
n-gram Language Models

CS 288 Spring 2026
UC Berkeley

cal-cs288.github.io/sp26

https://cal-cs288.github.io/sp26/

Berkeley CS 288

Lecture plan

2

• What is an n-gram language model?

• Generating from a language model

• Evaluating a language model (perplexity)

• Smoothing: additive, interpolation, discounting

Berkeley CS 288

What is a language model?

3

• A probabilistic model of a sequence of words

• Joint probability distribution of words : w1, w2, …, wn

P (w1, w2, w3, ..., wn)

How likely is a given
phrase, sentence,
paragraph or even a
document?

Berkeley CS 288

Chain rule

4

P (the cat sat on the mat) = P (the) ⇤ P (cat|the) ⇤ P (sat|the cat)

⇤P (on|the cat sat) ⇤ P (the|the cat sat on)

⇤P (mat|the cat sat on the)

Sentence: “the cat sat on the mat”

Conditional probability:  
p(w ∣ w1, w2), ∀w ∈ V<latexit sha1_base64="ZmA+AYSbITSw+/HLlyERAe+qZfo=">AAACb3icbVHPS+wwEE6rPnWf77nqwYPyGFwEC7q0q6gXQfTiUcFVYbuUNM1qME1LMlWWslf/QG/+D178D0zrKv54A0m++b6ZzGQS51IY9P0nx52YnPo1PTPb+D335+98c2HxwmSFZrzLMpnpq5gaLoXiXRQo+VWuOU1jyS/j2+NKv7zj2ohMneMw5/2UXisxEIyipaLmQ75xHwWbcB91qm17E0KZZGgqR3lwALXu1UcHwlQk8OFvf/h1vgchipQbCFl1w7tXRaqvkZ+LlGorGHlRs+W3/drgJwjGoEXGdho1H8MkY0XKFTJJjekFfo79kmoUTPJRIywMzym7pde8Z6GitpV+Wc9rBOuWSWCQabsUQs1+zihpaswwjW1kSvHGfNcq8n9ar8DBfr8UKi+QK/ZWaFBIwAyq4UMiNGcohxZQpoXtFdgN1ZSh/aKGHULw/ck/wUWnHey2d852WodH43HMkBWyRjZIQPbIITkhp6RLGHl2Fp0VZ9V5cZfdfy68hbrOOGeJfDHXewU6MLTL</latexit>

p(w1, w2, w3, . . . , wn) = p(w1)p(w2 | w1)p(w3 | w1, w2)⇥ · · ·⇥ p(wn | w1, w2, . . . , wn�1)
<latexit sha1_base64="ZmA+AYSbITSw+/HLlyERAe+qZfo=">AAACb3icbVHPS+wwEE6rPnWf77nqwYPyGFwEC7q0q6gXQfTiUcFVYbuUNM1qME1LMlWWslf/QG/+D178D0zrKv54A0m++b6ZzGQS51IY9P0nx52YnPo1PTPb+D335+98c2HxwmSFZrzLMpnpq5gaLoXiXRQo+VWuOU1jyS/j2+NKv7zj2ohMneMw5/2UXisxEIyipaLmQ75xHwWbcB91qm17E0KZZGgqR3lwALXu1UcHwlQk8OFvf/h1vgchipQbCFl1w7tXRaqvkZ+LlGorGHlRs+W3/drgJwjGoEXGdho1H8MkY0XKFTJJjekFfo79kmoUTPJRIywMzym7pde8Z6GitpV+Wc9rBOuWSWCQabsUQs1+zihpaswwjW1kSvHGfNcq8n9ar8DBfr8UKi+QK/ZWaFBIwAyq4UMiNGcohxZQpoXtFdgN1ZSh/aKGHULw/ck/wUWnHey2d852WodH43HMkBWyRjZIQPbIITkhp6RLGHl2Fp0VZ9V5cZfdfy68hbrOOGeJfDHXewU6MLTL</latexit>

p(w1, w2, w3, . . . , wn) = p(w1)p(w2 | w1)p(w3 | w1, w2)⇥ · · ·⇥ p(wn | w1, w2, . . . , wn�1)

