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The Era of Rapid Scaling in NLP

2017: Transformer is introduced 2022: Large-scale Transformer models

are the dominant approach for many
[Vaswani+17] Attention is All You Need NLP tasks
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Neural MT ca. 2016

Neural Machine Translation is in production at Google

[Wu+16] Google's Neural Machine Translation System:

Bridging the Gap between Human and Machine Translation
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http://arxiv.org/abs/1609.08144
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Neural MT ca. 2016
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Neural MT ca. 2016
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There are computation paths through the RNN-based network that
scale linearly with the sequence length, and can't be parallelized.
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Maximum Path Length

RNN: #tokens * #layers



Maximum Path Length

RNN: #tokens * #layers

What about a Convolutional Neural Network?
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RNN:

Convolutional:

#tokens * ;

Maximum Path Length
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Maximum Path Length

RNN: #tokens * #layers

Convolutional:  logyornel size(#tokens)
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Maximum Path Length

RNN: #tokens * #layers

Convolutional:  logyornel size(#tokens)

Any other alternatives?



Maximum Path Length

RNN: #tokens * #layers

Convolutional:  logyornel size(#tokens)
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Maximum Path Length

RNN: #tokens * #layers

Convolutional:  logyornel size(#tokens)

SN -

How about attention?




Maximum Path Length

RNN: #tokens * #layers

Convolutional:  logyornel size(#tokens)

SN -

Attention: layers




(1) Transtformer Architecture



Transformer Architecture
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\ EFncoder

She enjoys playing  tennis




\ EFncoder

She enjoys playing  tennis




Fncoder

Query:
verb
\ verb [VBZ] verb [VBG] noun punctuation
She enjoys playing  tennis




Fncoder

Query:

verb ‘/
\ verb [VBZ] verb [VBG] noun punctuation
1 1 1 1

She enjoys playing  tennis




Fncoder

Query:

verb ‘/ X
\ verb [VBZ] verb [VBG] noun punctuation
1 1 1 1

She enjoys playing  tennis




Fncoder

Query:

verb ‘/ X X X
\ verb [VBZ] verb [VBG] noun punctuation
1 1 1 1

She enjoys playing  tennis




Fncoder

The verb is:
enjoys
Query:
verb ( X X X
\ verb [VBZ] verb [VBG] noun punctuation
1 1 1 1

She enjoys playing  tennis




Fncoder

word=She
verb=enjoys
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The verb is:

enjoys
Query:
verb ‘/ X X X
verb [VBZ] verb [VBG] nhoun punctuation
She enjoys playing  tennis




Fncoder

word=She

verb=enjoys
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The verb is:
enjoys
Query:
verb ‘/ X X X
K J verb [VBZ] verb [VBG] nhoun punctuation
1 1 1 1
She enjoys playing  tennis




Fncoder
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Fncoder
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Fncoder
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Position-Based Attention

t=1 t=2 t=3 t=4
1 1 1
She enjoys playing  tennis .
t=0 t=1 t=2 t=3 t=4




Position-Based Attention

Query:
t'=1
\ t=1 t=2 t=3 t=4
1 1 1
She enjoys playing  tennis

t=0 t=1 t=2 t=3 t=4




Position-Based Attention

The word at t=1 is:
enjoys

Query:

=1 4 X X X
\ t=1 t=2

1 1
She enjoys playing  tennis .
=0 t=1 t=2 =3 t=4




Position-Based Attention

The word at t=1 is:

enjoys
Query:
=1 4 X X X
t=1 t=2 t=3 t=4
1 1
She enjoys playing  tennis

t=0 t=1 t=2 t=3 t=4
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Fncoder
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Self-Attention




Self-Attention
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Self-Attention
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Self-Attention
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Feed-Forward

[Iayer outputj

-

\_

linear projection

[ non-linearity (often relu) J

( projected intermediate J

linear projection
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FeedForward(x) = max(0, xW; + b))W, + b,



Add & Norm

Layer Normalization [Ba+16]
improves stability of neuron activations

( LayerNorm J
| u‘-

—/

Residual Connections
useful across a variety of neural network architecture types, not just in NLP
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Decoder
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Encoder vs. Decoder

