
Natural Language Processing

Compositional Semantics
Dan Klein – UC Berkeley

Truth-Conditional Semantics

Truth-Conditional Semantics

§ Linguistic expressions:
§ “Bob sings”

§ Logical translations:
§ sings(bob)
§ Could be p_1218(e_397)

§ Denotation:
§ [[bob]] = some specific person (in some context)
§ [[sings(bob)]] = ???

§ Types on translations:
§ bob : e (for entity)
§ sings(bob) : t (for truth-value)

S

NP

Bob

VP

sings

sings(bob)

Truth-Conditional Semantics

§ Proper names:
§ Refer directly to some entity in the world

§ Bob : bob [[bob]]W à ???

§ Sentences:
§ Are either true or false (given

how the world actually is)

§ Bob sings : sings(bob)

§ So what about verbs (and verb phrases)?
§ sings must combine with bob to produce sings(bob)

§ The l-calculus is a notation for functions whose arguments are not yet filled.

§ sings : lx.sings(x)

§ This is a predicate – a function which takes an entity (type e) and produces a truth value (type t).
We can write its type as e®t.

§ Adjectives?

S

NP

Bob
bob

VP

sings
ly.sings(y)

sings(bob)

Compositional Semantics
§ So now we have meanings for the words
§ How do we know how to combine words?
§ Associate a combination rule with each grammar rule:

§ S : b(a) ® NP : a VP : b (function application)
§ VP : lx . a(x) Ù b(x) ® VP : a and : Æ VP : b (intersection)

§ Example:

S

NP VP

Bob VP and

sings

VP

dances
bob

ly.sings(y) lz.dances(z)

lx.sings(x) Ù dances(x)

[lx.sings(x) Ù dances(x)](bob)

sings(bob) Ù dances(bob)

Denotation

§ What do we do with logical translations?
§ Translation language (logical form) has fewer ambiguities

§ Can check truth value against a database
§ Denotation (“evaluation”) calculated using the database

§ Or the opposite: assert truth and modify a database, either explicitly or implicitly
eg prove a consequence from asserted axioms

§ Questions: check whether a statement in a corpus entails the (question, answer)
pair:
§ “Bob sings and dances” ® “Who sings?” + “Bob”

§ Chain together facts and use them for comprehension

Other Cases

§ Transitive verbs:
§ likes : lx.ly.likes(y,x)
§ Two-place predicates of type e®(e®t).
§ likes Amy : ly.likes(y,Amy) is just like a one-place predicate.

§ Quantifiers:
§ What does “Everyone” mean here?
§ Everyone : lf."x.f(x)
§ Mostly works, but some problems

§ Have to change our NP/VP rule.
§ Won’t work for “Amy likes everyone.”

§ “Everyone likes someone.”
§ This gets tricky quickly!

S

NP VP

Everyone VBP NP

Amylikes
lx.ly.likes(y,x)

ly.likes(y,amy)

amy

lf."x.f(x)

[lf."x.f(x)](ly.likes(y,amy))

"x.likes(x,amy)

Indefinites
§ First try

§ “Bob ate a waffle” : ate(bob,waffle)
§ “Amy ate a waffle” : ate(amy,waffle)

§ Can’t be right!
§ $ x : waffle(x) Ù ate(bob,x)
§ What does the translation

of “a” have to be?
§ What about “the”?
§ What about “every”?

S

NP VP

Bob VBD NP

a waffleate

Grounding

§ Grounding
§ So why does the translation likes : lx.ly.likes(y,x) have anything to do

with actual liking?
§ It doesn’t (unless the denotation model says so)
§ Sometimes that’s enough: wire up bought to the appropriate entry in

a database

§ Meaning postulates
§ Insist, e.g "x,y.likes(y,x) ® knows(y,x)
§ This gets into lexical semantics issues

§ Statistical / neural version?

Tense and Events

§ In general, you don’t get far with verbs as predicates

§ Better to have event variables e
§ “Alice danced” : danced(alice)

§ $ e : dance(e) Ù agent(e,alice) Ù (time(e) < now)

§ Event variables let you talk about non-trivial tense / aspect structures
§ “Alice had been dancing when Bob sneezed”

§ $ e, e’ : dance(e) Ù agent(e,alice) Ù
sneeze(e’) Ù agent(e’,bob) Ù
(start(e) < start(e’) Ù end(e) = end(e’)) Ù
(time(e’) < now)

§ Minimal recursion semantics, cf “object oriented” thinking

Adverbs
§ What about adverbs?

