Natural Language Processing

Berkeley

(N

N L P

Efficiency

Kevin Lin — UC Berkeley
April 24, 2023

(many slides credits to EMNLP 2020 High Performance NLP tutorial)

Efficiency

Today

Knowledge Distillation
Quantization

Pruning

Efficient Attention
Efficient Architectures

Knowledge Distillation

Hinton et al.,, 2015

Distilling the Knowledge in a Neural Network

-

Teacher

>

Knowledge Distillation for Pre-training

are
do
well
Sanhetal, 2019
DistilBERT, a distilled version of BERT: smaller,
faster, cheaper and lighter leacher
Student
how [MASK] you how [MASK] you

Data

Knowledge Distillation for Pretraining

Sunetal, 2019

MobileBERT: a Compact Task-Agnostic BERT

for Resource-Limited Devices

are
do
well

feature map transfer

[eacher

attention transfer

Student

how [MASK] you

Data

how [MASK] you

Knowledge Distillation for Fine-Tuning

1 Regular Pre-training Student

how [MASK] you

Data
Turc et al,, 2019

Well-Read Students Learn Better: On the

Importance of Pre-training Compact Models

(x, y=0.8)

Teacher }
X

2 Fine-tuning via distillation

{ Student]

\

Data

3 (Optional) regular fine-tuning Student]

I(x, y=1.0)
Data

Knowledge Distillation for Fine-Tuning

Jiao et al., 2019

TinyBERT: Distilling BERT for Natural

Language Understanding

2 Fine-training via
distillation

1 Pre-training via distillation

P

Teacher

N

-

Teacher

N

per-layer transfer

embeddings transfer

per-layer transfer

Student

how [MASK] you

84

Quantization

https://unsplash.com/photos/FTfjMijq-Ws

Quantization

Definition

Qz)=q; z=(t,,] j=0,..,2%1

real-valued tensor (activation or weight) quantization precision

quantization operator

Linear Quantization

Z=S(qj‘Z)

zero point

scaling factor

Quantization

Quantization-Aware Training

Jacob et al., 2017

Quantization and Training of Neural Networks

for Efficient

Forward pass on
Backward pass on

Integer-Arithmetic-Only Inference

dL
witl = UpdateParameter(wt,W,nt)

Quantization

Shen et al. 2019 e Q-BERT: uniform quantization to {o, ..., 2%1} with:

o mixed precision (higher Hessian spectrum => higher
precision for layer)

o group precision (each matrix W, W, W, W, is its own group)

Q-BERT: Hessian Based Ultra Low Precision
Quantization of BERT

€

(c) MNLI 10" (d) MNLI 4"

(e) CoNLL-03 4" (f) CoNLL-03 11

uantization with Distillation

Full-precision Quantized Full-precision
Student Student Teacher

L,
——————— o RPN

Transformer layer

Transformer layer

Ternarization Forward Distillation loss - -
Zhang et al., 2020 ®=0W propagation L= Lm + Lprea | [o
TernaryBERT: Distillation-aware Ultra-low Bit .
BERT
Embedding Embedding Embedding

Backward propagation, update in full-precision
oL,
)

41

w'*! = UpdateParameter(w*

Figure 2: Depiction of the proposed distillation-aware ternarization of BERT model.

Pruning

Definition

Pruning removes “unimportant” weights from a network:

a=(WG>M)Xl

input

pruning mask

model weight

activation

Main Questions (tassibi and Stork)

® Which weights should be eliminated?
e How should the remaining weights be adjusted?
® How can such network pruning be done in an efficient way? SourgiRaa

https://unsplash.com/photos/FTfjMijq-Ws

Pruning

LeCun et al., 1990

OBD: 0ptimal Brain Damage

Hassibi and Stork, 1993

OBS: Second order derivatives for network

pruning: Optimal Brain Surgeon

Main idea:

e Start with a “reasonably large” network

e Train it to convergence
e Prune in multiple iterations, based on second-order derivatives:

© OBD: prune and train
© OBS: prune and update weights based on second-order statistics

Lottery Ticket Hypothesis

Frankle and Carbin, 2018

The Lottery Ticket Hypothesis: Finding Sparse,

Trainable Neural Networks

The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnet-
work that is initialized such that—when trained in isolation—it can match the test accuracy of the
original network after training for at most the same number of iterations.

