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Speech Recognition and Synthesis

Dan Klein
UC Berkeley

Language Models Noisy Channel Model: ASR
§We want to predict a sentence given acoustics:

§The noisy-channel approach:

Acoustic model: score fit 
between sounds and words

Language model: score 
plausibility of word sequences

The Speech Signal

Speech in a Slide
n Frequency gives pitch; amplitude gives volume

n Frequencies at each time slice processed into observation vectors
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Articulation
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Text from Ohala, Sept 2001, from Sharon Rose slide

Sagittal section of the vocal tract (Techmer 1880)

Nasal cavity

Pharynx

Vocal folds (in the larynx)

Trachea

Lungs

Articulatory System

Oral cavity

Space of Phonemes

§ Standard international phonetic alphabet (IPA) chart of consonants

Articulation: Place

Places of Articulation

labial

dental
alveolar post-alveolar/palatal

velar
uvular

pharyngeal

laryngeal/glottal

Figure thanks to Jennifer Venditti

Labial place

bilabial

labiodental

Figure thanks to Jennifer Venditti

Bilabial:
p, b, m

Labiodental:
f, v

Coronal place

dental
alveolar post-alveolar/palatal

Figure thanks to Jennifer Venditti

Dental:
th/dh

Alveolar:
t/d/s/z/l/n

Post:
sh/zh/y
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Dorsal Place

velar
uvular

pharyngeal

Figure thanks to Jennifer Venditti

Velar:
k/g/ng

Space of Phonemes

§ Standard international phonetic alphabet (IPA) chart of consonants

Articulation: Manner

Manner of Articulation

§ In addition to varying by place, sounds vary by manner

§ Stop: complete closure of articulators, no air escapes via mouth

§ Oral stop: palate is raised (p, t, k, b, d, g)

§ Nasal stop: oral closure, but palate is lowered (m, n, ng)

§ Fricatives: substantial closure, turbulent: (f, v, s, z)

§ Approximants: slight closure, sonorant: (l, r, w)

§ Vowels: no closure, sonorant: (i, e, a)

Space of Phonemes

§ Standard international phonetic alphabet (IPA) chart of consonants

Articulation: Vowels
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Vowel Space

Acoustics

“She just had a baby”

What can we learn from a wavefile?

§ No gaps between words (!)

§ Vowels are voiced, long, loud

§ Length in time = length in space in waveform picture

§ Voicing: regular peaks in amplitude

§ When stops closed: no peaks, silence

§ Peaks = voicing: .46 to .58 (vowel [iy], from second .65 to .74 (vowel [ax]) and so on

§ Silence of stop closure (1.06 to 1.08 for first [b], or 1.26 to 1.28 for second [b])

§ Fricatives like [sh]: intense irregular pattern; see .33 to .46

Time-Domain Information

bad

pad

spat

pat

Example from Ladefoged

Simple Periodic Waves of Sound

Time (s)
0 0.02

œ0.99

0.99

0

• Y axis: Amplitude = amount of air pressure at that point in time
• Zero is normal air pressure, negative is rarefaction

• X axis: Time
• Frequency = number of cycles per second
• 20 cycles in .02 seconds = 1000 cycles/second = 1000 Hz

Complex Waves: 100Hz+1000Hz

Time (s)
0 0.05

œ0.9654

0.99

0
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Spectrum

100 1000Frequency in Hz
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Frequency components (100 and 1000 Hz) on x-axis

Part of [ae] waveform from “had”

§ Note complex wave repeating nine times in figure

§ Smaller waves which repeat 4 times for every large pattern

§ Large wave has frequency of 250 Hz (9 times in .036 seconds)

§ Small wave roughly 4 times this, or roughly 1000 Hz

§ Two little tiny waves on top of peak of 1000 Hz waves

Spectrum of an Actual Soundwave

Frequency (Hz)
0 5000

0

20

40

Source / Channel

Why these Peaks? 

