communities with a 
wide variety of programs, activities and services. For the upcoming fall, Princeton-McGill will also 
offer its Women's Center , which is located in a renovated women's dorm.
At Princeton, we are working with the Princeton-McGill community to develop a suite of programs 
that are designed to give new and returning students a strong foundation for a successful, rewarding 
graduate career. The Women's Center , the Princeton-McGill Women's Center provides a range of 
supports to address the specific needs of female doctoral degree graduates. Programs are tailored to 
meet the unique needs of women under the age of 28, women and families

https://talktotransformer.com/

Example from a GPT-2 output (2019):

Modern LMs can handle much longer contexts!

<latexit sha1_base64="+rav88ruzOQUiarUZfGToc+P77c="></latexit>

P (w1, w2, . . . , wn) =
nY

i=1

P (wi | wi�1024, . . . , wi�2, wi�1)

https://talktotransformer.com/
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Generation methods (more in the later lecture)
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• Greedy: choose the most likely word!


• To predict the next word given a context of two words :





• Top-k vs top-p sampling: “The boy went to the _______”

w1, w2

w3 = arg max
w∈V

P(w |w1, w2)

https://blog.allenai.org/a-guide-to-language-model-sampling-in-allennlp-3b1239274bc3

Top-p samplingTop-k sampling
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Evaluating a language model
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Extrinsic evaluation
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• Train LM  apply to task  observe accuracy


• Directly optimized for downstream applications


• higher task accuracy  better model


• Expensive, time consuming


• Hard to optimize downstream objective (indirect feedback)

→ →

→

Language 
model

Machine 
Translation Eval

refine
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Intrinsic evaluation of language models
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• Train parameters on a suitable training corpus


• Assumption: observed sentences ~ good sentences


• Test on different, unseen corpus


• If a language model assigns a higher probability to the test 
set, it is better


• Evaluation metric - perplexity!
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Motivation: Shannon game
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Goal for language models: model  or  
 well. 

 
Shannon game: How well can we predict the next word?

• I always order pizza with cheese and ____

• The 33rd president of the US was ____

• I saw a ____

Pr[w1w2…wk]
Pr[wk |w1…wk−1]

(Slide credit: Princeton CS 324,  Ruth Fong)
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Motivation: Shannon game
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Goal for language models: model  or  
 well. 

 
Shannon game: How well can we predict the next word?

• I always order pizza with cheese and ____ 
• The 33rd president of the US was ____

• I saw a ____

 
How would a unigram model do?

Pr[w1w2…wk]
Pr[wk |w1…wk−1]

mushrooms 0.1 
pepperoni 0.1 
anchovies 0.01 
… 
friend 0.0001 
…

(Slide credit: Princeton CS 324,  Ruth Fong)
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Motivation: Shannon game
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Goal for language models: model  or  
 well. 

 
Shannon game: How well can we predict the next word?

• I always order pizza with cheese and ____ 
• The 33rd president of the US was ____

• I saw a ____

 
How would a unigram model do? 
Not well, it would assign the most probability to the most common word (i.e. the 
word that occurs the most in the training corpus). 

Better language model = assigns higher probability to word that actually occurs.

Pr[w1w2…wk]
Pr[wk |w1…wk−1]

(Slide credit: Princeton CS 324,  Ruth Fong)

mushrooms 0.1 
pepperoni 0.1 
anchovies 0.01 
… 
friend 0.0001 
…
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Perplexity (ppl)
Measure of how well a LM predicts the next word

