# Natural Language Processing



### **Compositional Semantics**

Dan Klein – UC Berkeley

**Truth-Conditional Semantics** 



# **Truth-Conditional Semantics**

#### Linguistic expressions:

- "Bob sings"
- Logical translations:
  - sings(bob)
  - Could be p\_1218(e\_397)



- [[bob]] = some specific person (in some context)
- [[sings(bob)]] = ???
- Types on translations:
  - bob : e (for entity)
  - sings(bob) : t (for truth-value)



# **Truth-Conditional Semantics**

- Proper names:
  - Refer directly to some entity in the world
  - Bob : bob  $[[bob]]^{W} \rightarrow ???$
- Sentences:
  - Are either true or false (given how the world actually is)
  - Bob sings : sings(bob)



- sings must combine with bob to produce sings(bob)
- The λ-calculus is a notation for functions whose arguments are not yet filled.
- sings : λx.sings(x)
- This is a *predicate* a function which takes an entity (type e) and produces a truth value (type t). We can write its type as e→t.
- Adjectives?





# **Compositional Semantics**

- So now we have meanings for the words
- How do we know how to combine words?
- Associate a combination rule with each grammar rule:
  - $S: \beta(\alpha) \rightarrow NP: \alpha \quad VP: \beta$  (function application)
  - VP :  $\lambda x . \alpha(x) \land \beta(x) \rightarrow VP : \alpha$  and :  $\emptyset$  VP :  $\beta$  (intersection)
- Example:



# Denotation

- What do we do with logical translations?
  - Translation language (logical form) has fewer ambiguities
  - Can check truth value against a database
    - Denotation ("evaluation") calculated using the database
  - Or the opposite: assert truth and modify a database, either explicitly or implicitly eg prove a consequence from asserted axioms
  - Questions: check whether a statement in a corpus entails the (question, answer) pair:
    - "Bob sings and dances" → "Who sings?" + "Bob"
  - Chain together facts and use them for comprehension

## **Other Cases**

#### Transitive verbs:

- likes : λx.λy.likes(y,x)
- Two-place predicates of type  $e \rightarrow (e \rightarrow t)$ .
- likes Amy : λy.likes(y,Amy) is just like a one-place predicate.
- Quantifiers:
  - What does "Everyone" mean here?
  - Everyone :  $\lambda f. \forall x. f(x)$
  - Mostly works, but some problems
    - Have to change our NP/VP rule.
    - Won't work for "Amy likes everyone."
  - "Everyone likes someone."
  - This gets tricky quickly!



# Indefinites

- First try
  - "Bob ate a waffle" : ate(bob,waffle)
  - "Amy ate a waffle" : ate(amy,waffle)
- Can't be right!
  - ∃ x : waffle(x) ∧ ate(bob,x)
  - What does the translation of "a" have to be?
  - What about "the"?
  - What about "every"?



# Grounding

#### Grounding

- So why does the translation likes : λx.λy.likes(y,x) have anything to do with actual liking?
- It doesn't (unless the denotation model says so)
- Sometimes that's enough: wire up bought to the appropriate entry in a database
- Meaning postulates
  - Insist, e.g  $\forall x, y. likes(y, x) \rightarrow knows(y, x)$
  - This gets into lexical semantics issues
- Statistical / neural version?

# **Tense and Events**

- In general, you don't get far with verbs as predicates
- Better to have event variables e
  - "Alice danced" : danced(alice)
  - ∃ e : dance(e) ∧ agent(e,alice) ∧ (time(e) < now)</p>
- Event variables let you talk about non-trivial tense / aspect structures
  - "Alice had been dancing when Bob sneezed"
  - ∃ e, e': dance(e) ∧ agent(e,alice) ∧ sneeze(e') ∧ agent(e',bob) ∧ (start(e) < start(e') ∧ end(e) = end(e')) ∧ (time(e') < now)</li>
- Minimal recursion semantics, cf "object oriented" thinking

# Adverbs

- What about adverbs?
  - "Bob sings terribly"
  - terribly(sings(bob))?
  - (terribly(sings))(bob)?
  - ∃e present(e) ∧ type(e, singing) ∧ agent(e,bob)
     ∧ manner(e, terrible) ?
  - Gets complex quickly...