§ Articulation process:
§ The vocal cord vibrations create 

harmonics
§ The mouth is an amplifier
§ Depending on shape of mouth, 

some harmonics are amplified more 
than others

Figures from Ratree Wayland

A3

A4

A2

C4 (middle C)

C3

F#3

F#2

Vowel [i] at increasing pitches
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Resonances of the Vocal Tract

§ The human vocal tract as an open tube:

§ Air in a tube of a given length will tend to vibrate at 
resonance frequency of tube. 

§ Constraint: Pressure differential should be maximal at 
(closed) glottal end and minimal at (open) lip end.

Closed end Open end

Length 17.5 cm.

Figure from W. Barry From Sundberg

Computing the 3 Formants of Schwa

§ Let the length of the tube be L

§ F1 = c/l1 = c/(4L) = 35,000/4*17.5 = 500Hz

§ F2 = c/l2 = c/(4/3L) = 3c/4L = 3*35,000/4*17.5 = 1500Hz

§ F3 = c/l3 = c/(4/5L) = 5c/4L = 5*35,000/4*17.5 = 2500Hz

§ So we expect a neutral vowel to have 3 resonances at 500, 1500, and 2500 Hz

§ These vowel resonances are called formants

From
Mark
Liberman

Seeing Formants: the Spectrogram Vowel Space
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Spectrograms

How to Read Spectrograms

§ [bab]: closure of lips lowers all formants: so rapid  increase in all formants at 
beginning of "bab”

§ [dad]: first formant increases, but F2 and F3 slight fall

§ [gag]: F2 and F3 come together: this is a characteristic  of velars. Formant 
transitions take longer in velars than in alveolars or labials

From Ladefoged “A Course in Phonetics”

“She came back and started again”

1.  lots of high-freq energy

3.  closure for k

4.  burst of aspiration for k

5.  ey vowel; faint 1100 Hz formant is nasalization

6.  bilabial nasal

7.  short b closure, voicing barely visible. 

8.  ae; note upward transitions after bilabial stop at beginning

9.  note F2 and F3 coming together for "k"

From Ladefoged “A Course in Phonetics”

Speech Recognition

Speech Recognition Architecture

Figure: J & M

Feature Extraction
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Digitizing Speech

Figure: Bryan Pellom

Frame Extraction

25 ms

10ms

. . .

a1      a2      a3

Figure: Simon Arnfield

§ A 25 ms wide frame is extracted every 10 ms

Mel Freq. Cepstral Coefficients

§ Do FFT to get spectral information
§ Like the spectrogram we saw earlier

§ Apply Mel scaling
§ Models human ear; more sensitivity in lower freqs

§ Approx linear below 1kHz, log above, equal samples above and 
below 1kHz

§ Plus discrete cosine transform

[Graph: Wikipedia]

Final Feature Vector

§ 39 (real) features per 10 ms frame:
§ 12 MFCC features

§ 12 delta MFCC features

§ 12 delta-delta MFCC features

§ 1 (log) frame energy

§ 1 delta (log) frame energy

§ 1 delta-delta (log frame energy)

§ So each frame is represented by a 39D vector

Emission Model

HMMs for Continuous Observations

§ Solution 1: discretization
§ Solution 2: continuous emission models
§ Gaussians
§ Multivariate Gaussians

§ Mixtures of multivariate Gaussians

§ Solution 3: neural classifiers

§ A state is progressively
§ Context independent subphone (~3 per phone)

§ Context dependent phone (triphones)

§ State tying of CD phone
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Vector Quantization

§ Idea: discretization

§ Map MFCC vectors onto discrete symbols 

§ Compute probabilities just by counting

§ This is called vector quantization or VQ

§ Not used for ASR any more

§ But: useful to consider as a starting point, and 
for understanding neural methods

Gaussian Emissions

§ VQ is insufficient for top-quality ASR
§ Hard to cover high-dimensional space with 

codebook

§ Moves ambiguity from the model to the 
preprocessing

§ Instead: assume the possible values 
of the observation vectors are 
normally distributed.

§ Represent the observation likelihood 
function as a Gaussian?

