Natural Language Processing

Compositional Semantics

Dan Klein - UC Berkeley

Truth-Conditional Semantics

Truth-Conditional Semantics

- Linguistic expressions:
- "Bob sings"
- Logical translations:
- sings(bob)
- Could be p_1218(e_397)

- Denotation:
- [[bob]] = some specific person (in some context)
- [[sings(bob)]] = ???
- Types on translations:
- bob:e
(for entity)
- sings(bob): t
(for truth-value)

Truth-Conditional Semantics

- Proper names:
- Refer directly to some entity in the world
- Bob:bob [[bob]] ${ }^{\mathrm{W}} \rightarrow$???
- Sentences:
- Are either true or false (given how the world actually is)
- Bob sings : sings(bob)

- So what about verbs (and verb phrases)?
- sings must combine with bob to produce sings(bob)
- The λ-calculus is a notation for functions whose arguments are not yet filled.
- sings : λx.sings (x)
- This is a predicate - a function which takes an entity (type e) and produces a truth value (type t). We can write its type as $\mathrm{e} \rightarrow \mathrm{t}$.
- Adjectives?

Compositional Semantics

- So now we have meanings for the words
- How do we know how to combine words?
- Associate a combination rule with each grammar rule:
- $S: \beta(\alpha) \rightarrow N P: \alpha$ VP: β (function application)
- VP: $\lambda x \cdot \alpha(x) \wedge \beta(x) \rightarrow V P: \alpha$ and $: \varnothing V P: \beta$ (intersection)
- Example:

Denotation

- What do we do with logical translations?
- Translation language (logical form) has fewer ambiguities
- Can check truth value against a database
- Denotation ("evaluation") calculated using the database
- Or the opposite: assert truth and modify a database, either explicitly or implicitly eg prove a consequence from asserted axioms
- Questions: check whether a statement in a corpus entails the (question, answer) pair:
- "Bob sings and dances" \rightarrow "Who sings?" + "Bob"
- Chain together facts and use them for comprehension

Other Cases

- Transitive verbs:
- likes: $\lambda x . \lambda y . l i k e s(y, x)$
- Two-place predicates of type $\mathrm{e} \rightarrow(\mathrm{e} \rightarrow \mathrm{t})$.
- likes Amy : λy.likes(y, Amy) is just like a one-place predicate.
- Quantifiers:
- What does "Everyone" mean here?
- Everyone : $\lambda \mathrm{f} . \forall \mathrm{x} . \mathrm{f}(\mathrm{x})$
- Mostly works, but some problems
- Have to change our NP/VP rule.
- Won't work for "Amy likes everyone."
- "Everyone likes someone."
- This gets tricky quickly!

Indefinites

- First try
- "Bob ate a waffle" : ate(bob,waffle)
- "Amy ate a waffle" : ate(amy,waffle)
- Can't be right!
- $\exists \mathrm{x}$: waffle(x) \wedge ate(bob,x)
- What does the translation of "a" have to be?
- What about "the"?
- What about "every"?

Grounding

- Grounding
- So why does the translation likes : $\lambda x . \lambda y$.likes (y, x) have anything to do with actual liking?
- It doesn't (unless the denotation model says so)
- Sometimes that's enough: wire up bought to the appropriate entry in a database
- Meaning postulates
- Insist, e.g $\forall x, y$.likes $(y, x) \rightarrow$ knows (y, x)
- This gets into lexical semantics issues
- Statistical / neural version?

Tense and Events

- In general, you don't get far with verbs as predicates
- Better to have event variables e
- "Alice danced" : danced(alice)
- $\exists \mathrm{e}$: dance(e) \wedge agent(e,alice) \wedge (time(e) <now)
- Event variables let you talk about non-trivial tense / aspect structures
- "Alice had been dancing when Bob sneezed"
- $\exists \mathrm{e}, \mathrm{e}^{\prime}:$ dance(e) \wedge agent(e,alice) \wedge
sneeze(e') ^ agent(e^{\prime}, bob $) ~ \wedge$
(start(e) < start(e') \wedge end $\left.(e)=e n d\left(e^{\prime}\right)\right) \wedge$
(time(e') < now)
- Minimal recursion semantics, cf "object oriented" thinking

Adverbs

- What about adverbs?
- "Bob sings terribly"
- terribly(sings(bob))?
- (terribly(sings))(bob)?
- $\exists \mathrm{e}$ present(e) \wedge type(e, singing) \wedge agent(e,bob) \wedge manner(e, terrible) ?

