Transformers:

The Era of Rapid Scaling in NLP

Nikita Kitaev
February 22, 2022

The Era of Rapid Scaling in NLP

2017: Transformer is introduced
[Vaswani+17] Attention is All You Need

2022: Large-scale Transformer models are the dominant approach for many NLP tasks

Neural MT ca. 2016

Neural Machine Translation is in production at Google
[Wu+16] Google's Neural Machine Translation System:
Bridging the Gap between Human and Machine Translation

Neural MT ca. 2016

Neural MT ca. 2016

There are computation paths through the RNN-based network that scale linearly with the sequence length, and can't be parallelized.

Maximum Path Length

RNN:
\#tokens * \#layers

Maximum Path Length

RNN:

 \#tokens * \#layersWhat about a Convolutional Neural Network?

Maximum Path Length

RNN:

 \#tokens * \#layersConvolutional: \#layers -- but we need to connect all tokens

Maximum Path Length

RNN: \#tokens * \#layers

Convolutional: $\log _{\text {kernel size }}{ }^{(\# t o k e n s)}$

Maximum Path Length

RNN: \#tokens * \#layers

Convolutional: $\log _{\text {kernel size }}{ }^{(\# t o k e n s)}$
Any other alternatives?

Maximum Path Length

RNN: \#tokens * \#layers

Convolutional: $\log _{\text {kernel size }}$ (\#tokens)
How about attention?

Maximum Path Length

RNN: \#tokens * \#layers

Convolutional: $\log _{\text {kernel size }}{ }^{(\# t o k e n s)}$
How about attention?

Maximum Path Length

RNN: \#tokens * \#layers

Convolutional: $\log _{\text {kernel size }}{ }^{(\# t o k e n s)}$
Attention: \#layers

(1) Transformer Architecture

Transformer Architecture

Encoder

Encoder

She
playing tennis

Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

The verb is:
enjoys

Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

Position-Based Attention

Position-Based Attention

Position-Based Attention

The word at $t=1$ is:
enjoys

Query: $\mathrm{t}^{\prime}=1$	$\underset{t=1}{\sqrt{2}}$	$\underset{t=2}{X}$	$\underset{t=3}{X}$	$\underset{t=4}{X}$
$\begin{aligned} & \text { She } \\ & t=0 \end{aligned}$	$\begin{gathered} \text { enjoys } \\ t=1 \end{gathered}$	playing $t=2$	tennis $t=3$	$t=4$

Position-Based Attention

Encoder

Encoder

Self-Attention

Self-Attention

Self-Attention

$$
\text { Attention }(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{\top}}{\sqrt{d_{k}}} V\right)
$$

Self-Attention

$$
\begin{gathered}
\text { Attention }(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{\top}}{\sqrt{d_{k}}} V\right) \\
\text { MultiHead }(X)=\sum_{i=0}^{h} \operatorname{Attention}\left(X W_{i}^{Q}, X W_{i}^{K}, X W_{i}^{V}\right) W_{i}^{O}
\end{gathered}
$$

Feed-Forward

$$
\operatorname{FeedForward}(x)=\max \left(0, x W_{1}+b_{1}\right) W_{2}+b_{2}
$$

Add \& Norm

Layer Normalization [Ba+16]
improves stability of neuron activations

LayerNorm

Residual Connections

useful across a variety of neural network architecture types, not just in NLP

Encoder

Decoder

Decoder

Encoder vs. Decoder

Self-Attention

Masked Self-Attention

Decoder-Only Transformer Model

Decoder

Encoder-Decoder

Transformer MT Results

Model	BLEU			Training Cost (FLOPs)	
	EN-DE	EN-FR		EN-DE	EN-FR
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2			$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92		$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46		$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [32]	26.03	40.56		$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4			$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16		$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	$\mathbf{4 1 . 2 9}$		$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1		$\mathbf{3 . 3} \cdot \mathbf{1 0}^{\mathbf{1 8}}$	
Transformer (big)	$\mathbf{2 8 . 4}_{29.1}$	$\mathbf{4 1 . 8}_{\mathbf{4 1 . 8}}$		$2.3 \cdot 10^{19}$	

(2) Pre-Training

Transformer Language Model

Pre-Training with LMs

Pre-Training with LMs

Representative Model: GPT

(GPT = Generative Pre-Training)

Pre-Training with LMs

Pre-Training with LMs

Fine-tuning with LMs

Fine-tuning with LMs

Classification | Start | Text | Extract |
| :---: | :---: | :---: |\rightarrow GPT \rightarrow Linear