• For a test corpus with words                w1, w2, . . . wn

Perplexity = 
<latexit sha1_base64="FQkB9Z6nF64vxzDm2AwgjD5ugng=">AAACCHicbVDLSgMxFM3UV62vqksXBotQodaZUtRl0Y3LCvYBbR0ymUwbmkmGJGMpQ5du/BU3LhRx6ye4829MHwttPXDh5Jx7yb3HixhV2ra/rdTS8srqWno9s7G5tb2T3d2rKxFLTGpYMCGbHlKEUU5qmmpGmpEkKPQYaXj967HfeCBSUcHv9DAinRB1OQ0oRtpIbvawmh+4TgEO3FIBtpkvtBo/+Ml9cuqc8ZGbzdlFewK4SJwZyYEZqm72q+0LHIeEa8yQUi3HjnQnQVJTzMgo044ViRDuoy5pGcpRSFQnmRwygsdG8WEgpCmu4UT9PZGgUKlh6JnOEOmemvfG4n9eK9bBZSehPIo14Xj6URAzqAUcpwJ9KgnWbGgIwpKaXSHuIYmwNtllTAjO/MmLpF4qOufF8m05V7maxZEGB+AI5IEDLkAF3IAqqAEMHsEzeAVv1pP1Yr1bH9PWlDWb2Qd/YH3+ADacl5U=</latexit>

P (w1, w2, . . . , wn)
�1/n

   where   ppl(S) = 2x x = −
1
n

log2 P(w1, …, wn) = −
1
n

n

∑
i=1

log2 P(wi |w1 . . . wi−1)
Cross-
Entropy

• Minimizing perplexity ~ maximizing probability of corpus

(Slide credit: Princeton CS 324,  Ruth Fong)
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Intuition on perplexity
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If our k-gram model (with vocabulary V) has following probability: 


 


what is the perplexity of the test corpus?


 A)                 B)                  C)               D)                       

P(w |wi−k, . . . wi−1) =
1

|V |
, ∀w ∈ V

2|V| |V | |V |2 2−|V|

   where    ppl(S) = 2x x = −
1
n

n

∑
i=1

log P(wi |w1 . . . wi−1)
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Intuition on perplexity
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   where    ppl(S) = 2x x = −
1
n

n

∑
i=1

log P(wi |w1 . . . wi−1)

If our k-gram model (with vocabulary V) has following probability: 


 


what is the perplexity of the test corpus?


 A)                 B)                  C)               D)                       

P(w |wi−k, . . . wi−1) =
1

|V |
, ∀w ∈ V

2|V| |V | |V |2 2−|V|

ppl = 2− 1
n n log(1/|V|) = |V |

branching factor  = # of possible words 
following any word

Measure of model’s uncertainty about 
next word (aka `average branching factor’)
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Perplexity

28

GPT-3 175B: 
ppl = 20.5

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word



Jan 22 lecture starts from here



CS 288 Advanced Natural Language Processing
Course website: cal-cs288.github.io/sp26 

Ed: edstem.org/us/courses/92268

• Class starts at 15:40!


• Quick announcements


• Staff won’t read enrollment-related questions via email/Ed. Please mention 
all relevant info in the Google Form. You will be notified no later than 
02/03.


• For those with access problems (to Ed/Gradescope), email our GSI, 
Zineng Tang (email address on the website).


• Today’s lecture plan: Finish n-gram LM (20min)  Word embeddings (60min)→

https://cal-cs288.github.io/sp26/
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Recap: n-gram LM
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• Language Model: A probabilistic model of a sequence of words

P (the cat sat on the mat) = P (the) ⇤ P (cat|the) ⇤ P (sat|the cat)

⇤P (on|the cat sat) ⇤ P (the|the cat sat on)

⇤P (mat|the cat sat on the)

P (sat|the cat) =
count(the cat sat)

count(the cat)

P (on|the cat sat) =
count(the cat sat on)

count(the cat sat)

• How to compute these probabilities? Maximum likelihood estimate (MLE)!

• Problem: As the sentence length grows, this becomes intractable!