- Gets complex quickly...

Propositional Attitudes

" "Bob thinks that I am a gummi bear"

- thinks(bob, gummi(me)) ?
- thinks(bob, "I am a gummi bear") ?
- thinks(bob, ^gummi(me)) ?
- Usual solution involves intensions (^X) which are, roughly, the set of possible worlds (or conditions) in which X is true
- Hard to deal with computationally
- Modeling other agents' models, etc
- Can come up in even simple dialog scenarios, e.g., if you want to talk about what your bill claims you bought vs. what you actually bought

Trickier Stuff

- Non-Intersective Adjectives
- green ball : λx.[green $(x) \wedge$ ball $(x)]$
- fake diamond : λx.[fake $(x) \wedge$ diamond $(x)]$? $\longrightarrow \lambda x .[$ fake $(\operatorname{diamond}(x))$
- Generalized Quantifiers
- the : $\lambda \mathrm{f}$.[unique-member(f)]
- all : $\lambda \mathrm{f} . \lambda \mathrm{g}[\forall \mathrm{x} . \mathrm{f}(\mathrm{x}) \rightarrow \mathrm{g}(\mathrm{x})]$
- most?
- Could do with more general second order predicates, too (why worse?)
- the(cat, meows), all(cat, meows)
- Generics
- "Cats like naps"
- "The players scored a goal"
- Pronouns (and bound anaphora)
- "If you have a dime, put it in the meter."
- ... the list goes on and on!

Scope Ambiguities

- Quantifier scope
- "All majors take a data science class"
- "Someone took each of the electives"
- "Everyone didn't hand in their exam"
- Deciding between readings
- Multiple ways to work this out
- Make it syntactic (movement)
- Make it lexical (type-shifting)

Classic Implementation, TAG, Idioms

- Add a "sem" feature to each context-free rule
- $\mathrm{S} \rightarrow$ NP loves NP
- S[sem=loves $(x, y)] \rightarrow$ NP[sem=x] loves NP[sem=y]
- Meaning of S depends on meaning of NPs
- TAG version:

- Template filling: $\mathrm{S}[$ sem=showflights(x, y)] \rightarrow

I want a flight from NP[sem=x] to NP[sem=y]

Logical Form Translation

Mapping to LF: Zettlemoyer \& Collins 05/07

The task:
Input: List one way flights to Prague.
Output: $\lambda x . f l i g h t(x) \wedge$ one_way $(x) \wedge$ to $(x, P R G)$

Challenging learning problem:

- Derivations (or parses) are not annotated
- Approach: [Zettlemoyer \& Collins 2005]
- Learn a lexicon and parameters for a weighted Combinatory Categorial Grammar (CCG)

Background

- Combinatory Categorial Grammar (CCG)
- Weighted CCGs
- Learning lexical entries: GENLEX

CCG Parsing

- Combinatory

Categorial Grammar

- Fully (mono-) lexicalized grammar
- Categories encode argument sequences
- Very closely related to the lambda calculus
- Can have spurious ambiguities (why?)

$$
\begin{aligned}
& \text { John } \vdash \mathrm{NP}: \text { john }^{\prime} \\
& \text { shares } \vdash \mathrm{NP}: \text { shares }^{\prime} \\
& \text { buys } \vdash(\mathrm{S} \backslash \mathrm{NP}) / \mathrm{NP}: \lambda x . \lambda y . \text { buys }^{\prime} x y \\
& \text { sleeps } \vdash \mathrm{S} \backslash \mathrm{NP}: \lambda x . \text { sleeps }^{\prime} x \\
& \text { well } \vdash(\mathrm{S} \backslash \mathrm{NP}) \backslash(\mathrm{S} \backslash \mathrm{NP}): \lambda f . \lambda x . \text { well }^{\prime}(f x)
\end{aligned}
$$

CCG Lexicon

Words	Category
flights	$\mathrm{N}: \lambda x . f l i g h t(x)$
to	$(N \backslash N) / N P: \lambda x . \lambda f . \lambda y \cdot f(x) \wedge$ to (y, x)
Prague	$N P: P R G$
New York city	NP $: N Y C$
\ldots	\ldots

Parsing Rules (Combinators)

Application

- X/Y : f
$Y: a \quad X \quad X(a)$
$X \backslash Y: f \quad=>\quad f(a)$

Composition

- X/Y : f Y/Z : g => X/Z : $\lambda x . f(g(x))$
- $Y \backslash Z: f \quad X \backslash Y$: $g \quad=>X \backslash Z: \lambda x(g(x))$