From bartus.org/akustyk

But we’re not there yet

§ Single Gaussians may do a bad job of 
modeling a complex distribution in any 
dimension

§ Even worse for diagonal covariances

§ Classic solution: mixtures of Gaussians

§ Modern solution: NN-based acoustic 
models map feature vectors to 
(sub)states

From openlearn.open.ac.uk

HMM / State Model

State Transition Diagrams

§ Bayes Net: HMM as a Graphical Model

§ State Transition Diagram: Markov Model as a Weighted FSA

w w w

x x x

the cat chased

dog
has

ASR Lexicon

Figure: J & M
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Lexical State Structure

Figure: J & M

Adding an LM

Figure from Huang et al page 618

State Space

§ State space must include
§ Current word (|V| on order of 50K+)

§ Index within current word (|L| on order of 5)

§ E.g. (lec[t]ure) (though not in orthography!)

§ Acoustic probabilities only depend on (contextual) phone type
§ E.g. P(x|lec[t]ure) = P(x|t)

§ From a state sequence, can read a word sequence

State Refinement

Phones Aren’t Homogeneous Subphones

Figure: J & M
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A Word with Subphones

Figure: J & M

Modeling phonetic context

w iy r iy m iy n iy

“Need” with triphone models

Figure: J & M

Lots of Triphones

§ Possible triphones: 50x50x50=125,000

§ How many triphone types actually occur?

§ 20K word WSJ Task (from Bryan Pellom)
§ Word internal models:  need 14,300 triphones

§ Cross word models: need 54,400 triphones

§ Need to generalize models, tie triphones

State Tying / Clustering

§ [Young, Odell, Woodland 1994]
§ How do we decide which triphones to 

cluster together?
§ Use phonetic features (or `broad 

phonetic classes’)
§ Stop

§ Nasal

§ Fricative

§ Sibilant

§ Vowel
§ lateral

Figure: J & M

State Space

§ Full state space

(LM context, lexicon index, subphone)

§ Details:
§ LM context is the past n-1 words

§ Lexicon index is a phone position within a word (or a trie of the lexicon)

§ Subphone is begin, middle, or end

§ E.g. (after the, lec[t-mid]ure)

§ Acoustic model depends on clustered phone context
§ But this doesn’t grow the state space
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Learning Acoustic Models

What Needs to be Learned?

§ Emissions: P(x | phone class)
§ X is MFCC-valued

§ In neural methods, actually have P( phone | window around x ) 
and then coerce those scores into P(x | phone )

§ Transitions: P(state | prev state)
§ If between words, this is P(word | history)

§ If inside words, this is P(advance | phone class)

§ (Really a hierarchical model)

s s s

x x x

Estimation from Aligned Data

§ What if each time step were labeled with its (context-dependent sub) phone?

§ Can estimate P(x|/ae/) as empirical mean and (co-)variance of x’s with label 
/ae/, or mixture, etc/

§ Problem: Don’t know alignment at the frame and phone level

/k/ /ae/ /ae/

x x x

/ae/ /t/

x x

Forced Alignment
§ What if the acoustic model P(x|phone) were known (or approximately known)?

§ … and also the correct sequences of words / phones

§ Can predict the best alignment of frames to phones

§ Called “forced alignment”

ssssssssppppeeeeeeetshshshshllllaeaeaebbbbb

“speech lab”

Forced Alignment

§ Create a new state space that forces the hidden variables to transition through phones in the 
(known) order

§ Still have uncertainty about durations: this key uncertainty persists in neural models (and in 
some ways is worse now)

§ In this HMM, all the parameters are known

§ Transitions determined by known utterance

§ Emissions assumed to be known

§ Minor detail: self-loop probabilities

§ Just run Viterbi (or approximations) to get the best alignment

/s/ /p/ /ee/ /ch/ /l/ /ae/ /b/

EM for Alignment

§ Input: acoustic sequences with word-level transcriptions

§ We don’t know either the emission model or the frame alignments

§ Expectation Maximization
§ Alternating optimization

§ Impute completions for unlabeled variables (here, the states at each time step)

