Natural Language Processing

Adaptation

Kevin Lin – UC Berkeley

April 5, 2023

Adaptation

Challenges

- Task Format
 - **Premise**: I have never seen an apple that is not red.
 - Hypothesis: I have never seen an apple.
 - Correct output: Not entailment
- Harm Mitigation / Control
- Domain Shift
 - e.g. biomedical text, legal text
- Temporal Shift
 - Updated facts, news, etc.

Methods

- Finetuning
- Lightweight Finetuning
- Prompting

Finetune

Finetuning for Zero-Shot / Instructions

 Multi-task Prompted Training Enabled Zero-Shot Task Generalization (Sanh et al., 2022)

Probing

 Adaptors: Parameter-Efficient Transfer Learning for NLP (Houlsby et al., 2019)

 Adaptors: Parameter-Efficient Transfer Learning for NLP (Houlsby et al., 2019)

Prefix Tuning

 Prefix Tuning: Optimizing Continuous Prompts for Generation (Liang et al., 2021)
Fine-tuning

Prefix Tuning

 Prefix Tuning: Optimizing Continuous Prompts for Generation (Liang et al., 2021)

 Prompt Tuning: The Power of Scale for Parameter-Efficient Prompt Tuning (Lester et al., 2021)

 Prompt Tuning: The Power of Scale for Parameter-Efficient Prompt Tuning (Lester et al., 2021)

Lightweight finetuning improves OOD results

Dataset	Domain	Model	Prompt	Δ
SQuAD	Wiki	94.9 ±0.2	94.8 ± 0.1	-0.1
TextbookQA	Book	54.3 ±3.7	66.8 ±2.9	+12.5
BioASQ	Bio	77.9 ± 0.4	79.1 ±0.3	+1.2
RACE	Exam	59.8 ± 0.6	60.7 ±0.5	+0.9
RE	Wiki	88.4 ± 0.1	88.8 ±0.2	+0.4
DuoRC	Movie	68.9 ±0.7	67.7 ± 1.1	-1.2
DROP	Wiki	68.9 ±1.7	67.1 ± 1.9	-1.8

 LLaMa-Adaptor: Efficient Finetuning of Language Models with Zero-Init Attention

Prompting

Zero-Shot

Text: i'll bet the video game is a lot more fun than the film. Sentiment:

сору

Prompting

Few-Shot

Text: (lawrence bounces) all over the stage, dancing, running, sweating, mopping his face and g Sentiment: positive

Text: despite all evidence to the contrary, this clunker has somehow managed to pose as an actu Sentiment: negative

Text: for the first time in years, de niro digs deep emotionally, perhaps because he's been st: Sentiment: positive

Text: i'll bet the video game is a lot more fun than the film. Sentiment:

Sentiment:

Prompting

 Calibrate Before Use: Improving Few-Shot Performance of Language Models (Zhao et al., 2021)

Text: (lawrence bounces) all over the stage, dancing, running, sweating, mopping his face and g Sentiment: positive Text: despite all evidence to the contrary, this clunker has somehow managed to pose as an actu Sentiment: negative Text: for the first time in years, de niro digs deep emotionally, perhaps because he's been sta Sentiment: positive Text: i'll bet the video game is a lot more fun than the film.

Prompting

- Calibrate Before Use: Improving Few-Shot Performance of Language Models (Zhao et al., 2021)
- Majority label bias
- Recency
- Common token

Example Selection

- K-nearest neighbor clustering
- What Makes Good In-Context Examples for GPT-3? (Liu et al., 2021)

Example Selection

- Diversity-based selection
- Selective Annotation Makes Language Modeling Better Few-Shot Learners (Su et al., 2022)

$$\operatorname{score}(u) = \sum_{v \in \{v \mid (v,u) \in E, v \in \mathcal{U}\}} s(v), \quad \text{where } s(v) = \rho^{-|\{\ell \in \mathcal{L} \mid (v,\ell) \in E\}|}, \quad \rho > 1$$

Example Selection

Learning To Retrieve Prompts for In-Context Learning (Rubin et al., 2022)

Chain-of-Thoughts

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Model Output

A: The answer is 27. 🗙

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Chain-of-Thoughts

Model scale (# parameters in billions)

Self-Consistency

Self-Consistency

Automatic Prompting

(a) Automatic Prompt Engineer (APE) workflow

- AutoPrompt; Shin et al., 2020
- Automatic Prompt Engineer; Zhou et al., 2022

Automatic Chain-of-thoughts

Prune