§ “Bob sings terribly”
§ terribly(sings(bob))?
§ (terribly(sings))(bob)?
§ $e present(e) Ù type(e,

singing) Ù agent(e,bob)
Ù manner(e, terrible) ?

§ Gets complex quickly…

S

NP VP

Bob VBP ADVP

terriblysings

Propositional Attitudes
§ “Bob thinks that I am a gummi bear”

§ thinks(bob, gummi(me)) ?
§ thinks(bob, “I am a gummi bear”) ?
§ thinks(bob, ^gummi(me)) ?

§ Usual solution involves intensions (^X) which are, roughly, the set of possible worlds
(or conditions) in which X is true

§ Hard to deal with computationally
§ Modeling other agents’ models, etc
§ Can come up in even simple dialog scenarios, e.g., if you want to talk about what your bill claims

you bought vs. what you actually bought

Trickier Stuff

§ Non-Intersective Adjectives

§ green ball : lx.[green(x) Ù ball(x)]

§ fake diamond : lx.[fake(x) Ù diamond(x)] ?

§ Generalized Quantifiers

§ the : lf.[unique-member(f)]
§ all : lf. lg ["x.f(x) ® g(x)]

§ most?

§ Could do with more general second order predicates, too (why worse?)

§ the(cat, meows), all(cat, meows)

§ Generics

§ “Cats like naps”

§ “The players scored a goal”

§ Pronouns (and bound anaphora)

§ “If you have a dime, put it in the meter.”

§ … the list goes on and on!

lx.[fake(diamond(x))

Scope Ambiguities
§ Quantifier scope

§ “All majors take a data science class”
§ “Someone took each of the electives”
§ “Everyone didn’t hand in their exam”

§ Deciding between readings
§ Multiple ways to work this out

§ Make it syntactic (movement)
§ Make it lexical (type-shifting)

§ Add a “sem” feature to each context-free rule
§ S ® NP loves NP

§ S[sem=loves(x,y)] ® NP[sem=x] loves NP[sem=y]

§ Meaning of S depends on meaning of NPs

§ TAG version:

Classic Implementation, TAG, Idioms

NPV
loves

VP

S

NPx
y

loves(x,y)

NP
the bucket

V
kicked

VP

S

NPx

died(x)

§ Template filling: S[sem=showflights(x,y)] ®
I want a flight from NP[sem=x] to NP[sem=y]

Logical Form Translation

Mapping to LF: Zettlemoyer & Collins 05/07

The task:
Input: List one way flights to Prague.

Output: lx.flight(x)Ù one_way(x)Ù to(x,PRG)

Challenging learning problem:
§ Derivations (or parses) are not annotated
§ Approach: [Zettlemoyer & Collins 2005]
§ Learn a lexicon and parameters for a weighted Combinatory

Categorial Grammar (CCG)

[Slides from Luke Zettlemoyer]

Background

§ Combinatory Categorial Grammar (CCG)

§ Weighted CCGs

§ Learning lexical entries: GENLEX

CCG Parsing

§ Combinatory
Categorial Grammar
§ Fully (mono-)

lexicalized grammar
§ Categories encode

argument sequences
§ Very closely related

to the lambda
calculus

§ Can have spurious
ambiguities (why?)

CCG Lexicon

Words Category

flights N : lx.flight(x)

to (N\N)/NP : lx.lf.ly.f(x) Ù to(y,x)

Prague NP : PRG

New York city NP : NYC

… …

Parsing Rules (Combinators)

Application
§ X/Y : f Y : a => X : f(a)
§ Y : a X\Y : f => X : f(a)

Composition
§ X/Y : f Y/Z : g => X/Z : lx.f(g(x))
§ Y\Z : f X\Y : g => X\Z : lx.f(g(x))

Additional rules:
§ Type Raising
§ Crossed Composition

CCG Parsing

to Pragueflights

N\N
lf.lx.f(x)Ùto(x,PRG)

N
lx.flight(x)Ùto(x,PRG)

Show me

N
lx.flight(x)

(N\N)/NP
ly.lf.lx.f(y)Ùto(x,y)

NP
PRG

S/N
lf.f

S
lx.flight(x)Ùto(x,PRG)

Weighted CCG

Given a log-linear model with a CCG lexicon L, a
feature vector f, and weights w.
§ The best parse is:

Where we consider all possible parses y for
the sentence x given the lexicon L.

y*= argmax
y
w × f (x,y)

Lexical Generation

Words Category

Show me S/N : lf.f

flights N : lx.flight(x)

to (N\N)/NP : lx.lf.ly.f(x) Ù to(y,x)

Prague NP : PRG

... ...

