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Logistics

4 traditional lectures + ~8 days of mixed lectures and panels/discussions

HW4 out Wednesday. Due Wednesday after spring break
e Using and finetuning LMs with Huggingface

HWS5 out after spring break. Due sometime end of April.
e Prompting ChatGPT to solve projects 1-3

No final exam.

Lecture recordings?



# of papers per month

Immense Interest

1994

ML+AI arXiv papers per month

log-scale

2007
publication year

Generative Al startups raised $1.5B in 2022, up from

just $213Min 2020.

$2.08
$1.5B
+618%
SLoB $250m+
W $100-250m
$40-100m (series C)
$1.08 $15-40m (series B)
$4-15m (series A)
B $1-4m (pre-seed)
$0.5B B $0-1m (pre-seed)
$213M
» view online
2015 2016 2017 2018 2019 2020 2021 2022

Page /2  source: Dealroom.co.

dealroom.co



The Era of Rapid Scaling in NLP

2017: Transformer is introduced 2022: Large-scale Transformer models
are the dominant approach for many

[Vaswani+17] Attention is All You Need NLP tasks
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Demos

» ChatGPT

» Stable Diffusion

> InstructGPT



https://chat.openai.com
https://you.com/search?q=%40draw+a+cute+dog+in+space
https://platform.openai.com/playground

Today’s Lecture

> Language modeling as the ultimate task
> Transformer models

» Qverview of remainder of the course



Language Modeling

p(xla ,XL)



Language Modeling

p(xla ,XL)

p(the, mouse, ate, the, cheese) = 0.02,
p(the, cheese, ate, the, mouse) = 0.01,

p(mouse, the, the, cheese, ate) = 0.0001



Neural Language Models
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Neural Language Models

{ Neural network }
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Neural Language Models

Prompt

Neural network }

The mouse ate the

L
HP(Xi [ )
o

Token Prob
cheese | 0.20
cookie | 0.12
nibble | 0.08
crumb 0.07
man 0.05
tail 0.04




Language Modeling

> Many original motivations were to use LMs for other applications
e Machine translation
e Speech recognition

> Now, LM has become perhaps the single most important NLP task



Language Modeling as the Ultimate Task?

» Zero- and few-shot learning with language models



Language Modeling as the Ultimate Task?

» Zero- and few-shot learning with language models

[ Language Model }

Question: What is the sentiment of the

6 M n7
Prompt sentence “Superb acting™

Answer:




Language Modeling as the Ultimate Task?

» Zero- and few-shot learning with language models

Tok.en' Prob
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Language Modeling as the Ultimate Task?

> Language modeling leads to rich representations
e George Washington was born in the year
e [fitisraining, you may need an
e Using the power rule, the derivative of 3xA5 is



Language Modeling as the Ultimate Task?

> Language modeling leads to rich representations
e George Washington was born in the year
e [fitisraining, you may need an
e Using the power rule, the derivative of 3xA5 is
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Language Modeling as the Ultimate Task?

> There is effectively “unlimited” data for language modeling

> Enables powerful function approximators (transformers)
e immense data
e immense model sizes
e immense compute



Neural LMs from Scratch




Neural LMs from Scratch
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Language Models and MT Circa 2016

Neural Machine Translation is in production at Google

[Wu+16] Google’s Neural Machine Translation System:
Bridging the Gap between Human and Machine Translation

Encoder € |—| e |—m—2| e |—m—>| e |/ es |—/| es |/ | e

Decoder do _— ds dz E— da


http://arxiv.org/abs/1609.08144

Neural MT ca. 2016
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Neural MT ca. 2016
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There are computation paths through the RNN-based network that
scale linearly with the sequence length, and can't be parallelized.
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Word Window Neural Nets

as the proctor started the clock the students opened their

Slide Credit: Stanford CS224



Word Window Neural Nets

Ts———tire———proctor—sturtet—tire—clock {he students opened thei5

. Y
discard fixed window

Slide Credit: Stanford CS224



Word Window Neural Nets

words / one-hot vectors the  students opened  their
20 2@ 36 4@ o s

Slide Credit: Stanford CS224



Word Window Neural Nets

concatenated word embeddings
c [e(l); 6(2); 6(3); e(4)]

words / one-hot vectors
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Word Window Neural Nets

output distribution
§ = softmax(Uh + by) € RIV!

hidden layer
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Word Averaging Neural Nets

output distribution
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Transformer Architecture
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Transformer Architecture
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Encoder

She enjoys playing  tennis



Transformer Architecture

Input Thinking Machines
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Transformer Architecture

Input Thinking Machines
Embedding X1 I:]:l:l:] X2 I:l:l:]j
Queries q1 Dj:] qz Djj
Keys ki [T 1] ke [[T]
Values Vi Djj V2 Djj
Score qie ki= qi e k2 =

Divide by 8 ( V4, )
Softmax

Softmax

X vi [[]] Va2

Value

Sum . [T .. [T




Transformer Architecture
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Transformer Architecture
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Position Embeddings
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Transformer Architecture
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Feed-Forward

[Iayer output]
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Add & Norm

Layer Normalization [Ba+16]
improves stability of neuron activations

LayerNorm }

&
Residual Connections
useful across a variety of neural network architecture types, not just in NLP



ENCODER #2
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Encoder vs. Decoder