Berkeley CS 288

Language models are everywhere

5

Berkeley CS 288

Estimating probabilities

6

Assume we have a vocabulary of size , 
how many sequences of length do we have? 
A)  
B)  
C)  
D)

V
n

n * V
nV

Vn

V/n

P (sat|the cat) =
count(the cat sat)

count(the cat)

P (on|the cat sat) =
count(the cat sat on)

count(the cat sat)

Maximum
likelihood
estimate

(MLE)

Berkeley CS 288

Estimating probabilities

7

• With a vocabulary of size V, # sequences of length n =

• Typical English vocabulary ~ 40k words

• Even sentences of length results in more than sequences.
Too many to count!

• (For reference, # of atoms in the earth)

Vn

≤ 11 4 × 1050

∼ 1050

P (sat|the cat) =
count(the cat sat)

count(the cat)

P (on|the cat sat) =
count(the cat sat on)

count(the cat sat)

Maximum
likelihood
estimate

(MLE)

Berkeley CS 288

Markov assumption

8

• Use only the recent past to predict the next word

• Reduces the number of estimated parameters in exchange for modeling
capacity

• 1st order

• 2nd order

P (mat|the cat sat on the) ⇡ P (mat|the)

P (mat|the cat sat on the) ⇡ P (mat|on the)

Andrey Markov

Berkeley CS 288

k-th order Markov

9

Consider only the last k words (or less) for context which implies the
probability of a sequence is:

Need to estimate counts for up to (k+1) grams

(assume)wj = ϕ ∀j < 0

Berkeley CS 288

n-gram models

10

P (w1, w2, ...wn) =
nY

i=1

P (wi)

Larger the n, more accurate and better the language model  
(but also higher costs, prone to sparsity)

Unigram

P (w1, w2, ...wn) =
nY

i=1

P (wi|wi�1)Bigram

and Trigram, 4-gram, and so on.

e.g. P(the) P(cat) P(sat)

e.g. P(the) P(cat | the) P(sat | cat)

Berkeley CS 288

Quick quiz: Estimating probabilities

11

Consider the following corpus

<s> I like apples </s>

<s> You like strawberries </s>

<s> You like apples </s>

What’s the bigram probability P(apples | like) ?

(A) 1/3 (B) 2/3 (C) 1/2 (D) 1

Note: <s> and </s> are
starting and ending tokens

P(apples | like) =
Count("like apples")

Count("like")
=

2
3

Berkeley CS 288

Quick quiz: Estimating probabilities

12

Consider the following corpus

<s> I like apples </s>

<s> You like strawberries </s>

<s> You like apples </s>

Using the bigram model, what’s the probability of the sentence “<s> I like
strawberries </s>”? Ignore the probability of <s>.

(A) 4/9 (B) 1/3 (C) 2/9 (D) 1/9

Note: <s> and </s> are
starting and ending tokens

P(<s> I like strawberries </s>)

= P(I | <s>) P(like | I) P(strawberries | like) P(</s> | strawberries) = ⋅ ⋅ ⋅
1
3

⋅ 1 ⋅
1
3

⋅ 1

Berkeley CS 288

Generating from a language model

Berkeley CS 288

Generating from a language model

14

• Given a language model, how to generate a sequence?

P (w1, w2, ...wn) =
nY

i=1

P (wi|wi�1)Bigram

• Generate the first word w1 ∼ P(w)
• Generate the second word w2 ∼ P(w ∣ w1)

• Generate the third word w3 ∼ P(w ∣ w2)
• …

Berkeley CS 288

Generating from a language model

15

• Given a language model, how to generate a sequence?