Searching for Tickets: Magnitude Pruning

Wo W;}.) mM o Wr;-l.)
o’% - 0& -
]
v
m(” oWy m(l) ® u/’;‘l')

ML T

Source: hitps://roberttlange.qithub.io/posts

Frankle & Carbin, 2019
Viz: @RobertTLange

2020/06/lottery-ticket-hypothesis

Movement Pruning

e First-order strategy: “instead of selecting weights that are far from zero, we retain
connections that are moving away from zero during the training process”

Sanh et al., 2020

Movement Pruning: Adaptive Sparsity by

Fine-Tuning o hard version: M = Top,(S), where score Sis learnt and v is a
hyperparameter.

e The pruning mask M is learnt together with the model parameters.

o softversion: M = (S > 1), where score S is learnt and threshold Tis a
hyperparameter.

0.00 0.00

Fine-tuned
Fine-tuned

-0.05 -0.05

."’ o
-0.10 o -0.10
-0.15 Y i -0.15

—020 ¥ -0.20
-0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2
Pretrained Pretrained

(a) Magnitude pruning (b) Movement pruning

Movement Pruning

Unstructured Structured
Pruning Pruning
Storage
Inference X
Flexibility v X

Efficient Attention

Keys —_—

Goal: Queries

Approximate the computation of attention

via more efficient operations

Efficient Attention

Data-Independent
Data-Dependent
Kernels

Recurrence

|/O Aware-Attention

Data-Independent Patterns

Keys _—

Blockwise Patterns Queries

Divide sequence into local blocks and
restrict attention within them

Examples:

Blockwise Transformer (Qiu et al., 2019)

Local Attention (Parmar et al., 2018)

Data-Independent Patterns

Keys B ——

Strided Patterns Queries

Skip some query/key pairs.

Quadratic in sequence length / stride

Examples:

Sparse Transformer (Child et al., 2019)

Longformer (Beltagy et al, 2020) .

Data-Independent Patterns

Keys —_—

Diagonal Patterns Queries

Compute attention over the diagonal.

Linear in sequence length and window
size.

Examples:

Longformer (Beltagy et al, 2020)

Big Bird (Zaheer et al., 2020)

Data-Independent Patterns

Keys —

Global Attention Queries

Applied to one or a few special tokens,
often prepended to the sequence.

Usually combined with other patterns

Examples:

Big Bird (Zaheer et al., 2020)

Longformer (Beltagy et al.. 2020)

ETC (Ainslie et al., 2020)

Data-Dependent Patterns

Buckets

Create buckets/clusters and compute
attention within.

Ideally, buckets should contain the
highests attention weights in the matrix

Examples:

Reformer (Kitaev et al., 2020)

Routing Transformer (Roy et al., 2020)

l
7=0

Attention
head

Queries

|

Keys

—

Data-Dependent Patterns

Buckets: Hashing

Locality-Sensitive Hashing (LSH)

Key idea: take a random projection
matrix R, compute hash for a

vector g through:

h(z) = arg max([zR; —zR)])

Examples:

Reformer (Kitaev et al., 2020)

Sphere Projected Points Random Rotation 0

OF
O

Random Rotation 1

79
()

6

1

Random Rotation 2

xz 0 2

y: 320

x: 021

y: 021

Data-Dependent Patterns

Keys

Compression

Compressed Keys

E.g. pooling, strided convolution, low-rank
projections with learnable weights

Queries

Examples:

Compressed Attention (Liu et al., 2018)

Linformer (Wang et al., 2020)

Synthesizers (Tay et al., 2020)

Kernel

Kernels 0; = Z ai;V;

=0

Recap attention in its general
form uses a similarity function

3(Qi, K;) P(Qi, K;)

Ai5 = 7
Do Qi Kp)

However, we can simplify things
with a decomposable kernel:

$(Qi K;) = 6(Q:) " oK)

Attention head

Kernel

Kernels

Recap attention in its general
form uses a similarity function

QS(Qi’ K])

However, we can simplify things
with a decomposable kernel:

0(Qi, K;) = o(Q:) T ¢(K;)

l
Oi — Z aijV
§=0

J

7

Oi:

¢(QZ7 KJ)

a,-j =

S 6(Q)TOK)V,

> 0 9(Q)TH(K;)

o(Q:)"

Egzo ¢(KJ)V3

P(Q:) |

Zlf:o (b(Kj)

>0 0(Qi, Ky)

Independent of query!

o

Kernel

Kernels

Recap attention in its general
form uses a similarity function

¢(Qi7 KJ)

However, we can simplify things

with a decomposable kernel:

$(Qi, Kj) = 0(Qi:) "o

K.

