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Few-shot Learning Thus Far

> Thus far, we have talked about using LMs “out-of-the-box” for few-shot
O surprising emergent property

Questions:
> Can we directly train models to do few-shot learning?

> Can we directly train models to follow arbitrary user instructions?

> Can we directly train models to obey toxicity & safety constraints?



Lecture Overview
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> Reinforcement Learning from Human Feedback (RLHF)

> Open challenges with RLHF
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Language modeling # assisting users

PROMPT  Explain the moon landing to a 6 year old in a few sentences.

COMPLETION Human

A giant rocket ship blasted off from Earth carrying
astronauts to the moon. The astronauts landed their
spaceship on the moon and walked around exploring the
lunar surface. Then they returned safely back to Earth,
bringing home moon rocks to show everyone.

Language models are not aligned with user intent [Ouyang et al., 2022].
Finetuning to the rescue!




Instruction Finetuning

* Collect examples of (instruction, output) pairs across many tasks and finetune an LM

Please answer the following question.

What is the boiling point of Nitrogen?

(N -320.4F

A the followi ti 4 .

rer;assvc\;igngitgp?lx [lsgt;l:es fnlsy The cafeteria had 23 apples

) ’ originally. They used 20 to

The cafeteria had 23 apples. If they make lunch. So they had 23 -

used 20 for lunch and bought 6 more, 20 = 3. They bought 6 more

how many apples do they have? Lang uage Kapples, so they have 3 + 6 = 9.

= model —
[}
Evaluate on unseen tasks Geoffrey Hinton is a British-Canadian
‘ computer scientist born in 1947. George

Q: Can Geoffrey Hinton have a Washington died in 1799. Thus, they
conversation with George Washington? could not have had a conversation
Give the rationale before answering. together. So the answer is “no”.

10 [FLAN-T5; Chung et al., 2022]
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Scaling Up Instruction Finetuning
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Aside: new benchmarks for multitask LMs

BIG-Bench [Srivastava et al., 2022]

200+ tasks, spanning:
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BEYOND THE IMITATION GAME: QUANTIFY-
ING AND EXTRAPOLATING THE CAPABILITIES
OF LANGUAGE MODELS
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Aside: new benchmarks for multitask LMs

BIG-Bench [Srivastava et al., 2022] Kanji ASCII Art to Meaning
200+ tasks, spanning:

This subtask converts various kanji into ASCII art and has the
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>

Gains from Instruction Finetuning

Lots of models based on
finetuning T5

o Flan-T5

o Tk-Instruct

o T0

O ...
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Params Model Norm. avg.
80M T5-Small -9.2
Flan-T5-Small -3.1 (+6.1)
250M  T5-Base -5.1
Flan-T5-Base 6.5 (+11.6)
780M  Tb5-Large -5.0
Flan-T5-Large 13.8 (+18.8)
3B T5-XL -4.1
Flan-T5-XL 19.1 (+23.2)
11B T5-XXL -2.9
Flan-T5-XXL 23.7 (+26.6)

Bigger model —

= bigger A



Qualitative Results

/—{ Model input (Disambiguation QA) ]—\ /—[ Before instruction finetuning ]’\

Q: In the following sentences, explain the The reporter and the chef will discuss their favorite
antecedent of the pronoun (which thing the dishes.
pronoun refers to), or state that it is ambiguous. The reporter and the chef will discuss the reporter's

favorite dishes.
The reporter and the chef will discuss the chef's
favorite dishes.

Sentence: The reporter and the chef will discuss
their favorite dishes.

Options: The reporter and the chef will discuss the reporter's
(A) They will discuss the reporter's favorite dishes and the chef's favorite dishes.
(B) They will discuss the chef's favorite dishes

(C) Ambiguous #8 (doesn’t answer question)

A: Let's think step by step.
N O\ /

Highly recommend trying FLAN-T5 out to get a sense of its capabilities:

https://huggingface.co/google/flan-t5-xx|
15 s://hugging [google/ [Chung et al., 2022]




Qualitative Results

/—[ Model input (Disambiguation QA) ]—\ /—[ After instruction finetuning ]—\

Q: In the following sentences, explain the The reporter and the chef will discuss their favorite
antecedent of the pronoun (which thing the dishes does not indicate whose favorite dishes they
pronoun refers to), or state that it is ambiguous. will discuss. So, the answer is (C). 2

Sentence: The reporter and the chef will discuss
their favorite dishes.

Options:

(A) They will discuss the reporter's favorite dishes
(B) They will discuss the chef's favorite dishes
(C) Ambiguous

A: Let's think step by step.
N L J

Highly recommend trying FLAN-T5 out to get a sense of its capabilities:

https://huggingface.co/google/flan-t5-xx|
16 s://hugging [google/ [Chung et al., 2022]




Lecture Plan: From Language Models to Assistants

1. Instruction finetuning
+ Simple and straightforward, generalize to unseen tasks
- 7?
- 7?

17



Limitations of instruction finetuning?