Trigram

• Generate the first word w1 ∼ P(w)
• Generate the second word w2 ∼ P(w ∣ w1)

• Generate the third word w3 ∼ P(w ∣ w1, w2)

• Generate the fourth word w4 ∼ P(w ∣ w2, w3)

• …

<latexit sha1_base64="YbbLxwhYWxt4tmuJmgD1SHDIrZw=">AAACMHicbVBLSwMxGMzWV62vqkcvwSJUqGW3iHoRih70WME+oFuXbDZtg9lkSbJKWfYnefGn6EVBEa/+CrNtD1odCExm5iP5xo8YVdq2X63c3PzC4lJ+ubCyura+UdzcaikRS0yaWDAhOz5ShFFOmppqRjqRJCj0GWn7t+eZ374jUlHBr/UoIr0QDTjtU4y0kbziRaN87zkVeO/VKtBlgdAqu/B9eArdSIrAS+ipk94kPIVZlEI3pIFJJPSgllYmxEn3vWLJrtpjwL/EmZISmKLhFZ/cQOA4JFxjhpTqOnakewmSmmJG0oIbKxIhfIsGpGsoRyFRvWS8cAr3jBLAvpDmcA3H6s+JBIVKjULfJEOkh2rWy8T/vG6s+ye9hPIo1oTjyUP9mEEtYNYeDKgkWLORIQhLav4K8RBJhLXpuGBKcGZX/ktatapzVD28OizVz6Z15MEO2AVl4IBjUAeXoAGaAIMH8AzewLv1aL1YH9bnJJqzpjPb4Besr28O5qah</latexit>

P (w1, w2, . . . , wn) =
nY

i=1

P (wi | wi�2, wi�1)

Berkeley CS 288

Generations

16

- To him swallowed confess hear both. Which. Of save on
trail for are ay device and rote life have

Unigram

- Why dost stand forth thy canopy, forsooth; he is this palpable
hit the King Henry. Live king. Follow.

- What means, sir. I confess she? then all sorts, he is trim,
captain.

Bigram

- Fly, and will rid me these news of price. Therefore the
sadness of parting, as they say,

- This shall forbid it should be branded, if renown made it
empty

Trigram

“The woman/man could not go to work that day
because she/he had a doctor’s appointment”

Typical LMs are not sufficient to handle long-range dependencies

Berkeley CS 288

Generations

17

With the start of the new academic year, Princeton has an opportunity to help provide a new
generation of women with a diverse set of academic resources for higher education.
We are offering the resources of the Princeton-McGill program specifically to women with
undergraduate degrees who would like to enhance their academic experience. Princeton-McGill
offers a comprehensive suite of services for women and their families including a variety of graduate
programs, support programs, and the opportunity to serve as leaders in their communities with a
wide variety of programs, activities and services. For the upcoming fall, Princeton-McGill will also
offer its Women's Center , which is located in a renovated women's dorm.
At Princeton, we are working with the Princeton-McGill community to develop a suite of programs
that are designed to give new and returning students a strong foundation for a successful, rewarding
graduate career. The Women's Center , the Princeton-McGill Women's Center provides a range of
supports to address the specific needs of female doctoral degree graduates. Programs are tailored to
meet the unique needs of women under the age of 28, women and families

https://talktotransformer.com/

Example from a GPT-2 output (2019):

Modern LMs can handle much longer contexts!

<latexit sha1_base64="+rav88ruzOQUiarUZfGToc+P77c=">AAACRHicbVBLSwMxGMz6rPVV9eglWAQFLZtS1Euh6MVjBdsK3bpks6kGs8mSZJWy7I/z4g/w5i/w4kERr2K23YOvgcBkvhm+ZIKYM21c98mZmp6ZnZsvLZQXl5ZXVitr610tE0Voh0gu1UWANeVM0I5hhtOLWFEcBZz2gpuTfN67pUozKc7NKKaDCF8JNmQEGyv5lX57585He/DOr+9Bj4fS6PwidmETerGSoZ+yJsouU5HB3MqgF7HQOlK2j9x6I/ueslo9KwjKdv1K1a25Y8C/BBWkCgq0/cqjF0qSRFQYwrHWfeTGZpBiZRjhNCt7iaYxJjf4ivYtFTiiepCOS8jgtlVCOJTKHmHgWP2eSHGk9SgKrDPC5lr/nuXif7N+YoZHg5SJODFUkMmiYcKhkTBvFIZMUWL4yBJMFLNvheQaK0yM7b1sS0C/v/yXdOs1dFBrnDWqreOijhLYBFtgByBwCFrgFLRBBxBwD57BK3hzHpwX5935mFinnCKzAX7A+fwCh0Ctrg==</latexit>