Fine-tuning with LMs

Entailment $\begin{array}{|c|c|c|c|c|}\hline \text { Start } & \text { Premise } & \text { Delim } & \text { Hypothesis } & \text { Extract } \\$\cline { 2 - 4 }\end{array}$] \rightarrow$ GPT \rightarrow Linear

Fine-tuning with LMs

Fine-tuning with LMs

Summarization with LMs

Summarization with LMs

GLUE Benchmark

Dataset	Description	Data example	Metric
CoLA	Is the sentence grammatical or ungrammatical?	"This building is than that one." = Ungrammatical	Matthews
SST-2	Is the movie review positive, negative, or neutral?	"The movie is funny , smart , visually inventive , and most of all , alive ." $=.93056$ (Very Positive)	Accuracy
MRPC	Is the sentence B a paraphrase of sentence A?	A) "Yesterday , Taiwan reported 35 new infections , bringing the total number of cases to 418 ." B) "The island reported another 35 probable cases yesterday , taking its total to 418 ." = A Paraphrase	Accuracy / F1
STS-B	How similar are sentences A and B ?	A) "Elephants are walking down a trail." B) "A herd of elephants are walking along a trail." = 4.6 (Very Similar)	Pearson / Spearman
QQP	Are the two questions similar?	A) "How can I increase the speed of my internet connection while using a VPN?" B) "How can Internet speed be increased by hacking through DNS?" = Not Similar	Accuracy / F1
MNLI-mm	Does sentence A entail or contradict sentence B?	A) "Tourist Information offices can be very helpful." B) "Tourist Information offices are never of any help." = Contradiction	Accuracy
QNLI	Does sentence B contain the answer to the question in sentence A ?	A) "What is essential for the mating of the elements that create radio waves?" B) "Antennas are required by any radio receiver or transmitter to couple its electrical connection to the electromagnetic field." = Answerable	Accuracy
RTE	Does sentence A entail sentence B ?	A) "In 2003, Yunus brought the microcredit revolution to the streets of Bangladesh to support more than 50,000 beggars, whom the Grameen Bank respectfully calls Struggling Members." B) "Yunus supported more than 50,000 Struggling Members." = Entailed	Accuracy
WNLI	Sentence B replaces sentence A's ambiguous pronoun with one of the nouns - is this the correct noun?	A) "Lily spoke to Donna, breaking her concentration." B) "Lily spoke to Donna, breaking Lily's concentration." = Incorrect Referent	Accuracy

GLUE Benchmark Results

Bi-directional Pre-Training

Bi-directional Pre-Training

Masked Language Model

Mask out 15% of tokens, then predict the missing tokens

Masked Language Model

Mask out 15% of tokens, then predict the missing tokens

Masked Language Model

Mask out 15\% of tokens, then predict the missing tokens

> enjoys

Masked Language Model

Representative Model: BERT

(BERT = Bidirectional Encoder Representations from Transformers)
enjoys

Pre-Training with Masked LMs

Fine-Tuning with Masked LMs

Fine-Tuning with Masked LMs

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Figure 4: Illustrations of Fine-tuning BERT on Different Tasks

Summarization with Masked LMs?

positronic brain

Summarization with Masked LMs?

Bi-directional Masked LMs are not ideal for sequence-to-sequence tasks
positronic brain

GLUE Benchmark Results

Encoder-Decoder Pre-Training

Encoder-Decoder Pre-Training

Representative Model: T5
(T5 = Text-To-Text Transfer Transformer)

Encoder-Decoder Pre-Training

Original text

Thank you for inviting m to your party last week.

Inputs
Thank you $<X>$ me to your party $\langle Y>$ week.

Encoder-Decoder Pre-Training

Original text

Thank you for inviting $m e$ to your party last week.

Inputs
Thank you $\langle X\rangle$ me to your party $\langle Y\rangle$ week.

Targets
<X> for inviting <Y> last <Z>

Encoder-Decoder Pre-Training

Original text

Thank you for inviting $m e$ to your party last week.

Inputs
Thank you $\langle X\rangle$ me to your party $\langle Y\rangle$ week.

```
Targets
<X> for inviting <Y> last <Z>
```


Encoder-Decoder Pre-Training

Original text

Thank you for inviting $m e$ to your party last week.