# **Propositional Attitudes**

- "Bob thinks that I am a gummi bear"
  - thinks(bob, gummi(me)) ?
  - thinks(bob, "I am a gummi bear") ?
  - thinks(bob, ^gummi(me)) ?
- Usual solution involves intensions (<sup>X</sup>) which are, roughly, the set of possible worlds (or conditions) in which X is true
- Hard to deal with computationally
  - Modeling other agents' models, etc
  - Can come up in even simple dialog scenarios, e.g., if you want to talk about what your bill claims you bought vs. what you actually bought

# **Trickier Stuff**

- Non-Intersective Adjectives
  - green ball :  $\lambda x$ .[green(x)  $\wedge$  ball(x)]
  - fake diamond :  $\lambda x.[fake(x) \land diamond(x)]$ ?  $\lambda x.[fake(diamond(x))]$
  - Generalized Quantifiers
    - the : λf.[unique-member(f)]
    - all :  $\lambda f. \lambda g [\forall x.f(x) \rightarrow g(x)]$
    - most?
    - Could do with more general second order predicates, too (why worse?)
      - the(cat, meows), all(cat, meows)
- Generics

- "Cats like naps"
- "The players scored a goal"
- Pronouns (and bound anaphora)
  - "If you have a dime, put it in the meter."
- ... the list goes on and on!



# **Scope Ambiguities**

### Quantifier scope

- "All majors take a data science class"
- "Someone took each of the electives"
- "Everyone didn't hand in their exam"

### Deciding between readings

- Multiple ways to work this out
  - Make it syntactic (movement)
  - Make it lexical (type-shifting)

# Classic Implementation, TAG, Idioms

- Add a "sem" feature to each context-free rule
  - $S \rightarrow NP$  loves NP
  - S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]
  - Meaning of S depends on meaning of NPs



 Template filling: S[sem=showflights(x,y)] → I want a flight from NP[sem=x] to NP[sem=y]

# **Logical Form Translation**



Mapping to LF: Zettlemoyer & Collins 05/07

The task:

Input: List one way flights to Prague. Output:  $\lambda x.flight(x) \land one_way(x) \land to(x, PRG)$ 

Challenging learning problem:

- Derivations (or parses) are not annotated
- Approach: [Zettlemoyer & Collins 2005]
- Learn a lexicon and parameters for a weighted Combinatory Categorial Grammar (CCG)

[Slides from Luke Zettlemoyer]



- Combinatory Categorial Grammar (CCG)
- Weighted CCGs
- Learning lexical entries: GENLEX

### **CCG** Parsing

- Combinatory Categorial Grammar
  - Fully (mono-) lexicalized grammar
  - Categories encode argument sequences
  - Very closely related to the lambda calculus
  - Can have spurious ambiguities (why?)

 $John \vdash \mathsf{NP} : john'$   $shares \vdash \mathsf{NP} : shares'$   $buys \vdash (\mathsf{S}\backslash\mathsf{NP})/\mathsf{NP} : \lambda x.\lambda y.buys'xy$   $sleeps \vdash \mathsf{S}\backslash\mathsf{NP} : \lambda x.sleeps'x$   $well \vdash (\mathsf{S}\backslash\mathsf{NP})\backslash(\mathsf{S}\backslash\mathsf{NP}) : \lambda f.\lambda x.well'(fx)$ 



# CCG Lexicon

| Words         | Category                                                                          |
|---------------|-----------------------------------------------------------------------------------|
| flights       | N : $\lambda x.flight(x)$                                                         |
| to            | $(N \setminus N) / NP : \lambda x . \lambda f . \lambda y . f (x) \land to(y, x)$ |
| Prague        | NP : PRG                                                                          |
| New York city | NP : NYC                                                                          |
| •••           | •••                                                                               |



# Parsing Rules (Combinators)

#### Application

- X/Y : f Y : a => X : f(a)
- Y : a X\Y : f => X : f(a)

### Composition

- X/Y : f Y/Z : g => X/Z :  $\lambda x.f(g(x))$
- $Y \setminus Z$  : f  $X \setminus Y$  : g =>  $X \setminus Z$  :  $\lambda x \cdot f(g(x))$