Additional rules:

- Type Raising
- Crossed Composition

CCG Parsing

Show me	flights	to	Prague
$\underset{\lambda f . f}{S / N}$	$\stackrel{N}{\mathbf{N}}$	$\begin{gathered} (\mathrm{N} \backslash \mathrm{~N}) / \mathrm{NP} \\ \lambda y \cdot \lambda f \cdot \lambda \mathrm{x} \cdot \mathrm{f}(y) \wedge t \circ(x, y) \end{gathered}$	$\begin{gathered} \mathrm{NP} \\ P R G \end{gathered}$
		$\begin{gathered} N \backslash N \\ \lambda f . \lambda x . f(x) \wedge t \circ(x, P R G) \end{gathered}$	
	$\frac{N}{N x . f l i g h t(x) \wedge t o(x, P R G)}$		

$\lambda x . f l i g h t(x) \wedge t o(x, P R G)$

Weighted CCG

Given a log-linear model with a CCG lexicon Λ, a feature vector f, and weights w.

- The best parse is:

$$
y^{*}=\underset{y}{\operatorname{argmax}} w \cdot f(x, y)
$$

Where we consider all possible parses y for the sentence x given the lexicon Λ.

Lexical Generation

Input Training Example

Sentence:	Show me flights to Prague.
Logic Form:	$\lambda x . f l i g h t(x) \wedge$ to $(x, P R G)$

Output Lexicon

Words	Category
Show me	$\mathrm{S} / \mathrm{N}: \lambda f . f$
flights	$\mathrm{N}: \lambda x \cdot f l i g h t(x)$
to	$(\mathrm{N} \backslash \mathrm{N}) / \mathrm{NP}: \lambda x . \lambda f \cdot \lambda y \cdot f(x) \wedge$ to (y, x)
Prague	$\mathrm{NP}: P R G$
\ldots	\ldots

GENLEX: Substrings X Categories

Sentence: Show me flights to Prague. Logic Form: $\lambda x . f l i g h t(x) \wedge$ to $(x, P R G)$	
All possible substrings:	Categories created by rules that trigger on the logical form:
Show	
me	NP : PRG
flights	$\mathrm{N}: \lambda x . f l i g h t(x)$
Show me	N : $\lambda x .10$ ight
Show me	
Show me flights	$(\mathbb{N} \backslash \mathrm{N}) / \mathrm{NP}$: $\lambda y . \lambda f . \lambda x . . .$.
Show me flights to	...

[Zettlemoyer \& Collins 2005]

Robustness

The lexical entries that work for:

Will not parse:

Boston	to	Prague	the latest	on
Friday				
\ldots	$\mathrm{N} \backslash \mathrm{N}$	NP / N	$\mathrm{N} \backslash \mathrm{N}$	
\ldots	\ldots	\ldots	\ldots	

Relaxed Parsing Rules

Two changes

- Add application and composition rules that relax word order
- Add type shifting rules to recover missing words

These rules significantly relax the grammar

- Introduce features to count the number of times each new rule is used in a parse

Review: Application

```
X/Y : f Y : a => X : f(a)
Y:a X\Y : f => X : f(a)
```


Disharmonic Application

- Reverse the direction of the principal category:

$X \backslash Y$:	Y	= $>$	X	f (a)
Y : a	X/Y	>	X	$\mathrm{f}(\mathrm{a})$

flights	one way
N	N/N
$\lambda \mathrm{x} . \mathrm{flight}(\mathrm{x})$	$\lambda f . \lambda x . f(x) \wedge$ one_way (x)
$\frac{\mathrm{N}}{\lambda \mathrm{x} . f l i g h t(x) \wedge \text { one_way }(x)}$	

Missing content words

Insert missing semantic content

- $N P: C=>N \backslash N: \lambda f . \lambda x . f(x) \wedge p(x, C)$

flights	Boston	to Prague
$\stackrel{N}{N} \stackrel{\text { flight }(x)}{ }$	$\begin{aligned} & \text { NP } \\ & B O S \end{aligned}$	$\begin{gathered} \mathrm{N} \backslash \mathrm{~N} \\ \lambda f . \lambda \mathrm{x} . \mathrm{f}(\mathrm{x}) \wedge \text { © }(\mathrm{x}, \mathrm{PRG}) \end{gathered}$
	$\begin{gathered} N \backslash N \\ \lambda f . \lambda x . f(x) \wedge \text { from }(x, B O S) \end{gathered}$	
$\lambda x . f l i g h t(x) \wedge{ }^{N} \wedge \text { from }(x, B O S)$		
$\lambda x . f l i g h t(x) \wedge f r o m(x, B O S) \wedge t o(x, P R G)$		