P (w1, w2, . . . , wn) =
nY

i=1

P (wi | wi�1024, . . . , wi�2, wi�1)

https://talktotransformer.com/

Berkeley CS 288

Generation methods (more in the later lecture)

18

• Greedy: choose the most likely word!

• To predict the next word given a context of two words :

• Top-k vs top-p sampling: “The boy went to the _______”

w1, w2

w3 = arg max
w∈V

P(w |w1, w2)

https://blog.allenai.org/a-guide-to-language-model-sampling-in-allennlp-3b1239274bc3

Top-p samplingTop-k sampling

Berkeley CS 288

Evaluating a language model

Berkeley CS 288

Extrinsic evaluation

20

• Train LM apply to task observe accuracy

• Directly optimized for downstream applications

• higher task accuracy better model

• Expensive, time consuming

• Hard to optimize downstream objective (indirect feedback)

→ →

→

Language
model

Machine
Translation Eval

refine

Berkeley CS 288

Intrinsic evaluation of language models

21

• Train parameters on a suitable training corpus

• Assumption: observed sentences ~ good sentences

• Test on different, unseen corpus

• If a language model assigns a higher probability to the test
set, it is better

• Evaluation metric - perplexity!

Berkeley CS 288

Motivation: Shannon game

22

Goal for language models: model or  
 well. 

 
Shannon game: How well can we predict the next word?

• I always order pizza with cheese and ____

• The 33rd president of the US was ____

• I saw a ____

Pr[w1w2…wk]
Pr[wk |w1…wk−1]

(Slide credit: Princeton CS 324, Ruth Fong)

Berkeley CS 288

Motivation: Shannon game

23

Goal for language models: model or  
 well. 

 
Shannon game: How well can we predict the next word?

• I always order pizza with cheese and ____
• The 33rd president of the US was ____

• I saw a ____

 
How would a unigram model do?

Pr[w1w2…wk]
Pr[wk |w1…wk−1]

mushrooms 0.1
pepperoni 0.1
anchovies 0.01
…
friend 0.0001
…

(Slide credit: Princeton CS 324, Ruth Fong)

Berkeley CS 288

Motivation: Shannon game

24

Goal for language models: model or  
 well. 

 
Shannon game: How well can we predict the next word?

• I always order pizza with cheese and ____
• The 33rd president of the US was ____

• I saw a ____

 
How would a unigram model do? 
Not well, it would assign the most probability to the most common word (i.e. the
word that occurs the most in the training corpus). 

Better language model = assigns higher probability to word that actually occurs.

Pr[w1w2…wk]
Pr[wk |w1…wk−1]

(Slide credit: Princeton CS 324, Ruth Fong)

mushrooms 0.1
pepperoni 0.1
anchovies 0.01
…
friend 0.0001
…

Berkeley CS 288 25

Perplexity (ppl)
Measure of how well a LM predicts the next word

• For a test corpus with words w1, w2, . . . wn

Perplexity =
<latexit sha1_base64="FQkB9Z6nF64vxzDm2AwgjD5ugng=">AAACCHicbVDLSgMxFM3UV62vqksXBotQodaZUtRl0Y3LCvYBbR0ymUwbmkmGJGMpQ5du/BU3LhRx6ye4829MHwttPXDh5Jx7yb3HixhV2ra/rdTS8srqWno9s7G5tb2T3d2rKxFLTGpYMCGbHlKEUU5qmmpGmpEkKPQYaXj967HfeCBSUcHv9DAinRB1OQ0oRtpIbvawmh+4TgEO3FIBtpkvtBo/+Ml9cuqc8ZGbzdlFewK4SJwZyYEZqm72q+0LHIeEa8yQUi3HjnQnQVJTzMgo044ViRDuoy5pGcpRSFQnmRwygsdG8WEgpCmu4UT9PZGgUKlh6JnOEOmemvfG4n9eK9bBZSehPIo14Xj6URAzqAUcpwJ9KgnWbGgIwpKaXSHuIYmwNtllTAjO/MmLpF4qOufF8m05V7maxZEGB+AI5IEDLkAF3IAqqAEMHsEzeAVv1pP1Yr1bH9PWlDWb2Qd/YH3+ADacl5U=</latexit>