### Additional rules:

- Type Raising
- Crossed Composition

# **CCG** Parsing

| Show me     | flights                         | to                                                                                      | Prague    |
|-------------|---------------------------------|-----------------------------------------------------------------------------------------|-----------|
| S/N<br>λf.f | $\frac{N}{\lambda x.flight(x)}$ | $\frac{(N \setminus N) / NP}{\lambda y . \lambda f . \lambda x . f(y) \wedge to(x, y)}$ | NP<br>PRG |
|             |                                 | $\frac{N N}{\lambda f. \lambda x. f(x) \wedge to(x)}$                                   | PRG)      |
|             |                                 | N<br>λx.flight(x)∧to(x,PRG)                                                             |           |
|             | λx.fl                           | S<br>ight(x)∧to(x,PRG)                                                                  |           |



# Weighted CCG

Given a log-linear model with a CCG lexicon  $\Lambda$ , a feature vector f, and weights w.

The best parse is:

$$y^* = \underset{y}{\operatorname{argmax}} w \cdot f(x, y)$$

Where we consider all possible parses y for the sentence x given the lexicon  $\Lambda$ .



### Lexical Generation

### Input Training Example

| Sentence:   | Show me          | flights | to | Prague.  |
|-------------|------------------|---------|----|----------|
| Logic Form: | $\lambda$ x.flig | ght(x)∧ | to | (x, PRG) |

### **Output Lexicon**

| Words   | Category                                                                                     |
|---------|----------------------------------------------------------------------------------------------|
| Show me | S/N : <i>lf.f</i>                                                                            |
| flights | N : $\lambda x.flight(x)$                                                                    |
| to      | $(N \setminus N) / NP : \lambda x \cdot \lambda f \cdot \lambda y \cdot f(x) \land to(y, x)$ |
| Prague  | NP : PRG                                                                                     |
|         |                                                                                              |



### **GENLEX:** Substrings X Categories

#### Input Training Example

| Sentence:<br>Logic Form:                  | Show me flights to Prague.<br>$\lambda x.flight(x) \wedge to(x, PRG)$ |                                                                                                                             |  |  |  |  |
|-------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                           | Output L                                                              | exicon                                                                                                                      |  |  |  |  |
| All possible subst                        | rings:                                                                | Categories created by rules that trigger on the logical form:                                                               |  |  |  |  |
| me<br>flights                             | V                                                                     | NP : PRG                                                                                                                    |  |  |  |  |
| <br>Show me<br>Show me fli<br>Show me fli | ights<br>ights to                                                     | $N : \lambda x.flight(x)$ $(S \ NP) / NP : \lambda x. \lambda y. to(y, x)$ $(N \ N) / NP : \lambda y. \lambda f. \lambda x$ |  |  |  |  |
| •••                                       | -                                                                     | •••                                                                                                                         |  |  |  |  |

[Zettlemoyer & Collins 2005]



### Robustness

### The lexical entries that work for:

| Show me  | e the | latest | flight | from | Boston | to | Prague  | on | Friday  |
|----------|-------|--------|--------|------|--------|----|---------|----|---------|
| S/NP<br> | 1     | NP/N   | N<br>  | 1    | 1/N    |    | N\N<br> |    | N∖N<br> |

### Will not parse:

| Boston | to | Prague | the | latest | on | Friday |
|--------|----|--------|-----|--------|----|--------|
| NP     |    | N\N    |     | NP/N   |    | N/N    |
| •••    |    | •••    |     | •••    |    | •••    |



## **Relaxed Parsing Rules**

#### Two changes

- Add application and composition rules that relax word order
- Add type shifting rules to recover missing words

### These rules significantly relax the grammar

 Introduce features to count the number of times each new rule is used in a parse



# **Review: Application**

| X/ | Ϋ́Υ | : | f | Y   | : | а | => | Х | : | f(a) |
|----|-----|---|---|-----|---|---|----|---|---|------|
| Y  | :   | а |   | Х\Ү | : | f | => | Х | : | f(a) |



