Natural Language Processing

Retrieval / Knowledge-Intensive NLP

Kevin Lin – UC Berkeley

March 22, 2023

Retrieval / Knowledge-Intensive NLP

- Large corpuses for LLMs contain lots of information / data
- The Pile (Gao et al., 2020)
 - **800GB**

Loosely structured KB with open-text

Eg. Common sense KBs

unstructured text

knowledge base

2

Populating the knowledge base often involves complicated, multi-step NLP pipelines

Requires supervised data to train the pipeline and/or fill the knowledge base

Knowledge Base Downsides

Requires supervised data to train the pipeline and/or fill the knowledge base

Reliant on fixed schemas to store or query data

What do the LLMs "know?

- iPod Touch is produced by ____.
- London Jazz Festival is located in _____.
- Dani Alves plays with _____.
- Carl III used to communicate in _____.
- Ravens can _____.

What do the LLMs "know?

- iPod Touch is produced by Apple.
- London Jazz Festival is located in London.
- Dani Alves plays with Santos.
- Carl III used to communicate in German.
- Ravens can fly.

(Petroni et al., 2019)

What do the LLMs "know?

- Lots of knowledge from language modeling
- Issues:
 - Coverage: was the fact in the training set?
 - Frequency of facts: has the LM "seen" it enough times?
 - Prompt sensitivity: if we reword it, will the answer change?

Figure 1: Querying knowledge bases (KB) and language models (LM) for factual knowledge.

Given a cloze statement that queries the model for a missing token, knowledgeable LMs rank ground truth tokens high and other tokens lower

Knowledge sources: ConceptNet, Google-RE, SQuAD

(Roberts et al., 2020)

• Pre-training resources

- **T5 v1.0:** trained with the unsupervised "span corruption" task on C4 as well as *supervised translation, summarization, classification, and reading comprehension tasks*
- \circ T5 v.1.1: trained only with the C4

• Model size

- Base (220 million parameters)
- Large (770 million)
- 3B (3 billion)
- 11B (11 billion)

• Additional pre-training

- Salient Span Masking (Guu et al. 2020), mask salient spans (named entities & dates)
- Continue pre-training the T5 for 100k steps

person

location

Henri Hutin invented Brie cheese while living in North of Meuse, France

Comparison with SOTA

	-		_			-
		NQ	WQ	T(dev	QA test	Metric: Exact Match
ſ	Chen et al. (2017)	_	20.7	_	_	
	Lee et al. (2019)	33.3	36.4	47.1	-	
	Min et al. (2019a)	28.1	-	50.9	-	
SOTA Retrieval-based Models	Min et al. (2019b)	31.8	31.6	55.4	-	
	Asai et al. (2019)	32.6	_	_	—	
(documents)	Ling et al. (2020)	_	_	35.7	_	
documents)	Guu et al. (2020)	40.4	40.7	_	_	
	Févry et al. (2020)	_	_	43.2	53.4	
	Karpukhin et al. (2020)	41.5	42.4	57.9	_	
C	T5-Base	25.9	27.9	23.8	29.1	
	T5-Large	28.5	30.6	28.7	35.9	
Closed-Book QA models with	T5-3B	30.4	33.6	35.1	43.4	non-SSM
	T5-11B	32.6	37.2	42.3	50.1	
	T5-11B + SSM	34.8	40.8	51.0	60.5	SSM
internal parameters)	T5.1.1-Base	25.7	28.2	24.2	30.6	
internal parameters)	T5.1.1-Large	27.3	29.5	28.5	37.2	man 6614
	T5.1.1-XL	29.5	32.4	36.0	45.1	non-55M
	T5.1.1-XXL	32.8	35.6	42.9	52.5	
	T5.1.1-XXL + SSM	35.2	42.8	51.9	61.6	SSM
Closed-Book QA model without fine-tuning	GPT-3 few-shot	29.9	41.5	71.2	-	
SOTA Retrieval-based Models	SOTA	51.4	-	80.1	-	

Scaling Model Size

		NQ	WQ	TQA		Metric: Exact Match
				dev	test	
	Chen et al. (2017)	_	20.7	_	_	
	Lee et al. (2019)	33.3	36.4	47.1	-	
	Min et al. (2019a)	28.1	-	50.9	-	
	Min et al. (2019b)	31.8	31.6	55.4	-	
	Asai et al. (2019)	32.6	_	_	-	
	Ling et al. (2020)	_	_	35.7	_	
	Guu et al. (2020)	40.4	40.7	_	_	
	Févry et al. (2020)	_	_	43.2	53.4	
	Karpukhin et al. (2020)	41.5	42.4	57.9	_	
	T5-Base	25.9	27.9	23.8	29.1	
in or oping size	T5-Large	28.5	30.6	28.7	35.9	increasing performance
mereasing size	T5-3B	30.4	33.6	35.1	43.4	mereasing performance
1	T5-11B	32.6	37.2	42.3	50.1	
	T5-11B + SSM	34.8	40.8	51.0	60.5	
	T5.1.1-Base	25.7	28.2	24.2	30.6	
increasing size	T5.1.1-Large	27.3	29.5	28.5	37.2	increasing performance
increasing size	T5.1.1-XL	29.5	32.4	36.0	45.1	mereasing performance
1	T5.1.1-XXL	32.8	35.6	42.9	52.5	
	T5.1.1-XXL + SSM	35.2	42.8	51.9	61.6	

Knowledge Editing

GPT-3

Who is the president of the United States?