Output Lexicon

Input Training Example
Sentence: Show me flights to Prague.
Logic Form: lx.flight(x)Ù to(x,PRG)

GENLEX: Substrings X Categories

All possible substrings:
Show
me
flights …
Show me
Show me flights
Show me flights to…

Categories created by rules that
trigger on the logical form:

NP : PRG

N : lx.flight(x)

(S\NP)/NP : lx.ly.to(y,x)

(N\N)/NP : ly.lf.lx. …
…

X

Input Training Example

Sentence: Show me flights to Prague.
Logic Form: lx.flight(x)Ù to(x,PRG)

Output Lexicon

[Zettlemoyer & Collins 2005]

Robustness

The lexical entries that work for:

Show me the latest flight from Boston to Prague on Friday

S/NP NP/N N N\N N\N N\N… … … … … …

Will not parse:
Boston to Prague the latest on Friday

NP N\N NP/N N\N
… … … …

Relaxed Parsing Rules

Two changes
§ Add application and composition rules that relax word order
§ Add type shifting rules to recover missing words

These rules significantly relax the grammar
§ Introduce features to count the number of times each new rule is

used in a parse

Review: Application

X/Y : f Y : a => X : f(a)
Y : a X\Y : f => X : f(a)

Disharmonic Application

§ Reverse the direction of the principal category:
X\Y : f Y : a => X : f(a)
Y : a X/Y : f => X : f(a)

N
lx.flight(x)

N/N
lf.lx.f(x)Ùone_way(x)

flights one way

N
lx.flight(x)Ùone_way(x)

Missing content words

Insert missing semantic content
§ NP : c => N\N : lf.lx.f(x) Ù p(x,c)

N
lx.flight(x)

N\N
lf.lx.f(x)Ùto(x,PRG)

flights to Prague

NP
BOS

Boston

N\N
lf.lx.f(x)Ùfrom(x,BOS)

N
lx.flight(x)Ùfrom(x,BOS)

N
lx.flight(x)Ùfrom(x,BOS)Ùto(x,PRG)

Missing content-free words

Bypass missing nouns
§ N\N : f => N : f(lx.true)

N/N
lf.lx.f(x)Ùairline(x,NWA)

N\N
lf.lx.f(x)Ùto(x,PRG)

Northwest Air to Prague

N
lx.to(x,PRG)

N
lx.airline(x,NWA) Ù to(x,PRG)

Inputs: Training set {(xi, zi) | i=1…n} of sentences and logical forms. Initial
lexicon L. Initial parameters w. Number of iterations T.

Training: For t = 1…T, i =1…n:
Step 1: Check Correctness

• Let
• If L(y*) = zi, go to the next example

Step 2: Lexical Generation
• Set
• Let
• Define li to be the lexical entries in y^

• Set lexicon to L = L È li

Step 3: Update Parameters
• Let
• If

• Set
Output: Lexicon L and parameters w.

y*= argmax
y
w × f (xi,y)



l = L  GENLEX(xi,zi)

ˆ y = arg max
y s.t. L(y)= zi

w × f (xi,y)

¢ y = argmax
y

w × f (xi,y)

L(¢ y) ¹ zi

w = w + f (xi, ˆ y)- f (xi, ¢ y)

Neural Encoder-Decoder
Approaches

Encoder-Decoder Models

Next slides from Greg Durrett

Semantic Parsing as Translation

Semantic Parsing as Seq2Seq

Problem: Lack of Inductive Bias

Possible Solution: Data Augmentation

Possible Solution: Copying

Mapping to Programs

[Rabinovich, Stern, Klein, 2017]

Structured Models

Next section includes slides from Yin / Neubig

Abstract Syntax Trees

AST-Structured Neural Modules

[Rabinovich, Stern, Klein, 2017]

AST-Structured Fragments

Example Results Across Tasks

[Rabinovich, Stern, Klein, 2017]

Copying / Pointer Networks

