Natural Language Processing

Syntax and Parsing

Dan Klein – UC Berkeley
Syntax
The move followed a round of similar increases by other lenders, reflecting a continuing decline in that market.
Phrase Structure Parsing

- Phrase structure parsing organizes syntax into *constituents* or *brackets*

- In general, this involves nested trees

- Linguists can, and do, argue about details

- Lots of ambiguity

- Not the only kind of syntax…

 new art critics write reviews with computers
Constituency Tests

- How do we know what nodes go in the tree?

- Classic constituency tests:
 - Substitution by *proform*
 - Question answers
 - Semantic grounds
 - Coherence
 - Reference
 - Idioms
 - Dislocation
 - Conjunction

- Cross-linguistic arguments, too
Conflicting Tests

- Constituency isn’t always clear
 - Units of transfer:
 - think about ~ penser à
 - talk about ~ hablar de
 - Phonological reduction:
 - I will go → I’ll go
 - I want to go → I wanna go
 - a le centre → au centre

- Coordination
 - He went to and came from the store.
Q: Do we model deep vs surface structure?

[Example: Johnson 02]
changes occurred said Sam

[Example: Johnson 02]
[Example: Cai et al 11]
Ambiguities
Parts-of-Speech (English)

- One basic kind of linguistic structure: syntactic word classes

<table>
<thead>
<tr>
<th>Open class (lexical) words</th>
<th>Closed class (functional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nouns</td>
<td>Determiners</td>
</tr>
<tr>
<td>Proper</td>
<td>the some</td>
</tr>
<tr>
<td>IBM</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>Conjunctions</td>
</tr>
<tr>
<td>cat / cats</td>
<td>and or</td>
</tr>
<tr>
<td>snow</td>
<td></td>
</tr>
<tr>
<td>Verbs</td>
<td>Pronouns</td>
</tr>
<tr>
<td>Main</td>
<td>he its</td>
</tr>
<tr>
<td>see</td>
<td></td>
</tr>
<tr>
<td>registered</td>
<td></td>
</tr>
<tr>
<td>Auxiliary</td>
<td></td>
</tr>
<tr>
<td>can</td>
<td></td>
</tr>
<tr>
<td>had</td>
<td></td>
</tr>
<tr>
<td>Adjectives</td>
<td></td>
</tr>
<tr>
<td>yellow</td>
<td></td>
</tr>
<tr>
<td>Adverbs</td>
<td></td>
</tr>
<tr>
<td>slowly</td>
<td></td>
</tr>
<tr>
<td>Numbers</td>
<td></td>
</tr>
<tr>
<td>122,312</td>
<td></td>
</tr>
<tr>
<td>one</td>
<td></td>
</tr>
<tr>
<td>Prepositions</td>
<td></td>
</tr>
<tr>
<td>to with</td>
<td></td>
</tr>
<tr>
<td>Particles</td>
<td></td>
</tr>
<tr>
<td>off up</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part-of-Speech Ambiguity

- Words can have multiple parts of speech

 VBD VB
 VBN VBZ VBP VBZ
 NNP NNS NN NNS CD NN

 Fed raises interest rates 0.5 percent

 Mrs./NNP Shaefer/NNP never/RB got/VBD around/RP to/TO joining/VBG
 All/DTD we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DTD corner/NN
 Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD

- Two basic sources of constraint:
 - Grammatical environment
 - Identity of the current word

- Many more possible features:
 - Suffixes, capitalization, name databases (gazetteers), etc...
Why POS Tagging?