The current president of the United States is Donald Trump.

Who is the president of the United States in 2022?

The current president of the United States is Donald Trump. In 2022, the president will be either Trump or his successor.

MEND (Mitchell et al, 2022)

LMs

- Scale more easily: removed knowledge extraction
- More flexible querying: Natural language as query language
- KBs
 - Easier to modify: edit KB directly
 - Easier to trust / understand

GPT-3

Who is the president of the United States?

The current president of the United States is Donald Trump.

Who is the president of the United States in 2022?

The current president of the United States is Donald Trump. In 2022, the president will be either Trump or his successor.

Retrieval Augmented Language Models

- Disentangle knowledge with language understanding
- Encode knowledge and explicitly in text
- Retrieve relevant text to generate knowledgeable response
- Easier to update and control
- More efficient

Retrieval Augmented Language Models

	# Retrieval tokens	Granularity	Retriever training	Retrieval integration
Continuous Cache	$O(10^3)$	Token	Frozen (LSTM)	Add to probs
kNN-LM	<i>O</i> (10 ⁹) Type 1	Token	Frozen (Transformer)	Add to probs
SPALM	$O(10^9)$	Token	Frozen (Transformer)	Gated logits
Dpr	$O(10^9)$	Prompt	Contrastive proxy	Extractive QA
Realm	$O(10^9)$	Prompt	End-to-End	Prepend to prompt
RAG	<i>O</i> (10 ⁹) Type 2	Prompt 2	Fine-tuned Dpr	Cross-attention
FID	$O(10^9)$	Prompt	Frozen Dpr	Cross-attention
$Emdr^2$	$O(10^9)$	Prompt	End-to-End (EM)	Cross-attention
Retro (ours)	$O(10^{12})$	Chunk	Frozen (Bert)	Chunked cross-attention

Type 1: Token-level Retrieval (mainly) for LM – augmenting prediction of next token

Type 2: *Passage*-level Retrieval (mainly) for **QA** – retrieving passages relevant to the question

Token-Level Granularity

 $p_{\mathrm{kNN}}(y|x) \propto \sum_{(k_i, v_i) \in \mathcal{N}} \mathbb{1}_{y=v_i} \exp(-d(k_i, f(x)))$

 $p(y|x) = \lambda \ p_{kNN}(y|x) + (1-\lambda) \ p_{LM}(y|x)$

Figure from kNN-LM paper (Khandelwal et al. 2019)

Prompt-Level Granularity

Dense Passage Retriever (Karpukhin et al., 2020)

Prompt-Level Granularity

Dense Passage Retriever (Karpukhin et al., 2020)

 Improving Language Models By Training From Trillions of Tokens (Borgeaud et al., 2022)

Databa	ase
Ę	3

	Key (BERT sentence embedding)	Value (text. neighbor and completion chunks. Each up to 64 tokens in length)	
		Dune is a 2021 American epic science fiction film directed by Denis Villeneuve	NEIGHBOR
		It is the first of a planned two-part adaptation of the 1965 novel by Frank Herbert	COMPLETION
		Dune is a 1965 science fiction novel by American author Frank Herbert	NEIGHBOR
		originally published as two separate serials in Analog magazine	COMPLETION

INPUT

The Dune film was released in

1) EMBED WITH BERT

Nearest Neighbor 1

Dune is a 2021 American epic science fiction film directed by Denis Villeneuve

It is the first of a planned two-part adaptation of the 1965 novel by Frank Herbert

Nearest Neighbor 2

Dune is a 1984 American epic science fiction film written and directed by David Lynch

and based on the 1965 Frank Herbert novel of the same name

RETRO Transformer

RETRO Transformer

RETRO Scaling

Beyond Augmentation with Text

- Search Engines
- Specialized Models
- Calculators
- Custom Data
- Etc.

The New England Journal of Medicine is a registered trademark of [QA("Who is the publisher of The New England Journal of Medicine?") → Massachusetts Medical Society] the MMS.

Out of 1400 participants, 400 (or [Calculator(400 / 1400) \rightarrow 0.29] 29%) passed the test.

The name derives from "la tortuga", the Spanish word for [MT("tortuga") → turtle] turtle.

The Brown Act is California's law [WikiSearch("Brown Act") \rightarrow The Ralph M. Brown Act is an act of the California State Legislature that guarantees the public's right to attend and participate in meetings of local legislative bodies.] that requires legislative bodies, like city councils, to hold their meetings open to the public.

(Press et al. 2022)

Toolformer (Schick et al. 2023)

Panel

Slido.com #3854461