Self-Attention Masked Self-Attention
A

1) IO




LM Training Objective

enjoys  playing tennis . <€0S>
A A A A A
| | | | |
Masked Self-Attention
oy
A 4 A 4 4

She enjoys  playing  tennis




Practical Implementation

> GPT-2 [config]
e Scrape large dataset of internet web pages
e Fit BPE tokenizer on that data
e |[nitialize 1.5b parameter decoder-only transformer
e Train with Adam Optimizer with specific LR schedule


https://huggingface.co/gpt2-xl/blob/main/config.json

Overview of Rest of Course



Existing Models




Existing Models

%~ Hugging Face Q  Search models, datasets, users... # Models = Datasets Spaces

Libraries Datasets Languages Licenses Models 151,544 Filter by name



Scaling Language Models




Scaling Language Models

Accuracy

TriviaQA

70 Fine-tuned SOTA

40

30

20

—e— Zero-Shot
—e— One-Shot
—e— Few-Shot (K=64)

10

0.1B 0.4B 08B 1.3B 26B 6.7/B 13B 175B
Parameters in LM (Billions)



>

Scaling Language Models

Multiplicative Contribution

Minimum serial steps

increases negligibly — —~ | A\
X\

106 1074 1072
Compute (PF-days)

10°

Data requirements
grow relatively slowly

Optimal model size
increases very quickly



Data




Data

Instruction finetuning

Please answer the following question.
What is the boiling point of Nitrogen?
.

Chain-of-thought finetuning

Answer the following question by

reasoning step-by-step. The cafeteria had 23 apples

originally. They used 20 to
make lunch. So they had 23 -
20 = 3. They bought 6 more
apples, so they have 3 + 6 = 9.

The cafeteria had 23 apples. If they
used 20 for lunch and bought 6 more,
how many apples do they have?

N

Language
model

Multi-task instruction finetuning (1.8 tasks)

Inference: generalization to unseen tasks

Geoffrey Hinton is a British-Canadian
computer scientist born in 1947. George
Washington died in 1799. Thus, they
could not have had a conversation
together. So the answer is “no”.

Q: Can Geoffrey Hinton have a
conversation with George Washington?

Give the rationale before answering.
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Systems
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Misuse, Risks, and Harms

Fake news, spam, hate speech

Malware

Protecting data privacy

Intellectual property theft

Biases and fairness

Data Poisoning

RealToxicityPrompts

LM generations
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Adapting Language Models




Adapting Language Models

AUTOPROMPT  Zprompt

a real joy. atmosphere alot dialogue Clone totally [MASK].

Masked LM

P([MASK]|Zprompt)

p(y|wprompl)

Prefix Py

Transformer (Pretrained)

| —

Remember it

context (original)

Greedy decode

y

Chain-of-thought Prompt }

prompting odel

i This means she uses 3 + 4 = 7 aggs every day.
| Language
mi

She sells the remainder for $2 per egg, so in
total she sells 7 * $2 = $14 per day.
The answer is $14,

Marginalize out reasoning paths

Sample a diverse set of ‘
to aggregate final answers

reasoning paths

is  this review negative or positive ?

question (fixed for all inputs)

[ANS] positive
label



Finetuning with Instructions and RLHF




Finetuning with Instructions and RLHF

Prompts Dataset
x: A dogis...
/" Tuned Language )
Initial Language Model Model (RL Policy)
/) ]’:i;j : Reinforcement Learning
&j .‘-ﬁ_\\. X Update (e.g. PPO)
S \9 9 ¢
Nele 0+ 0+ VyJ(6)
@@
\l, N
Base Text ©®®® RLHF ~®®®® Reward (Preference)
®® ®® Tuned Text ®®®® Model Py
y: a furry mammal y: man’s best friend ) *q;j &5/ \\\. -
) \——J 7| "8
1 \
‘ l

=ML DL (7ppo (¥]Z) || Thase(y]z))
KL prediction shift penalty

Huggingface RLHF Blog



Grounding Language with Vision




Grounding Language with Vision

vibrant portrait painting of Salvador Dali with a robotic half face a shiba inu wearing a beret and black turtleneck

an espresso machine that makes coffee from human souls, artstation panda mad scientist mixing sparkling chemicals, artstation acorgi’s head depicted as an explosion of a nebula

DALL-E 2: Ramesh et al. 2022



Grounding Language with Vision

“Place a clean ladle on a counter”

ALFRED: Shridhar et al. 2020



Retrieval-augmented Models




Retrieval-augmented Models

Frozen Trainable

A

Test Context ~ N
) = Jobs cofounded %
Jobs is the |, e > @)
[ CEO of _ — Apple in his

Retriever parents' garage | White-box LM

/ #param. <10B

Huggingface RLHF Blog



Multilingual Modeling




Multilingual Modeling

Many languages are left behind
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Efficiency and Novel Architectures

» Large LMs are incredibly expensive and slow to run

» Accelerating inference
Expert 1 Expert 2 Expert 3

 Weight quantization
e Model distillation

( Device 2

_ !&\k\j { rA \E J

N \ ' ‘ //

> Engineering enhancements

A\ ‘ /
e Flash Attention A4 /
- (_L/- - \\\\\ \ "“A»,‘
e Fused Kernels ﬂ
» New architectures T et
e Long context modeling Tokens

e Mixture of experts



Future of NLP




