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Announcements

Spring Break Next Week
Panels Week After Spring Break

HW4 Bug
HWS5 Testing

Today
= What to scale?
= How to scale?

Scaling With Fixed Compute

ed 5288 -Ed Discussion

hahhah
I made the network with 4096 hidden units. It finally achieved 66% accuracy!

1 guess brute force really works.

Scaling With Fixed Compute

Model Size (# Parameters) Training Tokens
LaMDA (Thoppilan et al., 2022) 137 Billion 168 Billion
GPT-3 (Brown et al., 2020) 175 Billion 300 Billion
Jurassic (Lieber et al., 2021) 178 Billion 300 Billion
Gopher (Rae et al., 2021) 280 Billion 300 Billion
MT-NLG 530B (Smith et al., 2022) 530 Billion 270 Billion
Chinchilla 70 Billion 1.4 Trillion

Fixed Compute

= Scaling Laws for Neural Language Models (Kaplan et al., 2020)

© N - the number of model parameters, excluding all vocabulary and positional embeddings

e C ~ 6NBS - an estimate of the total non-embedding training compute, where B is the batch size,
and S is the number of training steps (ie parameter updates). We quote numerical values in PF-days,
where one PF-day = 10'% x 24 x 3600 = 8.64 x 10'° floating point operations.




Scaling “Laws”

= N number of parameters
= D size of dataset
= Camount of compute

L=(D/5.4-101)00%

L= (N/B.8:10)0076

Model Shape

= Strong dependence on scale, weak dependence on shape

Data Size and Overfitting
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Chinchilla Scaling

Fix Model Size, Vary Tokens

IsoFLOPs

Parameters

—— Approach 1
—— Approach 2
—— Approach 3
-~ Kaplan et al (2020)
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BIG-bench

BIG-bench

Which step is likely to help achieve the goal “prevent coronavirus'
A. wash your hands B. wash your cat C. clap your hands D. eat your protein

Which is the most likely goal of “choose a color of lipstick™?
A. get pink lips B. read one’s lips C. lip sync D. draw lips

In order to “clean silver," which step should be done first?
A. dry the silver B. handwash the silver

Task: goal_step_wikihow

1.When Max was applying for a new job after he got fired, he wrote his resume and cover letters so creatively that he
got offered a copywriter job. Which of the following proverbs best apply to this situation?,

2.Where there is a will, there is a way.
3.Where one door shuts, another opens
4.You can catch more flies with honey than with vinegar

Task: English_proverbs




BIG-bench

Tum right. Take 1 step. Tum right. Take 6 steps. Tumn right. Take 1 step. Tumn right. Take 2 steps. Take 4
steps.

“Emergence”

Model Scale

BIG-bench

Figure 7 | BIG-bench results compared to Gopher Chinchilla out performs Gopher on all but four
BIG-bench tasks considered. Full results are in Table A

Are you back at the start?
Task: navigate
Are We Optimal?
e O 1 Racr- a8

Source: Susan Zhang

Systems

= Parallelism
* Data
* Model
= Tensor
= Memory Optimization

Data Parallel

= Bulk synchronous parallel: sync at end of every minibatch
= Pros: higher learning efficiency
= Cons: wait for all machines
= Asynchronous parallel: apply updates when ready
= Pros: No wait
= Cons: lower learning efficiency




Model Parallel

Pipeline Parallel

= GPipe (Huang et al., 2019)
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Pipeline Parallel

= GPipe (Huang et al., 2019)
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= Pipedream (Narayanan et al., 2019)
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Figure 9: Weight stashing as minibatch 5 flows across stages.
Arrows point to weight versions used for forward and back-
ward passes for minibatch 5 at the first and third stages.
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Figure 6: PipeDream’s automated mechanism to partition
DNN layers into stages. PipeDream first profiles the input
DNN, '

put size. Using these estimates, PipeDream’s optimizer par-
ttions layers across available machines, which is then exe-
cuted by PipeDream’s runtime.




Pipeline Parallel

Pipeline Parallel

Tensor Parallel

= Megatron-LM (Shoeybi et al., 2020)

4 Bt

A=[Ay, 4] FAY B- [g;] }

(a) MLP
Split A = [A;, A2]
Y = GeLU(XA)

[¥1,Ys] = [GeLU(XA,), GeLU(X 4,)]

Tensor Parallel

¥ = Salf Attention(X)

K= Ky K
V= Vi

i B,
- B= [ ]
{,/ @.0. B

(b) Self-Attention

X
Attention(X, Q, K, V) = softmax(

Putting It Together

= PTD-P (Narayanan et al., 2021)

Where did the memory go?

= GPT-2 (1.5B) 3GB weight
= Model states: momentum and variance in Adam, gradients,
parameters

= Residual states: activation, temporary buffer, unusable
fragmented memory




Model States

Example. Transformer architecture trained with Adam

W parameters with mixed precision training (use F16 and F32)
F16 copies of params (2W bytes) and gradients (2W bytes)
F32 copies of params (4W bytes), momentum (4W bytes) and

variance (4W bytes)
=16W bytes, at least 24GB

Residual States

= Activations: 1.5B transformer, around 60 GB even with
activation checkpointing

= Temporary buffers: gradient all-reduce, norm computation,
etc. around 5GB

= Memory fragmentation: 30% of memory still available when
OOoM

ZeRO Redundancy Optim

izer

= Memory Optimizations Towards Training Trillion Parameter

Models (Rajbandari et al., 2019)
= ZeRO-DP optimizes model states
= ZeRO-R optimizes residual states
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ZeRO-R

Scaling for Varying Model Sizes

Superlinear Scaling for Increasing GPUs

= Partitioned Activation Checkpointing: Once forward prop for a
layer is computed, partition the input activations until needed
for backprop

= Constant size buffer: computational efficiency can depend on
input size, eg. All-reduce achieves higher bandwidth than a
smaller one

= Memory Defragmentation: pre-allocate contiguous memory
chunks for activation checkpoints
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Figure 3: Superlinear scalability and per GPU training throughput of a 60B parameter model
using ZeRO-100B.
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Figure 4: Max model throughput with ZeRO-DP. by ZeRO.