# **Disharmonic Application**

### Reverse the direction of the principal category:

| ХЛ | Y | : | f | Y   | : | а | => | Х | : | f(a) |
|----|---|---|---|-----|---|---|----|---|---|------|
| Y  | : | а |   | X/Y | : | f | => | Х | : | f(a) |

| flights           | one way                      |
|-------------------|------------------------------|
| N<br>λx.flight(x) | N/N<br>λf.λx.f(x)∧one_way(x) |
|                   |                              |

N  $\lambda x.flight(x) \land one_way(x)$ 



### Missing content words

### Insert missing semantic content

• NP : c => N\N :  $\lambda f \cdot \lambda x \cdot f(x) \wedge p(x,c)$ 

| flights           | Boston                                                              | to Prague                                         |
|-------------------|---------------------------------------------------------------------|---------------------------------------------------|
| N<br>λx.flight(x) | NP<br>BOS                                                           | $N \ \lambda f. \lambda x. f(x) \land to(x, PRG)$ |
|                   | $N \setminus N$<br>$\lambda f. \lambda x. f(x) \wedge from(x, BOS)$ |                                                   |
| λ <b>x</b> .flig  | N<br>ht(x)∧from(x,BOS)                                              |                                                   |
|                   | N                                                                   |                                                   |

 $\lambda x.flight(x) \land from(x, BOS) \land to(x, PRG)$ 



### Missing content-free words

### Bypass missing nouns

•  $N \setminus N$  : f => N : f( $\lambda x$ .true)

Northwest Air

to Prague

N/N $\lambda f. \lambda x. f(x) \land airline(x, NWA)$   $\frac{N N}{\lambda f. \lambda x. f(x) \wedge to(x, PRG)}$ 

 $\frac{N}{\lambda x. to(x, PRG)}$ 

N  $\lambda x.airline(x, NWA) \land to(x, PRG)$ 

Inputs: Training set  $\{(x_i, z_i) \mid i=1...n\}$  of sentences and logical forms. Initial lexicon  $\Lambda$ . Initial parameters *w*. Number of iterations *T*.

Training: For  $t = 1 \dots T$ ,  $i = 1 \dots n$ :

Step 1: Check Correctness

- Let  $y^* = \operatorname{argmax}_{v} w \cdot f(x_i, y)$
- If  $L(y^*) = z_i$ , go to the next example
- Step 2: Lexical Generation
  - Set  $\lambda = \Lambda \cup \text{GENLEX}(x_i, z_i)$
  - Let  $\hat{y} = \arg \max_{y \text{ s.t. } L(y)=z_i} w \cdot f(x_i, y)$
  - Define  $\lambda_i$  to be the lexical entries in  $y^{\wedge}$
  - Set lexicon to  $\Lambda = \Lambda \cup \lambda_i$

Step 3: Update Parameters

- Let  $y' = \operatorname{argmax} w \cdot f(x_i, y)$
- If  $L(y') \neq z_i$ 
  - Set  $w = w + f(x_i, \hat{y}) f(x_i, y')$

**Output:** Lexicon  $\Lambda$  and parameters w.

Neural Encoder-Decoder Approaches



# **Encoder-Decoder Models**

- Can view many tasks as mapping from an input sequence of tokens to an output sequence of tokens
- Semantic parsing:

What states border Texas  $\longrightarrow \lambda \times \text{state(} \times \text{)} \wedge \text{borders(} \times \text{, e89)}$ 

Syntactic parsing

The dog ran  $\longrightarrow$  (S (NP (DT the) (NN dog) ) (VP (VBD ran) ) )

(but what if we produce an invalid tree or one with different words?) 🤔

Machine translation, summarization, dialogue can all be viewed in this framework as well — our examples will be MT for now

Next slides from Greg Durrett

# Semantic Parsing as Translation

#### Geo

```
x: "what is the population of iowa ?"
y: _answer ( NV , (
   _population ( NV , V1 ) , _const (
        V0 , _stateid ( iowa ) ) ))
```