J

)

In vectorized form:

O = p(Q)o(K)'V

|

Compute this d’ x d matrix first

This allows us to compute attention in linear
time with respect to sequence length!

In Katharopoulos et al., 2020:

Recurrence

compression

Compressive Transformers

(Rae et al 2019) o000
Dual memory system: C M M) "/

- Primary mem. contains activations

T~
from previous segment . ‘ ‘ ‘

- Secondary mem. is compresses ’/_:
activations from all previous segments . . . ‘

1

—
\ J I\ J N J
hd Y Y
Secondary Primary Current
(compressed) memory segment

memory

/O Awareness

Outer Loop
K:dxN .
Attention on GPT-2
Copy Block to SRAM
anxd T OQuterLoop _ . vNxd 154 ;IMatmuI
SRAM: 19TB/s (20 MB) = Ei i | Dropout
§ [T T - _
HBM:1.5TB/s (40GB) 2 o lyyl | Cop Ol E10+ T
o Y c| =
S 4o Compute Block | = Softmax
5 Copv | on SRAM | § = g -
DRAM:12.8GB/s £ v 2 gF 4 Fused
(>17B) 15 Mask Kernel
K] i —
I
. . M Matmul
Memory Hierarchy with - 04] “
Bandwidth & Memory Size sm(QK')V: Nxd PyTorch FlashAttention
Inner Loop

FlashAttention

FlashAttention (Dao et al., 2019

Mixture-of-Experts

/MoE layer

G(x)2

A

c';(X)n-l

Expert 1

Expert 3 Qs o

Gating

Network

IR

/ FFN(Q}) =S max(O, Wi + bl)WQ + bo

/

G(z) = Softmaxz(KeepTopK (H(z),k))

X

]

Shazeer et al., 2017: arXiv.
Lepikhin et al., 2020: arXiv

https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2006.16668

Mixture-of-Experts

Version 2 (Lepikhin et al., 2020):

L = gnll + k * eauaz

Where k is a constant loss weight (a good value is 0.1; usually between 0.07 and 1.0)

Random dispatch: Use 2nd expert proportionally to the softmax gate probability.

Have a frequency cutoff — a token budget — for each expert. If this budget is exceeded the
expert degenerated to a zero matrix. This effectively reduces the output of the MoE layer to zero
and thus only the residual connection output around the MoE layer is fed to the next layer.

Mixture-of-Experts

Seconds

Mini-batch Time in Seconds per 1 Billion Parameters (Training)

25

20
1.93 1.91 1.9

0.83

0.5

0.39

0.26 0.28 0.02

000 0.12
BERT BERT T5 3B T511B GPT3 GPT3 GPT3 GPT3 MoE MoE
base large 2.7B 6.7B 13B 175B 150B 600B

Model

Works well on diverse data like
multilingual machine translation
Can be difficult to train due to
balancing/specialization issues
Only faster than transformers if you
can run it with a large enough
batch size to saturate distributed
experts

If you scale the model across a
cluster, you will need excellent
interconnect performance

(TPU v4 Pod, NVIDIA SuperPod)

Structure State Spaces

J Continuous data
Irregular sampling

Complex, very inefficient
X Vanishing gradients

Continuous-time (CTM)

v

X

Unbounded context
Stateful inference

Inefficient training
Vanishing gradients

Recurrent (RNN)

OOOOOOOOO/T
/

i /'I
el

,,,,,, %44

44

v Easy optimization
Parallelizable training

Inefficient inference
X Bounded context

Convolutional (CNN)

Existing model families have clear tradeoffs
All struggle with long-range dependencies (LRD)

$4 (Gu et al., 2022)

Structure State Spaces

—ub—x—vb>

/\/

x = Ax + Bu
y =Cx+ Du

Continuous
Representation

|§;|+

v/ mathematically tractable

V' handles irregular data

Discretize
 —

x = Ax + Bu

y =Cx+ Du

Recurrent
Representation

v/ unbounded context
J efficient inference

Unroll
—_—

\ 4

Convolutional
Representation

' easy optimization
J parallelizable training

