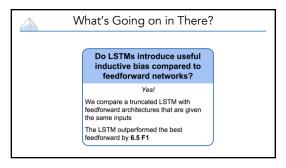
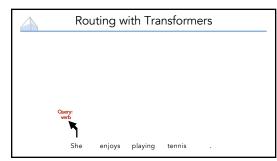
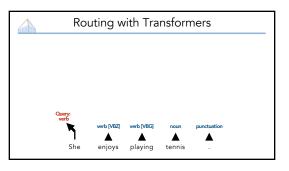


V	What's Going on in There?			
	What word representati we need?	ons do		
	A character LSTM is suffic	A character LSTM is sufficient		
	Word Only	91.44		
	Word and Tag	92.09		
	Character LSTM Only	92.24		
	Character LSTM Only Character LSTM and Word	92.24		

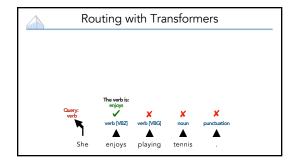
What's Going on in There?
What about lexicon features?
The character I.STM captures the same
information
Heavily engineered lexicons used to be
critical to good performance, but neural
models byicially don't use them
Word features from the Berkelay Parser
(Petrov and Kein 2007) can be peredicted
with over 99.7% accuracy from the
character LSTM representation

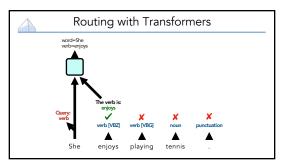


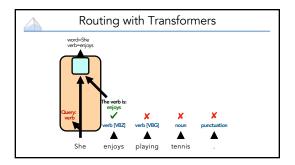


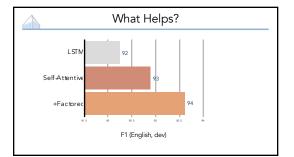


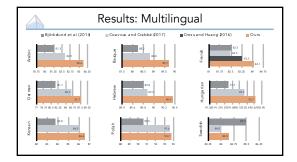
Routing with Transformers						
	Query:					
	verb	verb [VBZ]	verb [VBG]	noun	× punctuation	
	She	enjoys	playing	tennis		



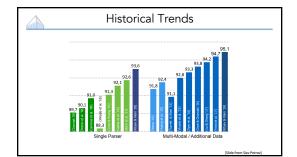


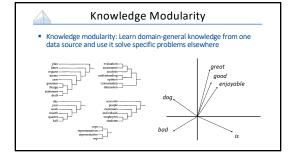


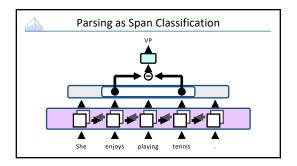


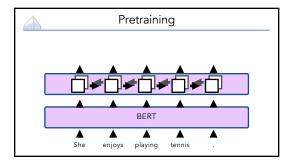


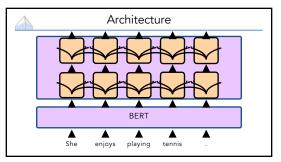
Pre-Training
Problem: Input has more variation than output Need to handle: • Rare words not seen during training • Word forms in morphologically rich languages • Contextual paraphrase / lexical variation











Encoder Architectures					
-		Self-Attention			
No pre-training	92.08 F1 [Gaddy+ 2018]	93.55 F1 [Kitaev & Klein 2018]			
Pre-training	95.13 F1 (with ELMo)	95.60 F1 (with BERT)			
I	[Kitaev & Klein 2018]	[Kitaev et al 2019]			