#### ATIS

```
x: "can you list all flights from chicago to milwaukee"
y: ( _lambda $0 e ( _and
  ( _flight $0 )
  ( _from $0 chicago : _ci )
   ( _to $0 milwaukee : _ci ) ) )
Overnight
x: "when is the weekly standup"
y: ( call listValue ( call
```

( string start\_time ) ) )

getProperty meeting.weekly\_standup

Prolog

### Lambda calculus

### Other DSLs



# Semantic Parsing as Seq2Seq

```
"what states border Texas"
↓
lambda x ( state( x ) and border( x , e89 ) ) )
```

- Write down a linearized form of the semantic parse, train seq2seq models to directly translate into this representation
- What are some benefits of this approach compared to grammar-based?
- What might be some concerns about this approach? How do we mitigate them?

Jia and Liang (2016)

# Problem: Lack of Inductive Bias

"what states border Texas"

"what states border Ohio"

- Parsing-based approaches handle these the same way
  - Possible divergences: features, different weights in the lexicon
- Can we get seq2seq semantic parsers to handle these the same way?
- Key idea: don't change the model, change the data
- "Data augmentation": encode invariances by automatically generating new training examples

# **Possible Solution: Data Augmentation**

#### Examples Jia and Liang (2016) ("what states border texas ?", answer(NV, (state(V0), next\_to(V0, NV), const(V0, stateid(texas))))) Rules created by ABSENTITIES ROOT $\rightarrow$ ("what states border STATEID ?", answer(NV, (state(V0), next\_to(V0, NV), const(V0, stateid(STATEID))))) STATEID $\rightarrow$ ("texas", texas ) STATEID $\rightarrow$ ("ohio", ohio)

- Lets us synthesize a "what states border ohio ?" example
- Abstract out entities: now we can "remix" examples and encode invariance to entity ID. More complicated remixes too



# **Possible Solution: Copying**

|              | Geo  | ATIS |
|--------------|------|------|
| No Copying   | 74.6 | 69.9 |
| With Copying | 85.0 | 76.3 |

- For semantic parsing, copying tokens from the input (*texas*) can be very useful
- Copying typically helps a bit, but attention captures most of the benefit. However, vocabulary expansion is critical for some tasks (machine translation)

Jia and Liang (2016)



### Mapping to Programs

show me the fare from ci0 to ci1



[Rabinovich, Stern, Klein, 2017]



# **Structured Models**

- Meaning representations (e.g., Python) have strong underlying syntax
- How can we **explicitly** model the underlying syntax/grammar of the target meaning representations in the decoding process?



Next section includes slides from Yin / Neubig



# **AST-Structured Neural Modules**



<sup>[</sup>Rabinovich, Stern, Klein, 2017]

# **AST-Structured Fragments**



"Adjacent"

# Example Results Across Tasks

| ATIS     |          | Geo      |          | JOBS     |          |
|----------|----------|----------|----------|----------|----------|
| System   | Accuracy | System   | Accuracy | System   | Accuracy |
| ZH15     | 84.2     | ZH15     | 88.9     | ZH15     | 85.0     |
| ZC07     | 84.6     | KCAZ13   | 89.0     | PEK03    | 88.0     |
| WKZ14    | 91.3     | WKZ14    | 90.4     | LJK13    | 90.7     |
| DL16     | 84.6     | DL16     | 87.1     | DL16     | 90.0     |
| ASN      | 85.3     | ASN      | 85.7     | ASN      | 91.4     |
| + SUPATT | 85.9     | + SUPATT | 87.1     | + SUPATT | 92.9     |

[Rabinovich, Stern, Klein, 2017]

# Copying / Pointer Networks

**Intent** *join app\_config.path and string 'locale' into a file path, substitute it for localedir.* 

Pred. localedir = os.path.join(app\_config.path, 'locale')

- **Intent** *self.plural is an lambda function with an argument n, which returns result of boolean expression n not equal to integer 1*
- Pred. self.plural = lambda n: len(n) X
- Ref. self.plural = lambda n: int(n!=1)
- Intent <name> Burly Rockjaw Trogg </name> <cost> 5 </cost> <attack> 3 </attack> <defense> 5 </defense> <desc> Whenever your opponent casts a spell, gain 2 Attack. </desc> <rarity> Common </rarity> ...