P (w1, w2, . . . , wn)
�1/n

 where ppl(S) = 2x x = −
1
n

log2 P(w1, …, wn) = −
1
n

n

∑
i=1

log2 P(wi |w1 . . . wi−1)
Cross-
Entropy

• Minimizing perplexity ~ maximizing probability of corpus

(Slide credit: Princeton CS 324, Ruth Fong)

Berkeley CS 288

Intuition on perplexity

26

If our k-gram model (with vocabulary V) has following probability:

what is the perplexity of the test corpus?

 A) B) C) D)

P(w |wi−k, . . . wi−1) =
1

|V |
, ∀w ∈ V

2|V| |V | |V |2 2−|V|

 where ppl(S) = 2x x = −
1
n

n

∑
i=1

log P(wi |w1 . . . wi−1)

Berkeley CS 288

Intuition on perplexity

27

 where ppl(S) = 2x x = −
1
n

n

∑
i=1

log P(wi |w1 . . . wi−1)

If our k-gram model (with vocabulary V) has following probability:

what is the perplexity of the test corpus?

 A) B) C) D)

P(w |wi−k, . . . wi−1) =
1

|V |
, ∀w ∈ V

2|V| |V | |V |2 2−|V|

ppl = 2− 1
n n log(1/|V|) = |V |

branching factor = # of possible words
following any word

Measure of model’s uncertainty about
next word (aka `average branching factor’)

Berkeley CS 288

Perplexity

28

GPT-3 175B:
ppl = 20.5

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

Jan 22 lecture starts from here

CS 288 Advanced Natural Language Processing
Course website: cal-cs288.github.io/sp26

Ed: edstem.org/us/courses/92268

• Class starts at 15:40!

• Quick announcements

• Staff won’t read enrollment-related questions via email/Ed. Please mention
all relevant info in the Google Form. You will be notified no later than
02/03.

• For those with access problems (to Ed/Gradescope), email our GSI,
Zineng Tang (email address on the website).

• Today’s lecture plan: Finish n-gram LM (20min) Word embeddings (60min)→

https://cal-cs288.github.io/sp26/

Berkeley CS 288

Recap: n-gram LM

31

• Language Model: A probabilistic model of a sequence of words

P (the cat sat on the mat) = P (the) ⇤ P (cat|the) ⇤ P (sat|the cat)

⇤P (on|the cat sat) ⇤ P (the|the cat sat on)

⇤P (mat|the cat sat on the)

P (sat|the cat) =
count(the cat sat)

count(the cat)

P (on|the cat sat) =
count(the cat sat on)

count(the cat sat)

• How to compute these probabilities? Maximum likelihood estimate (MLE)!

• Problem: As the sentence length grows, this becomes intractable!

Berkeley CS 288

Recap: n-gram LM

32

• n-gram LM: use Markov assumption to approximate probability

P (mat|the cat sat on the) ⇡ P (mat|the)

P (mat|the cat sat on the) ⇡ P (mat|on the)

• 1st order

• 2nd order

 bi-gram LM→
 tri-gram LM→

Larger the n, more accurate and better the language model (but also higher costs)

Berkeley CS 288 33

Recap: LM Evaluation: Perplexity (ppl)
Measure of how well a LM predicts the next word