Missing content-free words

Bypass missing nouns

- $N \backslash N: f=>\quad N: f(\lambda x . t r u e)$

Northwest Air	to Prague
$\begin{gathered} \mathrm{N} / \mathrm{N} \\ \lambda \mathrm{f} . \lambda \mathrm{x} . \mathrm{f}(\mathrm{x}) \wedge \text { airline }(\mathrm{x}, \mathrm{NWA}) \end{gathered}$	$\begin{gathered} N \backslash N \\ \lambda f . \lambda x . f(x) \wedge t o(x, P R G) \end{gathered}$
	$\lambda \mathrm{x} \cdot \mathrm{to} \stackrel{\mathrm{~N}}{(\mathrm{x}, \mathrm{PRG})}$
$\lambda \mathrm{N} . \operatorname{\mathrm {N}} \mathrm{arline(x,NWA)} \wedge \text { to }(\mathrm{x}, \mathrm{PRG})$	

Inputs: Training set $\left\{\left(x_{i}, z_{i}\right) \mid i=1 \ldots n\right\}$ of sentences and logical forms. Initial lexicon Λ. Initial parameters w. Number of iterations T.

Training: For $t=1 \ldots T, i=1 \ldots n$:
Step 1: Check Correctness

- Let $y^{*}=\operatorname{argmax} w \cdot f\left(x_{i}, y\right)$
- If $L\left(y^{*}\right)=z_{i}$, go to the next example

Step 2: Lexical Generation

- Set $\lambda=\Lambda \cup \operatorname{GENLEX}\left(x_{i}, z_{i}\right)$
- Let $\hat{y}=\arg \max _{y \text { s.t. } L(y)=z_{i}} w \cdot f\left(x_{i}, y\right)$
- Define λ_{i} to be the lexical entries in y^{\wedge}
- Set lexicon to $\Lambda=\Lambda \cup \lambda_{i}$

Step 3: Update Parameters

- Let $y^{\prime}=\operatorname{argmax} w \cdot f\left(x_{i}, y\right)$
- If $L\left(y^{\prime}\right) \neq z_{i}$
- Set $w=w+f\left(x_{i}, \hat{y}\right)-f\left(x_{i}, y^{\prime}\right)$

Output: Lexicon Λ and parameters w.

Neural Encoder-Decoder Approaches

Encoder-Decoder Models

- Can view many tasks as mapping from an input sequence of tokens to an output sequence of tokens
- Semantic parsing:

What states border Texas $\longrightarrow \lambda \mathrm{x}$ state (x$) \wedge$ borders ($\mathrm{x}, \mathrm{e} 89$)

- Syntactic parsing

The dog ran $\longrightarrow(S(N P(D T$ the) (NN dog)) (VP (VBD ran)))
(but what if we produce an invalid tree or one with different words?)

- Machine translation, summarization, dialogue can all be viewed in this framework as well - our examples will be MT for now

Semantic Parsing as Translation

```
GEO
x: "what is the population of iowa ?"
y:_answer ( NV , (
    _population ( NV , V1 ) , _const (
    V0 , _stateid ( iowa ) ) ) )
ATIS
x: "can you list all flights from chicago to milwaukee"
y: ( _lambda $0 e ( _and
    ( _flight $0 )
    ( _from $0 chicago : _ci )
    ( _to $0 milwaukee : _ci ) ) )
Overnight
x: "when is the weekly standup"
y: ( call listValue ( call
    getProperty meeting.weekly_standup
    ( string start_time ) ) )
```

- Prolog
- Lambda calculus
- Other DSLs

Semantic Parsing as Seq2Seq

```
    "what states border Texas"
    \downarrow
lambda x ( state( x ) and border( x , e89 ) ) )
```

- Write down a linearized form of the semantic parse, train seq2seq models to directly translate into this representation
- What are some benefits of this approach compared to grammar-based?
- What might be some concerns about this approach? How do we mitigate them?