* Problem 1:it’s expensive to collect ground-truth data for tasks
* Provide me five active research areas in April 2023 for LLMs
* Problem 2: tasks like open-ended creative generation have no right answer.
* Write me a story about a dog and her pet grasshopper.

* Problem 3: Even with instruction tuning, you are not directly “maximizing human
preferences”

e Can we explicitly attempt to satisfy human preferences?

18



Lecture Overview

> |nstruction Finetuning
> Reinforcement Learning from Human Feedback (RLHF)

> Open challenges with RLHF



Optimizing for human preferences

e Let’s say we were training a language model on some task (e.g. summarization).
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Optimizing for human preferences

22

Let’s say we were training a language model on some task (e.g. summarization).

For each LM sample s, imagine we had a way to obtain a human reward of that
summary: R(s) € R, higher is better.

SAN FRANCISCO,

California (CNN) —- An earthqgake hit The Bay Area has |
: San Francisco. good weather but 1s
A magnitude 4.2 Th . n
earthquake shook the ere was Mminor prone o
, property damage, earthquakes and
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Optimizing for human preferences

e Let’s say we were training a language model on some task (e.g. summarization).

* For each LM sample s, imagine we had a way to obtain a human reward of that
summary: R(s) € R, higher is better.

SAN FRANCISCO,

California (CNN) -- An earthqgake hit The Bay Area has |
: San Francisco. good weather but 1s

A magnitude 4.2 Th . n
earthquake shook the rirervtvasdm;nor priii Ok q
San Francisco brope y ,a ége, e? c;ua ©s an

but no 1njuries. wildfires.

S
overturn unstable R( )1 80 SZ
objects. S — O.
1 R(Sz) = 1.2

e Now we want to maximize the expected reward of samples from our LM:
IE§~pg(s) [R (3‘)]

23



A (very!) brief introduction to policy gradient/REINFORCE (williams, 1992]

m
1
Esp,(s)[R(8) Vg log pe(3)] = ;Z R(s;) Vg log pe(s;)
i—1

24



A (very!) brief introduction to policy gradient/REINFORCE (williams, 1992]

m
1
Esp,(s)[R(8) Vg logpg(3)] = ;Z R(s;) Vg log pe(s;)
i—1

Take gradient steps
If R is +++ to maximize pg(s;)

We reinforce good actions, increasing the \ /
chance they happen again.

If R is --- Take steps to

minimize pg (s;)
25
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* Awesome: now for any arbitrary, non-differentiable reward function R(s), we can
train our language model to maximize expected reward.
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How do we model human preferences?

* Awesome: now for any arbitrary, non-differentiable reward function R(s), we can
train our language model to maximize expected reward.

* Not so fast! (Why not?)
* Problem 1: human-in-the-loop is expensive!

 Solution: instead of directly asking humans for preferences, model their
preferences as a separate (NLP) problem! [Knox and Stone, 2009]

An earthquake hit The Bay Area has

San Francisco. good weather but is [rainanlLM RM¢(S) to
There was minor prone to predict human
propert;li ollamailge, ealirthclzuakes and preferences from an
but no i1njuries. wlldfires.

annotated dataset, then
S1 g S2 g optimize for RMy instead.

R(s,) = 8.0 R(s,) = 1.2
29 £$j E[};]j



How do we model human preferences?

Problem 2: human judgments are noisy and miscalibrated!

* Solution: instead of asking for direct ratings, ask for pairwise comparisons, which can
be more reliable [Phelps et al., 2015; Clark et al., 2018]

A 4.2 magnitude
earthquake hit
San Francisco,
resulting 1in
massive damage.

S3
R(s3) = 4.1? 6.6? 3.27

30



How do we model human preferences?

* Problem 2: human judgments are noisy and miscalibrated!

* Solution: instead of asking for direct ratings, ask for pairwise comparisons, which can
be more reliable [Phelps et al., 2015; Clark et al., 2018]

An earthquake hit A 4.2 magnitude The Bay Area has
San Francisco. earthquake hit good weather but is
There was minor > San Francisco, > prone to

property damage, resulting 1in earthquakes and
but no injuries. massive damage. wildfires.

S1 S3 S

31



Make sure your reward model works first!