• For a test corpus with words w1, w2, . . . wn

Perplexity =
<latexit sha1_base64="FQkB9Z6nF64vxzDm2AwgjD5ugng=">AAACCHicbVDLSgMxFM3UV62vqksXBotQodaZUtRl0Y3LCvYBbR0ymUwbmkmGJGMpQ5du/BU3LhRx6ye4829MHwttPXDh5Jx7yb3HixhV2ra/rdTS8srqWno9s7G5tb2T3d2rKxFLTGpYMCGbHlKEUU5qmmpGmpEkKPQYaXj967HfeCBSUcHv9DAinRB1OQ0oRtpIbvawmh+4TgEO3FIBtpkvtBo/+Ml9cuqc8ZGbzdlFewK4SJwZyYEZqm72q+0LHIeEa8yQUi3HjnQnQVJTzMgo044ViRDuoy5pGcpRSFQnmRwygsdG8WEgpCmu4UT9PZGgUKlh6JnOEOmemvfG4n9eK9bBZSehPIo14Xj6URAzqAUcpwJ9KgnWbGgIwpKaXSHuIYmwNtllTAjO/MmLpF4qOufF8m05V7maxZEGB+AI5IEDLkAF3IAqqAEMHsEzeAVv1pP1Yr1bH9PWlDWb2Qd/YH3+ADacl5U=</latexit>

P (w1, w2, . . . , wn)
�1/n

 where ppl(S) = 2x x = −
1
n

log2 P(w1, …, wn) = −
1
n

n

∑
i=1

log2 P(wi |w1 . . . wi−1)
Cross-
Entropy

• Minimizing perplexity ~ maximizing probability of corpus

(Slide credit: Princeton CS 324, Ruth Fong)

Berkeley CS 288 34

GPT-3 175B:
ppl = 20.5

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

Recap: LM Evaluation: Perplexity (ppl)

Berkeley CS 288

• What is the minimum possible perplexity?

• What is the maximum possible perplexity?

35

Quick quiz (question from previous class)

 where ppl(S) = 2x x = −
1
n

log2 P(w1, …, wn)

, therefore , therefore P(w1, …, wn) = 1 x = −
1
n

log2 P(w1, …, wn) = 0 ppl(S) = 20 = 1

, therefore , therefore P(w1, …, wn) = 0 x = −
1
n

log2 P(w1, …, wn) = ∞ ppl(S) = 2∞ = ∞

Berkeley CS 288

Smoothing

Berkeley CS 288

Sparsity

37

Berkeley CS 288

Generalization of n-grams

38

• Not all n-grams in the test set will be observed in training data

• Test corpus might have some that have zero probability under our model

• Training set: Google news

• Test set: Shakespeare

• P(affray | voice doth us) = 0 P(test corpus) = 0

• Perplexity is not defined.

⟹

 where ppl(S) = 2x

x = −
1
n

n

∑
i=1

log P(wi |w1 . . . wi−1)

Berkeley CS 288

Smoothing

39

• Handle sparsity by making sure all probabilities are non-zero in our model

• Additive: Add a small amount to all probabilities

• Interpolation: Use a combination of different granularities of n-grams

• Discounting: Redistribute probability mass from observed n-grams to
unobserved ones

Berkeley CS 288

Smoothing intuition

40

Dan*Jurafsky

The(intuition(of(smoothing((from(Dan(Klein)

• When*we*have*sparse*statistics:

• Steal*probability*mass*to*generalize*better

P(w*|*denied*the)
3*allegations
2*reports
1*claims
1*request
7*total

P(w*|*denied*the)
2.5*allegations
1.5*reports
0.5*claims
0.5*request
2*other
7*total

al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

at
ta
ck

re
q
u
es
t

m
an

ou
tc
om
e

…

al
le
g
at
io
n
s

at
ta
ck

m
an

ou
tc
om
e

…al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

re
q
u
es
t

(Slide credit: Dan Klein)

Berkeley CS 288

Laplace smoothing

41

• Also known as add-alpha

• Simplest form of smoothing: Just add to all counts and renormalize!

