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Syntactic Parsing
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Historical Trends
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Output Correlations
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Input-Output Correlations
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Span-Based Parsing
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Parsing as Span Classification
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Routing with LSTMs
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Span Classification
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Non-Constituents
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… But Will We Get a Tree Out?
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Reconciliation
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Does It Work?

Grammar-Based
[Carreras et al, 08] 

LSTM-Based
[Stern et al, 17] 
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Routing with Transformers
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What Helps?
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Results: Multilingual
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Pre-Training

Problem: Input has more variation than output

Need to handle:
• Rare words not seen during training
• Word forms in morphologically rich languages
• Contextual paraphrase / lexical variation



Historical Trends

[Slide from Slav Petrov]



Knowledge Modularity
§ Knowledge modularity: Learn domain-general knowledge from one 

data source and use it solve specific problems elsewhere



Parsing as Span Classification
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Architecture
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Encoder Architectures

LSTM Self-Attention

No pre-training 92.08 F1 93.55 F1

Pre-training 95.13 F1
(with ELMo)

95.60 F1
(with BERT)

[Kitaev & Klein 2018]

[Gaddy+ 2018] [Kitaev & Klein 2018]

[Kitaev et al 2019]



Encoder Architectures
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Results: Multilingual
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Does Structure Help?



Out of Domain Parsing

Neural parsers improve out-of-domain numbers, but not more 
than in-domain numbers



Other Neural Constituency Parsers

§ Back to at least Henderson 1998!

§ Recent directions:
§ Shift-Reduce, eg Cross and Huang 2016

§ SR/Generative, eg Dyer et al 2016 (RNNG)

§ In-Order Generative, eg Liu and Zhang 2017