Evaluate RM on predicting outcome of held-out human judgments

O
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64k
32k
16k
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Data
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Validation accuracy
>
(€)
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e
o
[e0)

. T
Model size

Large enough RM
trained on enough

------------------------------------- o~ data approaching

single human perf

[Stiennon et al., 2020]




RLHF: Putting it all together [Christiano et al., 2017; Stiennon et al., 2020]

e Finally, we have everything we need:
* A pretrained (possibly instruction-finetuned) LM p*7 (s)

* A reward model RM 4 (s) that produces scalar rewards for LM outputs, trained on a
dataset of human comparisons

* A method for optimizing LM parameters towards an arbitrary reward function.



RLHF: Putting it all together [Christiano et al., 2017; Stiennon et al., 2020]

e Finally, we have everything we need:
* A pretrained (possibly instruction-finetuned) LM p*7 (s)

* A reward model RM 4 (s) that produces scalar rewards for LM outputs, trained on a

dataset of human comparisons
* A method for optimizing LM parameters towards an arbitrary reward function.
e Now to do RLHF:
* Initialize a copy of the model ng(s) , with parameters 6 we would like to optimize
e Optimize the following reward with RL:
ng (s)\ Pay aprice when
R(S) = RM¢(S) - ﬂ log (m) ng(S) > pPT(S)

34



RLHF provides gains over pretraining + finetuning

35
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InstructGPT: scaling up RLHF to tens of thousands of tasks

36

Step 1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

@

Explain the moon
landing to a 6 year old

I
\J

)

Z

Some people went
to the moon...

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

&)

Explain the moon
landing to a 6 year old

0 o

Explain gravity... Explain war...

o o

Moon is natural People went to
satellite of. the moon.

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs

[Ouyang et al., 2022]




InstructGPT
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PROMPT

COMPLETION

Explain the moon landing to a 6 year old in a few sentences.

GPT-3
Explain the theory of gravity to a 6 year old.

Explain the theory of relativity to a 6 year old in a few sentences.
Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

InstructGPT

People went to the moon, and they took pictures of what they saw, and
sent them back to the earth so we could all see them.



InstructGPT
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PROMPT

COMPLETION

Write a short poem about a wise frog.

GPT-3
Write a short story in which a character has two different names.

Write a short story in which you try to get something back that you
have lost.

Write a short story in which a character has a bad dream.

InstructGPT

The frog is a symbol of wisdom

He knows all the secrets of the world
He is a master of disguise

And a great teacher of life

He is a symbol of transformation

And the bringer of change

He is the frog who has seen it all
And knows the meaning of it all



ChatGPT: Instruction Finetuning + RLHF for dialog agents

ChatGPT: Optimizing

Language Models
for Dialogue

Note: OpenAl (and similar
companies) are keeping
more details secret about
ChatGPT training
(including data, training
parameters, model size)—
perhaps to keep a
competitive edge...

39

Methods

We trained this model using Reinforcement Learning from Human
Feedback (RLHF), using the same methods as InstructGPT, but with
slight differences in the data collection setup. We trained an initial
model using supervised fine-tuning: human Al trainers provided
conversations in which they played both sides—the user and an Al
assistant. We gave the trainers access to model-written suggestions to
help them compose their responses. We mixed this new dialogue
dataset with the InstructGPT dataset, which we transformed into a
dialogue format.

(Instruction finetuning!)

https://openai.com/blog/chatgpt/




ChatGPT: Instruction Finetuning + RLHF for dialog agents

ChatGPT: Optimizing

Language Models

for Dialogue Methods

Note: OpenAl (and similar To create a reward model for reinforcement learning, we needed to collect
companies) are keeping comparison data, which consisted of two or more model responses ranked by
more details secret about quality. To collect this data, we took conversations that Al trainers had with
ChatGPT training the chatbot. We randomly selected a model-written message, sampled several
(including data, training alternative completions, and had Al trainers rank them. Using these reward
parameters, model size)— models, we can fine-tune the model using Proximal Policy Optimization. We
perhaps to keep a performed several iterations of this process.

competitive edge...
(RLHF!)

40 https://openai.com/blog/chatgpt/




Lecture Overview

> |nstruction Finetuning
> Reinforcement Learning from Human Feedback (RLHF)

> Open challenges with RLHF



Limitations of RL + Reward Modeling

 Human preferences are unreliable!

« ”Reward hacking” is a common
problem in RL

https://openai.com/blog/faulty-reward-functions/

42



Limitations of RL + Reward Modeling

 Human preferences are unreliable!
* "Reward hacking” is a common
problem in RL

* Chatbots are rewarded to
produce responses that seem
authoritative and helpful,
regardless of truth

* This can result in making up facts
+ hallucinations
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Limitations of RL + Reward Modeling
Reward model over-optimization
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* This can result in making up facts
+ hallucinations
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* Models of human preferences are KL from supervised baseline
even more unreliable! RL
R(s) = RMy(s) — B log (plg;T(S))
P (s)

[Stiennon et al., 2020]
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