§ Re-estimate model parameters (here, Gaussian means, variances, mixture ids)

§ Repeat

§ One of the earliest uses of EM for structured problems
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Staged Training and State Tying

§ Creating CD phones:
§ Start with monophone, do EM training

§ Clone Gaussians into triphones

§ Build decision tree and cluster Gaussians

§ Clone and train mixtures (GMMs)

§ General idea:
§ Introduce complexity gradually

§ Interleave constraint with flexibility

Neural Acoustic Models

§ Given an input x, map to s; this score coerced into generative 
P(x|s) via Bayes rule (liberally ignoring terms)

§ One major advantage of the neural net

is that you can look at many x’s at once

to capture dynamics (important!) DNN

! "#|%#……

%#

[Diagram from Hung-yi Li]

Speech Recognition and Synthesis

Dan Klein
UC Berkeley

Speech in a Slide
n Frequency gives pitch; amplitude gives volume

n Frequencies at each time slice processed into observation vectors
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Decoding

State Trellis

Figure: Enrique Benimeli
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Beam Search

§ Lattice is not regular in structure!  Dynamic vs static decoding

§ At each time step
§ Start: Beam (collection) vt of hypotheses s at time t

§ For each s in vt

§ Compute all extensions s’ at time t+1

§ Score s’ from s

§ Put s’ in vt+1 replacing existing s’ if better

§ Advance to t+1

§ Beams are priority queues of fixed size* k (e.g. 30) and retain only the top k 
hypotheses

Dynamic vs Static Decoding

§ Dynamic decoding
§ Build transitions on the fly based on model / grammar / etc
§ Very flexible, allows heterogeneous contexts easily (eg complex LMs)

§ Static decoding
§ Compile entire subphone/vocabulary/LM into a huge weighted FST 

and use FST optimization methods (eg pushing, merging)
§ Much more common at scale, better eng and speed properties

Direct Neural Decoders

§ Lots of work in decoders that skip explicit / discrete alignment

§ Decode to phone, or character, or word

§ Handle alignments softly (eg attention) or discretely (eg CTC)

[CTC: Graves 06; Diagram from https://distill.pub/2017/ctc/]

Speech Synthesis

[Many slides from Dan Jurafsky]

Early TTS

§ Von Kempelen, 1791

The Voder
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Voder Architecture

§ An early hardware 
solution that 
already captured 
the flow of 
parametric 
synthesizers

Modern TTS

§ 1960’s first full TTS: Umeda et al (1968)

§ 1970’s
§ Joe Olive 1977 concatenation of linear-prediction diphones

§ Speak and Spell
§ 1980’s

§ 1979 MIT MITalk (Allen, Hunnicut, Klatt)
§ 1990’s – 2000’s

§ Diphone synthesis
§ Unit selection synthesis

§ Recent
§ Parametric synthesis returns!

TTS Architecture

Typical Data for Classic TTS

§ Professional voice actor

§ Carefully selected material

§ High-quality recordings

§ 10-100 hours @ 44kHz

§ High signal-to-noise ratio

§ Consistent audio levels
§ No vocal issues (creaky voice)

§ Anechoic-like environment

§ Usually lots of post-processing
(alignments, pronunciations, …)

Concatenative Synthesis

§ Commercially dominant (diphones, unit-selection, etc)

Acoustic
Units
DB

Audio Snippets + Features

Unit Scoring Function

Join Scoring Function

PSOLA

Time-domain Pitch-Synchronous Overlap and Add (TD-PSOLA)
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Formant Synthesis Direct-to-Wave Synthesis

https://ai.googleblog.com/2017/12/tacotron-2-generating-human-like-speech.html

Examples

[https://www.deepmind.com/blog/wavenet-a-generative-model-for-raw-audio]

Concatenative Parametric WaveNet

https://ai.googleblog.com/2017/12/tacotron-2-generating-human-like-speech.html