Berkeley CS 288 

Recap: n-gram LM
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• n-gram LM: use Markov assumption to approximate probability

P (mat|the cat sat on the) ⇡ P (mat|the)

P (mat|the cat sat on the) ⇡ P (mat|on the)

• 1st order


• 2nd order

 bi-gram LM→
 tri-gram LM→

Larger the n, more accurate and better the language model (but also higher costs)
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Recap: LM Evaluation: Perplexity (ppl)
Measure of how well a LM predicts the next word

• For a test corpus with words                w1, w2, . . . wn

Perplexity = 
<latexit sha1_base64="FQkB9Z6nF64vxzDm2AwgjD5ugng=">AAACCHicbVDLSgMxFM3UV62vqksXBotQodaZUtRl0Y3LCvYBbR0ymUwbmkmGJGMpQ5du/BU3LhRx6ye4829MHwttPXDh5Jx7yb3HixhV2ra/rdTS8srqWno9s7G5tb2T3d2rKxFLTGpYMCGbHlKEUU5qmmpGmpEkKPQYaXj967HfeCBSUcHv9DAinRB1OQ0oRtpIbvawmh+4TgEO3FIBtpkvtBo/+Ml9cuqc8ZGbzdlFewK4SJwZyYEZqm72q+0LHIeEa8yQUi3HjnQnQVJTzMgo044ViRDuoy5pGcpRSFQnmRwygsdG8WEgpCmu4UT9PZGgUKlh6JnOEOmemvfG4n9eK9bBZSehPIo14Xj6URAzqAUcpwJ9KgnWbGgIwpKaXSHuIYmwNtllTAjO/MmLpF4qOufF8m05V7maxZEGB+AI5IEDLkAF3IAqqAEMHsEzeAVv1pP1Yr1bH9PWlDWb2Qd/YH3+ADacl5U=</latexit>

P (w1, w2, . . . , wn)
�1/n

   where   ppl(S) = 2x x = −
1
n

log2 P(w1, …, wn) = −
1
n

n

∑
i=1

log2 P(wi |w1 . . . wi−1)
Cross-
Entropy

• Minimizing perplexity ~ maximizing probability of corpus

(Slide credit: Princeton CS 324,  Ruth Fong)
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GPT-3 175B: 
ppl = 20.5

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

Recap: LM Evaluation: Perplexity (ppl)
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• What is the minimum possible perplexity?


• What is the maximum possible perplexity?


35

Quick quiz (question from previous class)

   where   ppl(S) = 2x x = −
1
n

log2 P(w1, …, wn)

, therefore , therefore   P(w1, …, wn) = 1 x = −
1
n

log2 P(w1, …, wn) = 0 ppl(S) = 20 = 1

, therefore , therefore   P(w1, …, wn) = 0 x = −
1
n

log2 P(w1, …, wn) = ∞ ppl(S) = 2∞ = ∞
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Smoothing
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Sparsity

37
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Generalization of n-grams

38

• Not all n-grams in the test set will be observed in training data


• Test corpus might have some that have zero probability under our model


• Training set: Google news


• Test set: Shakespeare


• P(affray | voice doth us) = 0    P(test corpus) = 0


• Perplexity is not defined.

⟹

   where   ppl(S) = 2x

x = −
1
n

n

∑
i=1

log P(wi |w1 . . . wi−1)
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Smoothing

39

• Handle sparsity by making sure all probabilities are non-zero in our model


• Additive: Add a small amount to all probabilities


• Interpolation: Use a combination of different granularities of n-grams


• Discounting: Redistribute probability mass from observed n-grams to 
unobserved ones
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Smoothing intuition
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Dan*Jurafsky

The(intuition(of(smoothing((from(Dan(Klein)

• When*we*have*sparse*statistics:

• Steal*probability*mass*to*generalize*better

P(w*|*denied*the)
3*allegations
2*reports
1*claims
1*request
7*total

P(w*|*denied*the)
2.5*allegations
1.5*reports
0.5*claims
0.5*request
2*other
7*total

al
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n
s
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s

cl
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s
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…
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s
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m
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e

…al
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g
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n
s
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p
o
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s
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m
s

re
q
u
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t

(Slide credit: Dan Klein)
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Laplace smoothing

41

• Also known as add-alpha


• Simplest form of smoothing: Just add  to all counts and renormalize!


