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Syntactic Parsing
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Historical Trends
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Output Correlations
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Grammars
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Input-Output Correlations

She enjoys playing tennis.



Span-Based Parsing

7
NP vP
/\
Srlqe enjoys ?
VP
/\
playing NP
tenlnis
[ S
[ VP
( S-VP )
(NP
She enjoys  playing  tennis



Parsing as Span Classification
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Routing with LSTMs
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Routing with LSTMs
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Routing with LSTMs

Verb at the start

f

! f f

[ She [enjoys playing  tennis J




Routing with LSTMs
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Routing with LSTMs

Pronoun to the left Period to the right
Verb at the start Noun and verbs to the left
| | |
| = -

[ She

[enjoys playing  tennis J




Span Classitication

Pronoun to the left
Verb inside
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Span Classitication
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Span Classitication
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Non-Constituents
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... But Will We Get a Tree Out?
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Reconciliation
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Does It Work?

Grammar-Based
[Carreras et al, 08]

91.0

LSTM-Based
[Stern et al, 17]

92.6

902 904 906 908 91 912 914 916 918 92 922 924 926 928

F1 (English, dev)



What's Going on in There?

Neural parsers no longer have
much of the model structure
provided to classical parsers.

How do they perform so well
without it?



What's Going on in There?

[Why don’t we need a grammar?\

Adjacent tree labels are redundant with
LSTM features

If we can predict surrounding tree labels
from our LSTM representation of the input,
then this information doesn’t need to be
provided explicitly by grammar production
rules

We find that for 92.3% of spans, the label
of the span’s parent can predicted from the
neural representation of the span

»[f; — fi.b; — by]« ‘
»(f1,b1) »(fs, by)

33l 3 i

<START> She played soccer in the park . <STOP>




What's Going on in There?

4 . )
Do we need tree constraints?

Not for F1

Many neural parsers no longer model
output correlations with grammar rules, but
still use output correlations from tree
constraints

Predicting span brackets independently
gives nearly identical performance on
PTB development set F1 and produces

1 (1)
\valld trees for 94.5% of sentences )




What's Going on in There?

i Is distant context important?

Yes!

h’[ﬁ —fi,b; — by
’(fhbl)

LI

<START> She played soccer in the park o <STOP>
~(£1.by)

Almost a full point of F1 is lost by
truncating context 5 words away from span

endpoints and half a point with 10 words D




What's Going on in There?

(What word representations do\
we need?

A character LSTM is sufficient

Word Only 91.44
Word and Tag 92.09
Character LSTM Only 92.24
Character LSTM and Word 1 92.22

Character LSTM, Word, and Tag  92.24
-




What's Going on in There?

f What about lexicon features? h

The character LSTM captures the same
information

Heavily engineered lexicons used to be
critical to good performance, but neural
models typically don’t use them

Word features from the Berkeley Parser
(Petrov and Klein 2007) can be predicted
with over 99.7% accuracy from the
\character LSTM representation




What's Going on in There?

4 Do LSTMs introduce useful

inductive bias compared to
feedforward networks?

Yes!

We compare a truncated LSTM with
feedforward architectures that are given
the same inputs

The LSTM outperformed the best
(eedfomard by 6.5 F1

\




Routing with Transformers
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Routing with Transformers
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Routing with Transformers
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Routing with Transformers
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Routing with Transformers

word=She
verb=enjoys
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What Helps?

LSTMN 92

Self-Attentive

+Factorec

915 92 925 93 935

F1 (English, dev)




Results: Multilingual

German Arabic

Korean

m Bjorkelund et al. (2014)

81.3
82.