Self-Attention Masked Self-Attention
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Decoder-Only Transtormer Model
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Fncoder-Decoder
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Transtormer MT Results

ol BLEU Training Cost (FLOPs)
Mode EN-DE EN-FR  EN-DE  EN-FR
ByteNet [18] 2375
Deep-Att + PosUnk [39] 39.2 1.0 - 10%°
GNMT + RL [38] 24.6 39.92 2.3-101° 1.4.10%
ConvS2S [9] 25.16 40.46 9.6-101% 1.5.10%°
MoE [32] 26.03 40.56 2.0-10° 1.2-10%°
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 1040
GNMT + RL Ensemble [38] 2630  41.16 1.8-10%° 1.1-10%!
ConvS2S Ensemble [9] 2636  41.29 7.7-101%  1.2-10%
Transformer (base model) 27.3 38.1 3.3.1018

Transformer (big) }8.429.1 %1.8 2.3-101°



(2) Pre-Training



Transtormer Language Model
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Pre-Training with LMs




Pre-Training with LMs

Representative Model: GPT
(GPT = Generative Pre-Training)

fi—» &G GPT




Pre-Training with LMs

ri —> @ GPT | pre-training




Pre-Training with LMs
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Help prince transfer huge inheritance —>

Important information about your final exam —>
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Fine-tuning with LMs
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Fine-tuning with LMs

Classification | Start Text Extract }- @ GPT > Linear




Fine-tuning with LMs

Classification | Start Text Extract }- @ GPT > Linear

Entailment Start Premise Delim | Hypothesis | Extract }» @ GPT [ Linear




Fine-tuning with LMs

Classification | Start Text Extract }- @ GPT > Linear
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Similarity
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Fine-tuning with LMs

Classification | Start Text Extract }- @ GPT > Linear

........................................................................................................................................................................................................................................

Start Text 1 Delim Text 2 Extract | > @ GPT
Similarity = El-)* Linear
Start Text 2 Delim Text 1 Extract | @ GPT
Start Context Delim | Answer 1 | Extract | @ GPT > Linear
Multiple Choice | Start Context Delim | Answer 2 | Extract ||» @ GPT > Linear {
Start Context Delim | Answer N | Extract | [-» @ GPT | Linear
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Summarization with LMs

Output #2
Position #115
Time step #2

Output #1
Position #114
Time step #1

Training Dataset

Article #1 tokens <summarize>  Article #1 Summary
: - Article #2 .
Article #2 tokens ~ <summarize> padding
Summary %Transformer— Decoder
Article #3 tokens <summarize> AR
Summary

<summarize>

1 e 113 114 256



GLUE Benchmark

[Wang+19] GLUE: A Multi-Task Benchmark and Analysis Platform For Natural Language Understanding

*IGLUE

https://gluebenchmark.com

Dataset Description Data example m
Is the sentence grammatical or "This building is than that one."

CoLA ungrammatical? = Ungrammatical Matthews
Is the movie review positive, negative,  "The movie is funny , smart, visually inventive , and most of all , alive ."

SST-2 or neutral? =.93056 (Very Positive) Accuracy

A) "Yesterday , Taiwan reported 35 new infections , bringing the total number of cases to 418 ."
Is the sentence B a paraphrase of B) "The island reported another 35 probable cases yesterday , taking its total to 418 ."
sentence A? = A Paraphrase Accuracy / F1

MRPC

A) "Elephants are walking down a trail."
B) "A herd of elephants are walking along a trail."
How similar are sentences A and B? = 4.6 (Very Similar) Pearson / Spearman

A) "How can | increase the speed of my internet connection while using a VPN?"
B) "How can Internet speed be increased by hacking through DNS?"

Are the two questions similar? = Not Similar Accuracy / F1
A) "Tourist Information offices can be very helpful."
Does sentence A entail or contradict B) "Tourist Information offices are never of any help."
MNLI-mm sentence B? = Contradiction Accuracy

A) "What is essential for the mating of the elements that create radio waves?"
B) "Antennas are required by any radio receiver or transmitter to couple its electrical connection
Does sentence B contain the answer to to the electromagnetic field."

QNLI the question in sentence A? = Answerable Accuracy

A) "In 2003, Yunus brought the microcredit revolution to the streets of Bangladesh to support
more than 50,000 beggars, whom the Grameen Bank respectfully calls Struggling Members."
B) "Yunus supported more than 50,000 Struggling Members."

RTE Does sentence A entail sentence B? = Entailed Accuracy
Sentence B replaces sentence A's A) "Lily spoke to Donna, breaking her concentration."
ambiguous pronoun with one of the B) "Lily spoke to Donna, breaking Lily's concentration."