• Max likelihood estimate for bigrams:





• After smoothing:


α

P(wi |wi−1) =
C(wi−1, wi)

C(wi−1)

P(wi |wi−1) =
C(wi−1, wi) + α
C(wi−1) + α |V |
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Raw bigram counts
 (Berkeley restaurant corpus)

42

Dan*Jurafsky

Raw'bigram'counts

• Out*of*9222*sentences

(Slide credit: Dan Jurafsky)
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Raw bigram counts
 (Berkeley restaurant corpus)

43(Slide credit: Dan Jurafsky)

Dan*Jurafsky

Berkeley(Restaurant(Corpus:(Laplace(
smoothed(bigram(counts

Add 1 to all the entries in the matrix
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Smoothed bigram probabilities

44(Slide credit: Dan Jurafsky)

Dan*Jurafsky

LaplaceAsmoothed(bigrams
P (wi|wi�1) =

C(wi�1, wi) + ↵

C(wi�1 + ↵|V |
P (wi|wi�1) =

C(wi�1, wi) + ↵

C(wi�1 + ↵|V |

α = 1



Berkeley CS 288 

Linear Interpolation

45

• Use a combination of models to estimate probability


• Strong empirical performance

P̂ (wi|wi�1, wi�2) = �1P (wi|wi�1, wi�2)

+�2P (wi|wi�1)

+�3P (wi)

X

i

�i = 1
Trigram

Bigram

Unigram

<latexit sha1_base64="BxTq7RsdzRzwcg5LYhYgpCXSuek=">AAACNHicfVBLSwMxGMz6rPW16tFLsAgVtOyWol6EohfBywr2Ad1lyWazbWj2QZK1lGV/lBd/iBcRPCji1d9g+jhoKw4Ehpn5knzjJYwKaRgv2sLi0vLKamGtuL6xubWt7+w2RZxyTBo4ZjFve0gQRiPSkFQy0k44QaHHSMvrX4381j3hgsbRnRwmxAlRN6IBxUgqydVv7B6SmZWXBy6Fdkh9OHAzelLNjyfEzI/gBbSZutFHrgmtf4KuXjIqxhhwnphTUgJTWK7+ZPsxTkMSScyQEB3TSKSTIS4pZiQv2qkgCcJ91CUdRSMUEuFk46VzeKgUHwYxVyeScKz+nMhQKMQw9FQyRLInZr2R+JfXSWVw7mQ0SlJJIjx5KEgZlDEcNQh9ygmWbKgIwpyqv0LcQxxhqXouqhLM2ZXnSbNaMU8rtdtaqX45raMA9sEBKAMTnIE6uAYWaAAMHsAzeAPv2qP2qn1on5Pogjad2QO/oH19A8ZPqHc=</latexit>

P̂ (wi | wi�2, wi�1) = �1P (wi | wi�2, wi�1)

Why related to sparsity?


• (Assuming all words are seen words) even though bigrams or trigrams 
may be unseen, unigram probabilities are never zero. So the overall 
probability is guaranteed to be non-zero.


• And this is achieved while retaining high-order information.
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How can we choose lambdas?

46

• First, estimate n-gram prob. on training set


• Then, estimate lambdas (hyperparameters) to maximize 
probability on the held-out development/validation set


• Use best model from above to evaluate on test set

Text corpus

Train
Development/

Validation Test
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Discounting

47

• Determine some “mass” to remove from probability estimates


• More explicit method for redistributing mass among unseen n-grams


• Just choose an absolute value to discount (usually <1)
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Absolute discounting

48

• Define Count*(x) = Count(x) - 0.5


• Missing probability mass:








• Divide this mass between words  
for which Count(the, ) = 0

α(wi−1) = 1 − ∑
w

Count * (wi−1, w)
Count(wi−1)

α(the) = 1 −
43
48

= 5/48

w
w



Questions?
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