Jia and Liang (2016)

Problem: Lack of Inductive Bias

"what states border Texas" "what states border Ohio"

- Parsing-based approaches handle these the same way
- Possible divergences: features, different weights in the lexicon
- Can we get seq2seq semantic parsers to handle these the same way?
- Key idea: don't change the model, change the data
- "Data augmentation": encode invariances by automatically generating new training examples

Possible Solution：Data Augmentation

（＂what states border texas ？＂，

```
answer(NV, (state(VO), next_to(VO, NV), const(V0, stateid(texas)))))
```


Rules created by AbsEntities

ROOT \rightarrow 〈＂what states border StateId ？＂，
answer (NV, (state(VO), next_to(VO, NV), const(VO, stateid(STATEID))))
StateId \rightarrow 〈"texas", texas \rangle

STATEID $\rightarrow\langle " o h i o "$, ohio〉
－Lets us synthesize a＂what states border ohio ？＂example
＊Abstract out entities：now we can＂remix＂examples and encode invariance to entity ID．More complicated remixes too

Possible Solution: Copying

	GEO	ATIS
No Copying	74.6	69.9
With Copying	85.0	76.3

- For semantic parsing, copying tokens from the input (texas) can be very useful
- Copying typically helps a bit, but attention captures most of the benefit. However, vocabulary expansion is critical for some tasks (machine translation)

Jia and Liang (2016)

Mapping to Programs

```
show me the fare from ci0 to cil
lambda $0 e
    ( exists $1 ( and ( from $1 ci0 )
                            ( to $1 cil )
                            ( = ( fare $1 ) $0 ) ) )
```


name: [
'D', 'i', 'r', 'e', , '

cost: ['2']
type: ['Minion']
rarity: ['Common']
race: ['Beast']
class: ['Neutral']
description:
'Adjacent', 'minions', 'have',
' +', '1', 'Attack', '.']
health: ['2']
attack: ['2']
durability: ['-1']

```
class DireWolfAlpha(MinionCard):
    def
```

\qquad

``` _init
``` \(\qquad\)
``` (self):
super()
``` \(\qquad\)
``` init__(
                "Dire Wolf Alpha", 2, CHARACTER_CLASS.ALL,
                CARD_RARITY.COMMON, minion_type=MINION_TYPE.BEAST)
    def create_minion(self, player):
        return Minion(2, 2, auras=[
            Aura(ChangeAttack(1), MinionSelector(Adjacent()))
        ])
```

[Rabinovich, Stern, Klein, 2017]

Structured Models

- Meaning representations (e.g., Python) have strong underlying syntax
- How can we explicitly model the underlying syntax/grammar of the target meaning representations in the decoding process?

Next section includes slides from Yin / Neubig

Abstract Syntax Trees

Input Intent (x) sort my_list in descending order

Generated AST (\boldsymbol{y})

Surface Code (c) sorted(my_list, reverse=True)

AST-Structured Neural Modules

[Rabinovich, Stern, Klein, 2017]

AST-Structured Fragments

Example Results Across Tasks

ATIS		GEO		Jobs	
System	Accuracy	System	Accuracy	System	Accuracy
ZH15	84.2	ZH15	88.9	ZH15	85.0
ZC07	84.6	KCAZ13	89.0	PEK03	88.0
WKZ14	$\mathbf{9 1 . 3}$	WKZ14	$\mathbf{9 0 . 4}$	LJK13	90.7
DL16	84.6	DL16	87.1	DL16	90.0
ASN	85.3	ASN	85.7	ASN	$\mathbf{9 1 . 4}$
+ SupATT	85.9	+ SupATT	87.1	+ SuPATT	$\mathbf{9 2 . 9}$

[Rabinovich, Stern, Klein, 2017]

Copying / Pointer Networks

Intent join app_config.path and string 'locale' into a file path, substitute it for localedir.
Pred. localedir $=$ os.path.join(app_config.path, 'locale') \checkmark

Intent self.plural is an lambda function with an argument n, which returns result of boolean expression n not equal to integer 1

Pred. self.plural = lambda n : len(n) X
Ref. \quad self.plural $=$ lambda $n: \operatorname{int}(n!=1)$

```
Intent <name> Burly Rockjaw Trogg </name> <cost> 5 </cost> <attack> 3 </attack>
    <defense> 5</defense> <desc> Whenever your opponent casts a spell, gain 2 Attack.
    </desc> <rarity> Common </rarity> ...
Ref. class BurlyRockjawTrogg(MinionCard):
    def __init_(self):
        super().__init__('Burly Rockjaw Trogg', 4, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON)
    def createminion(self, player):
        return Minion(3, 5, effects=[Effect(SpellCast(player=EnemyPlayer()),
            ActionTag(Give(ChangeAttack(2)), SelfSelector()))]) /
```