- **Useful in and of itself (more than you’d think)**
 - Text-to-speech: record, lead
 - Lemmatization: saw[v] → see, saw[n] → saw
 - Quick-and-dirty NP-chunk detection: grep {JJ | NN}* {NN | NNS}

- **Useful as a pre-processing step for parsing**
 - Less tag ambiguity means fewer parses
 - However, some tag choices are better decided by parsers

```
  IN
  DT NNP NN VBD VBN RP NN NNS
  The Georgia branch had taken on loan commitments …
```

```
  VDN
  DT NN IN NN VBD NNS VBD
  The average of interbank offered rates plummeted …
```
Classical NLP: Parsing

- Write symbolic or logical rules:

 Grammar (CFG) | Lexicon
 ROOT → S | NP → NP PP | NN → interest
 S → NP VP | VP → VBP NP | NNS → raises
 NP → DT NN | VP → VBP NP PP | VBP → interest
 NP → NN NNS | PP → IN NP | VBZ → raises

- Use deduction systems to prove parses from words
 - Minimal grammar on “Fed raises” sentence: 36 parses
 - Simple 10-rule grammar: 592 parses
 - Real-size grammar: many millions of parses

- This scaled very badly, didn’t yield broad-coverage tools
The board approved [its acquisition] [by Royal Trustco Ltd.] [of Toronto] [for $27 a share] [at its monthly meeting].
Attachments

- I cleaned the dishes from dinner
- I cleaned the dishes with detergent
- I cleaned the dishes in my pajamas
- I cleaned the dishes in the sink
Syntactic Ambiguities I

- **Prepositional phrases:**

 They cooked the beans in the pot on the stove with handles.

- **Particle vs. preposition:**

 The puppy tore up the staircase.

- **Complement structures**

 The tourists objected to the guide that they couldn’t hear.
 She knows you like the back of her hand.

- **Gerund vs. participial adjective**

 Visiting relatives can be boring.
 Changing schedules frequently confused passengers.
Syntactic Ambiguities II

- Modifier scope within NPs
 \textit{impractical design requirements}
 \textit{plastic cup holder}

- Multiple gap constructions
 \textit{The chicken is ready to eat.}
 \textit{The contractors are rich enough to sue.}

- Coordination scope:
 \textit{Small rats and mice can squeeze into holes or cracks in the wall.}
Inaccessible Ambiguities

- **Inaccessible ambiguities**: most analyses are shockingly bad (meaning, they don’t have an interpretation you can get your mind around)

\[
\text{"This will panic buyers!"}
\]

- **Unknown words and new usages**

- **Solution**: We need mechanisms to focus attention on the best ones, probabilistic techniques do this
Ambiguities as Trees

(a) S
 └── NP
 └── VP
 └── PP
 └── "had already"

(b) NP
 └── NP
 └── PP
 └── "from debt"

(c) VP
 └── VP
 └── PP
 └── "had already"

(d) NP
 └── NP
 └── PP
 └── "half"

(e) NP
 └── NP
 └── PP
 └── "a"

(f) NP
 └── NP
 └── PP
 └── "dozen newspapers"
PCFGs
Probabilistic Context-Free Grammars

A context-free grammar is a tuple <N, T, S, R>

- **N**: the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
- **T**: the set of terminals (the words)
- **S**: the start symbol
 - Often written as ROOT or TOP
 - *Not* usually the sentence non-terminal S
- **R**: the set of rules
 - Of the form X → Y_1 Y_2 ... Y_k, with X, Y_i ∈ N
 - Examples: S → NP VP, VP → VP CC VP
 - Also called rewrites, productions, or local trees

A PCFG adds:

- A top-down production probability per rule P(Y_1 Y_2 ... Y_k | X)
((S (NP-SBJ The move)
 (VP followed
 (NP (NP a round)
 (PP of
 (NP (NP similar increases)
 (PP by
 (NP other lenders))
 (PP against
 (NP Arizona real estate loans))))))
 ,
 (S-ADV (NP-SBJ *)
 (VP reflecting
 (NP (NP a continuing decline)
 (PP-LOC in
 (NP that market)))))))
 .)}
Treebank Grammars

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn’t work well):

 ![Diagram of a grammar tree with rules]

 - Better results by enriching the grammar (e.g., lexicalization).
 - Can also get state-of-the-art parsers without lexicalization.
Treebank Grammar Scale