78.75 80 81.25 825 8375 85 86.25

77 78.7580.582.25 84 85.7587.589.25

© Coavoux and Crabbé (2017)

Basque

Hebrew

Polish

87.5 88 88.5 89 89.5 90

89.4 89.6 898 90 90.2 904

a T
88 89 90 91 92 93 94

m Cross and Huang (2016) = Ours
-
(@)
C
o
LL
84.1
81 81.75 82.5 8325 84 84.75
[
.©
—
O
o)
C
35
T

91.02591.391.5751.8592.12592.492.67 3 2.95

Swedish

83.25 84 84.75 85.5 86.25



Pre-Training

Problem: Input has more variation than output

Need to handle:

® Rare words not seen during training

® Word forms in morphologically rich languages
® Contextual paraphrase / lexical variation



Historical Trends
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Knowledge Modularity

Knowledge modularity: Learn domain-general knowledge from one
data source and use it solve specific problems elsewhere

plan evaluation
letter assessment g reat
request analysis
memo understanding goo d
case opinion
question conversation en ,/ oya b l e
charge discussion
statement
draft
day accounts do g
year people
week customers
month individuals
quarter employees
half students
reps
representatives ﬂ b a d
representative H
o is




Parsing as Span Classification
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Pretraining
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Architecture

BERT
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Encoder Architectures

No pre-training

Pre-training

LSTM Self-Attention
== N NATA
92.08 F1 93.55 F1

[Gaddy+ 2018] [Kitaev & Klein 2018]
95.13 F1 95.60 F1

(with ELMo) (with BERT)

[Kitaev & Klein 2018] [Kitaev et al 2019]



/]\ Encoder Architectures

F1 Score (English) Number of Parameters

No pre-training Q3. No pre-training 26 M
ELMo ELMo
BERT-base BERT-base
BERT-large BERT-large
XLNet-large XLNet-large

92.259393.734.85.259696.75 M 100M 200M 300M 400M



Results: Multilingual

m Bjorkelund et al. (2014) = Coavoux and Crabbé (2017) m Cross and Huang (2016)
= Kitaev and Klein (2018) = This work (one model per language) = This work (joint multilingual model)
81.3 88.
®) o <
e 829 s 8.8 5
= 0 (U]
< B L
77 78.7580.582.25 84 85.75 87.589.25 795 81 825 84 855 87 885
- 2 %
© 0] =
£ 5 S
0} 2 5
© T
75 77.5 80 825 85 875 90 925 94 96
c <
2 + i

81 825 84 855 87 885 90 87.5 89.25 91 9275 945 96.25 98 80.5 82.25 84 8575 87.5 89.25 91



Does Structure Help?
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Figure 1: Labelled bracketing F1 versus minimum span length for the English corpora. F1 scores for the In-Order
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parser with BERT (orange) and the Chart parser with BERT (cyan) start to diverge for longer spans.



Out of Domain Parsing

Berkeley BLLIP In-Order Chart
Fl1 A Err. Fl1 A Err. Fl1 A Err. Fl A Err.

WSITest | 90.06  +0.0% | 9148  +0.0% | 9147  +0.0% | 9327  +0.0%

Brown All | 84.64 +54.5% | 85.89 +65.6% | 85.60 +68.9% | 88.04 +77.7%
Genia All | 79.11  +110.2% | 79.63 +139.1% | 80.31 +1309% | 82.68 +157.4%
EWT All | 77.38 +127.6% | 7991 +135.8% | 79.07 +145.4% | 82.22 +164.2%

Neural parsers improve out-of-domain numbers, but not more
than in-domain numbers



Other Neural Constituency Parsers

S

- steps | structural action label action | stack after bracket
NP VP 1-2 Sh(I/PRP) label-NP 042\ oNP;
| o 34 sh(do/MD) nolabel 0/\1/\o
PRP MD VBP S 5-6 sh(like/VBP) nolabel 0/\1/\a/\3
' ' . ! ' 7-8 comb nolabel 01/ 3
of wdoolike VP 910 | sh(eating/VBG) nolabel | oussy
VBG NP 11-12 Sh(ﬁSh/NN) label-NP 013/ 4/\5 | 4NPs
| | 13-14 | comb label-S-VP | g/ /3/ 5 3Ss5,3VPs
seating NN 15-16 | comb label-VP | o1 | VPs
' 17-18 | comb label-S 05 0Ss
4 ﬁSh 5

= Back to at least Henderson 1998!
= Recent directions:

= Shift-Reduce, eg Cross and Huang 2016
= SR/Generative, eg Dyer et al 2016 (RNNG)
" |n-Order Generative, eg Liu and Zhang 2017