Inputs
Thank you $\langle X\rangle$ me to your party $\langle Y\rangle$ week.

```
Targets
<X> for inviting <Y> last <Z>
```


Encoder-Decoder Pre-Training

Encoder-Decoder Fine-tuning

GLUE Benchmark Results

Fig. 1: Language Model Size \& GLUE Performance

GLUE Benchmark Results

Ran	Name	Model	URL Score	CoLA	ST－2	MRPC	STS－B	QQP
1	T5 Team－Google	T5	［ת 89.7	70.8	97.1	91．9／89．2	92．5／92．1	74．6／90．4
2	ALBERT－Team Google LanguageALBERT（Ensemble）		［入189．4	69.1	97.1	93．4／91．2	92．5／92．0	74．2／90．5
3	王玮	ALICE v2 large ensemble（Alibaba DAMO NLP）	不 89.0	69.2	97.1	93．6／91．5	92．7／92．3	74．4／90．7
4	Microsoft D365 AI \＆UMD	FreeLB－RoBERTa（ensemble）	［ 88.8	68.0	96.8	93．1／90．8	92．4／92．2	74．8／90．3
5	Facebook AI	RoBERTa	［ 88.5	67.8	96.7	92．3／89．8	92．2／91．9	74．3／90．2
6	XLNet Team	XLNet－Large（ensemble）	［ 88.4	67.8	96.8	93．0／90．7	91．6／91．1	74．2／90．3
7	Microsoft D365 AI \＆MSR AI	MT－DNN－ensemble	面 87.6	68.4	96.5	92．7／90．3	91．1／90．7	73．7／89．9
8	GLUE Human Baselines	GLUE Human Baselines	87.1	66.4	97.8	86．3／80．8	92．7／92．6	59．5／80．4
9	Stanford Hazy Research	Snorkel MeTaL	83.2	63.8	96.2	91．5／88．5	90．1／89．7	73．1／89．9
10	XLM Systems	XLM（English only）	厂 83.1	62.9	95.6	90．7／87．1	88．8／88．2	73．2／89．8

Types of Transformer Models

Decoder only

e.g.
 G GPT

Encoder only

Encoder-Decoder

Types of Task-Specific Adaptation

Fine-tuning: modify existing model parameters

Adapter modules: freeze existing parameters; insert and train new layers

Prompting: re-formulate a task in natural language (e.g. fill-in-the-blank)

Example from GPT-3 LM

SYSTEM PROMP

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. "By the time we reached the top of one peak, the water looked blue, with some crystals on top," said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to move too much to see them - they were so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the creatures also spoke some fairly regular English. Pérez stated, "We can see, for example, that they have a comon 'language, something like a dialect or dialectic."

Dr. Pérez believes that the unicorns may have originated in Argentina, where Dr. Pérez believes that the unicorns may have originated in Argentina, where
the animals were believed to be descendants of a lost race of people who lived there before the arrival of humans in those parts of South America.

While their origins are still unclear, some believe that perhaps the creature were created when a human and a unicorn met each other in a time before human civilization. According to Pérez, "In South America, such incidents seem to be quite common."

Examples of Prompting

Prompt

I am a highly intelligent question answering bot. If you ask mea question that is rooted in truth, I will give you the answer. If you ask m question that is nonsense, trickery, or has no clear answer, I will respond with "Unknown".

Q: What is human life expectancy in the United States?
Q: What is human life expectancy in the United States?
A: Human life expectancy in the United States is 78 years.

Q: Who was president of the United States in 1955 ?

A: Dwight D. Eisenhower was president of the United States in 1955
Q: Which party did he belong to?
A: He belonged to the Republican Party.
Q: What is the square root of banana?
A: Unknown

Q:How does a telescope work?
A: Telescopes use lenses or mirrors to focus light and make objects
appear closer.
Q: Where were the 1992 Olympics held?
A: The 1992 Olympics were held in Barcelona, Spain.
Q: How many squigs are in a bonk?
A: Unknown

Prompt

The following is a list of companies and the categories they fall into:
Apple, Facebook, Fedex
Apple
Category:

Sample response
Technology
Facebook
Category: Social Media
Fedex
Category: Delivery
Q: Where is the Valley of Kings?
A:

Sample response

The Valley of Kings is located in Luxor, Egypt.

The Era of Rapid Scaling

The Era of Rapid Scaling

Two Distinct Eras of Compute Usage in Training AI Systems
Petaflop/s-days
$1 e^{\prime}+4$

The Era of Rapid Scaling in NLP