• Max likelihood estimate for bigrams:

• After smoothing:

α

P(wi |wi−1) =
C(wi−1, wi)

C(wi−1)

P(wi |wi−1) =
C(wi−1, wi) + α
C(wi−1) + α |V |

Berkeley CS 288

Raw bigram counts
 (Berkeley restaurant corpus)

42

Dan*Jurafsky

Raw'bigram'counts

• Out*of*9222*sentences

(Slide credit: Dan Jurafsky)

Berkeley CS 288

Raw bigram counts
 (Berkeley restaurant corpus)

43(Slide credit: Dan Jurafsky)

Dan*Jurafsky

Berkeley(Restaurant(Corpus:(Laplace(
smoothed(bigram(counts

Add 1 to all the entries in the matrix

Berkeley CS 288

Smoothed bigram probabilities

44(Slide credit: Dan Jurafsky)

Dan*Jurafsky

LaplaceAsmoothed(bigrams
P (wi|wi�1) =

C(wi�1, wi) + ↵

C(wi�1 + ↵|V |
P (wi|wi�1) =

C(wi�1, wi) + ↵

C(wi�1 + ↵|V |

α = 1

Berkeley CS 288

Linear Interpolation

45

• Use a combination of models to estimate probability

• Strong empirical performance

P̂ (wi|wi�1, wi�2) = �1P (wi|wi�1, wi�2)

+�2P (wi|wi�1)

+�3P (wi)

X

i

�i = 1
Trigram

Bigram

Unigram

<latexit sha1_base64="BxTq7RsdzRzwcg5LYhYgpCXSuek=">AAACNHicfVBLSwMxGMz6rPW16tFLsAgVtOyWol6EohfBywr2Ad1lyWazbWj2QZK1lGV/lBd/iBcRPCji1d9g+jhoKw4Ehpn5knzjJYwKaRgv2sLi0vLKamGtuL6xubWt7+w2RZxyTBo4ZjFve0gQRiPSkFQy0k44QaHHSMvrX4381j3hgsbRnRwmxAlRN6IBxUgqydVv7B6SmZWXBy6Fdkh9OHAzelLNjyfEzI/gBbSZutFHrgmtf4KuXjIqxhhwnphTUgJTWK7+ZPsxTkMSScyQEB3TSKSTIS4pZiQv2qkgCcJ91CUdRSMUEuFk46VzeKgUHwYxVyeScKz+nMhQKMQw9FQyRLInZr2R+JfXSWVw7mQ0SlJJIjx5KEgZlDEcNQh9ygmWbKgIwpyqv0LcQxxhqXouqhLM2ZXnSbNaMU8rtdtaqX45raMA9sEBKAMTnIE6uAYWaAAMHsAzeAPv2qP2qn1on5Pogjad2QO/oH19A8ZPqHc=</latexit>

P̂ (wi | wi�2, wi�1) = �1P (wi | wi�2, wi�1)

Why related to sparsity?

• (Assuming all words are seen words) even though bigrams or trigrams
may be unseen, unigram probabilities are never zero. So the overall
probability is guaranteed to be non-zero.

• And this is achieved while retaining high-order information.

Berkeley CS 288

How can we choose lambdas?

46

• First, estimate n-gram prob. on training set

• Then, estimate lambdas (hyperparameters) to maximize
probability on the held-out development/validation set

• Use best model from above to evaluate on test set

Text corpus

Train
Development/

Validation Test

Berkeley CS 288

Discounting

47

• Determine some “mass” to remove from probability estimates

• More explicit method for redistributing mass among unseen n-grams

• Just choose an absolute value to discount (usually <1)

Berkeley CS 288

Absolute discounting

48

• Define Count*(x) = Count(x) - 0.5

• Missing probability mass:

• Divide this mass between words
for which Count(the,) = 0

α(wi−1) = 1 − ∑
w

Count * (wi−1, w)
Count(wi−1)

α(the) = 1 −
43
48

= 5/48

w
w

Questions?

Acknowledgement

Princeton COS 484 by Danqi Chen, Tri Dao, Vikram Ramaswamy