WNLI nouns - is this the correct noun? = Incorrect Referent Accuracy

[Figure by Chris McCormick and Nick Ryan]



https://mccormickml.com/2019/11/05/GLUE/
https://gluebenchmark.com

[Figure from Ahmet & Abdullah, 2020]
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Bi-directional Pre-Training

enjoys  playing  tennis . <eos>

T T t T T

Self-Attention
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Bi-directional Pre-Training

enjoys  playing  tennis . <eos>

T t T T

Self-Attention
A

( i ] this task is trivially solved with

bi-directional self-attention

1 1 1 1

She enjoys playing  tennis



Masked Language Model

Mask out 15% of tokens, then predict the missing tokens
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Masked Language Model

Mask out 15% of tokens, then predict the missing tokens

Self-Attention

1 1 1 1 1

She [MASK]  playing  tennis  [MASK]




Masked Language Model

Mask out 15% of tokens, then predict the missing tokens

enjoys

T T

Self-Attention

1 1 1 1 1
She |[MASK]  playing  tennis  [MASK]




Masked Language Model

Representative Model: BERT

(BERT = Bidirectional Encoder Representations from Transformers)

enjoys
T T
1 1 1 1 1

She [MASK]  playing  tennis  [MASK]




Pre-Training with Masked LMs

pre-training




Fine-Tuning with Masked LMs
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Fine-Tuning with Masked LMs

Class
Label Label
— L F
(o)) BERES
BERT BERT
Eas || Ey : Ex Eisery || B Ey Ees E, E, Ey
O T <
@| T:’k [ Tﬁk H [SEP] 1[ TM [CLS] Tok 1 Tok 2 Tok N
I |
I I | |
Sentence 1 Sentence 2

Single Sentence

(@) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks:

MNLI, QQP, QNLI, STS-B, MRPC, SST-2, CoLA
RTE, SWAG
Start/End Span (0] B-PER (0]
2090 — A < x
()G ) ) BN BN
BERT BERT
Eiews) E, Ey E[SEP] ES By E[CLS] E, E, Ey
——— O —~—————(— v
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Question Paragraph Single Sentence

(c) Question Answering Tasks:
SQuAD v1.1

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER

Figure 4: Illustrations of Fine-tuning BERT on Different Tasks.



Summarization with Masked LMs?
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Summarization with Masked LMs?

Bi-directional Masked LMs are not ideal for sequence-to-sequence tasks

positronic  brain
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Self-Attention

BERT

[CLS] [ SEP | A positronic
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[Figure from Ahmet & Abdullah, 2020]
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Encoder-Decoder Pre-Training

Cross-Attention




Encoder-Decoder Pre-Training

Representative Model: T5

(T5 = Text-To-Text Transter Transtormer)

Self-Attention Cross-Attention Masked Self-Attention

)T N )




Encoder-Decoder Pre-Training

Original text

Thank you fef inviting me to your party [ast week.
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Thank you <X> me to your party <Y> week.
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Encoder-Decoder Pre-Training

Original text

Thank you fet invitiig me to your party [ast week.

- T

Thank you <X> me to your party <Y> week.

Targets
<X> for inviting <Y> last <z~

( ) (

Self-Attention Cross-Attention Masked Self-Attention

1 ) N o

e

Thank you <X> me to your party <Y> week.



Encoder-Decoder Pre-Training

Original text

Thank you fet invitiig me to your party [ast week.

- e

Thank you <X> me to your party <Y> week.

Targets
<X> for inviting <Y> last <7~ for inviting  <Y> last <Z> </s>

A R

Cross-Attention Masked Self-Attention

1 ) N o

Self-Attention

. —_— e

Thank you <X>me to your party <V~ week. <X> for inviting <Y> last <Z>



Encoder-Decoder Pre-Training




Encoder-Decoder Fine-tuning

["translate English to German: That is good."

"cola sentence: The "Das ist gut."]
course is jumping well."
~ ~ "not acceptable"]
"stsb sentencel: The rhino grazed \
on the grass. sentence2: A rhino
is grazing in a field." ) "3.8"J
( . . . \ " . 1 h . 1- d f
"summarize: state authorities SIXSPEOpLEe ospitalized a Eer
dispatched emergency crews tuesday to a storm in attala county.

survey the damage after an onslaught
of severe weather in mississippi.."

. J
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GLUE Benchmark Results

Rank Name URL Score CoLA SST-2 MRPC STS-B QQP

1 T5 Team - Google T5 3 89.7 70.8 97.1 91.9/89.2 92.5/92.1 74.6/90.4

2 ALBERT-Team Google LanguageALBERT (Ensemble) 3 89.4 69.1 97.1 93.4/91.2 92.5/92.0 74.2/90.5

+ 3 FEi% ALICE v2 large ensemble (Alibaba DAMO NLP) _}J' 89.0 69.2 97.1 93.6/91.5 92.7/92.3 74.4/90.7
4  Microsoft D365 Al & UMD FreeLB-RoBERTa (ensemble) 3 88.8 68.0 96.8 93.1/90.8 92.4/92.2 74.8/90.3

5 Facebook Al RoBERTa :}J' 88.5 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2

6 XLNet Team XLNet-Large (ensemble) :}J. 88.4 67.8 96.8 93.0/90.7 91.6/91.1 74.2/90.3

+ 7  Microsoft D365 Al & MSR Al MT-DNN-ensemble 3 87.6 68.4 96.5 92.7/90.3 91.1/90.7 73.7/89.9
GLUE Human Baselines :)J' 87.1 66.4 97.8 86.3/80.8 92.7/92.6 59.5/80.4

9 Stanford Hazy Research Snorkel MeTalL :}Jl 83.2 63.8 96.2 91.5/88.5 90.1/89.7 73.1/89.9

10 XLM Systems XLM (English only) 3' 83.1 629 956 90.7/87.1 88.8/88.2 73.2/89.8

.............

[Figure by Chris McCormick and Nick Ryan]



https://mccormickml.com/2019/11/05/GLUE/

Types of Transtformer Models

Decoder only

Encoder only

Encoder-Decoder

l

)
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)

l

)
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e.g.
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Types of Task-Specific Adaptation

Fine-tuning: modify existing model parameters

Adapter modules: freeze existing parameters; insert and train new layers

Prompting: re-formulate a task in natural language (e.g. fill-in-the-blank)



Example from GPT-3 LM

SYSTEM PROMPT  In a shocking finding, scientist discovered a herd of unicorns living in a
remote, previously unexplored valley, in the Andes Mountains. Even more
surprising to the researchers was the fact that the unicorns spoke
perfect English.

(HUMAN-WRITTEN)

MODEL COMPLETION The scientist named the population, after their distinctive horn, Ovid’s
(MACHINE-WRITTEN, Unicorn. These four-horned, silver-white unicorns were previously unknown
10 TRIES) to science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and
several companions, were exploring the Andes Mountains when they found a small
valley, with no other animals or humans. Pérez noticed that the valley had
what appeared to be a natural fountain, surrounded by two peaks of rock and
silver snow.

Pérez and the others then ventured further into the valley. “By the time we
reached the top of one peak, the water looked blue, with some crystals on
top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures
could be seen from the air without having to move too much to see them - they
were so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the
creatures also spoke some fairly regular English. Pérez stated, “We can see,
for example, that they have a common ‘language,’ something like a dialect
or dialectic.”

Dr. Pérez believes that the unicorns may have originated in Argentina, where
the animals were believed to be descendants of a lost race of people who lived
there before the arrival of humans in those parts of South America.

While their origins are still unclear, some believe that perhaps the creatures
were created when a human and a unicorn met each other in a time before human

civilization. According to Pérez, “In South America, such incidents seem to be
quite common.”

[https://openai.com/blog/better-language-models]



https://openai.com/blog/better-language-models

Examples of Prompting

Prompt

I am a highly intelligent question answering bot. If you ask me a
question that is rooted in truth, I will give you the answer. If you ask me
a question that is nonsense, trickery, or has no clear answer, I will
respond with "Unknown".

Q: What is human life expectancy in the United States?
A: Human life expectancy in the United States is 78 years. Prompt

Q: Who was president of the United States in 19557
A: Dwight D. Eisenhower was president of the United States in 1955.

The following is a list of companies and the categories they fall into:

Apple, Facebook, Fedex
Q: Which party did he belong to?

A: He belonged to the Republican Party.

Apple
Category:
Q: What is the square root of banana?
A: Unknown
Q: How does a telescope work? Sample response
A: Telescopes use lenses or mirrors to focus light and make objects
appear closer. Technology
Q: Where were the 1992 Olympics held? EeeEE el

A: The 1992 Olympics were held in Barcelona, Spain. Category: Social Media

Q: How many squigs are in a bonk?
A: Unknown

Fedex
Category: Delivery

Q: Where is the Valley of Kings?
A:

Sample response

The Valley of Kings is located in Luxor, Egypt.

[https://beta.openai.com/examples]
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The Era of Rapid Scaling

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute (Log Scale)
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The Era of Rapid Scaling

Two Distinct Eras of Compute Usage in Training AI Systems

Petaflop/s-days
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[Amodei, Hernandez, et al. / OpenAl]
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The Era of Rapid Scaling in NLP
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INVIDIA] ELMo is an RNN model; all others are Transformer models