- Treebank grammars can be enormous
 - As FSAs, the raw grammar has ~10K states, excluding the lexicon
 - Better parsers usually make the grammars larger, not smaller
Chomsky Normal Form

- **Chomsky normal form:**
 - All rules of the form $X \rightarrow Y Z$ or $X \rightarrow w$
 - In principle, this is no limitation on the space of (P)CFGs
 - N-ary rules introduce new non-terminals

- Unaries / empties are “promoted”
- In practice it’s kind of a pain:
 - Reconstructing n-aries is easy
 - Reconstructing unaries is trickier
 - The straightforward transformations don’t preserve tree scores
- Makes parsing algorithms simpler!
CKY Parsing
A Recursive Parser

bestScore(X,i,j)
 if (j = i+1)
 return tagScore(X,s[i])
 else
 return max score(X->YZ) *
 bestScore(Y,i,k) *
 bestScore(Z,k,j)

- Will this parser work?
- Why or why not?
- Memory requirements?
A Memoized Parser

- One small change:

```java
bestScore(X, i, j)
    if (scores[X][i][j] == null)
        if (j = i+1)
            score = tagScore(X, s[i])
        else
            score = max score(X->YZ) * 
                bestScore(Y, i, k) * 
                bestScore(Z, k, j)
    scores[X][i][j] = score
return scores[X][i][j]
```
A Bottom-Up Parser (CKY)

- Can also organize things bottom-up

```plaintext
bestScore(s)
   for (i : [0,n-1])
      for (X : tags[s[i]])
         score[X][i][i+1] =
            tagScore(X,s[i])
   for (diff : [2,n])
      for (i : [0,n-diff])
         j = i + diff
         for (X->YZ : rule)
            for (k : [i+1, j-1])
               score[X][i][j] = max score[X][i][j],
                              score(X->YZ) * 
                              score[Y][i][k] * 
                              score[Z][k][j]
```
Unary Rules

 Unary rules?

\[
\text{bestScore}(X,i,j,s) \\
\quad \text{if } (j = i+1) \\
\quad \quad \text{return } \text{tagScore}(X,s[i]) \\
\quad \text{else} \\
\quad \quad \text{return } \max \max \text{ score}(X\rightarrow YZ) \times \\
\quad \quad \quad \text{bestScore}(Y,i,k) \times \\
\quad \quad \quad \text{bestScore}(Z,k,j) \times \\
\quad \quad \quad \max \text{ score}(X\rightarrow Y) \times \\
\quad \quad \quad \text{bestScore}(Y,i,j)
\]
- We need unaries to be non-cyclic
 - Can address by pre-calculating the *unary closure*
 - Rather than having zero or more unaries, always have exactly one

- Alternate unary and binary layers
- Reconstruct unary chains afterwards
Alternating Layers

\[
\text{bestScoreB}(X, i, j, s) \\
\quad \text{return max } \max \text{ score}(X \rightarrow YZ) \times \\
\quad \text{bestScoreU}(Y, i, k) \times \\
\quad \text{bestScoreU}(Z, k, j)
\]

\[
\text{bestScoreU}(X, i, j, s) \\
\quad \text{if } (j = i+1) \\
\quad \quad \text{return tagScore}(X, s[i]) \\
\quad \text{else} \\
\quad \quad \text{return max } \max \text{ score}(X \rightarrow Y) \times \\
\quad \quad \text{bestScoreB}(Y, i, j)
\]
Learning PCFGs
Treebank PCFGs

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn’t work well):

```
ROOT
  |   S
  \   |
   NP  VP
     PRP VBD ADJP
      |    |
     He was JJ
        |    right
```

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>72.0</td>
</tr>
</tbody>
</table>

[Charniak 96]
Conditional Independence?

- Not every NP expansion can fill every NP slot
 - A grammar with symbols like “NP” won’t be context-free
 - Statistically, conditional independence too strong
Non-Independence

- Independence assumptions are often too strong.

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).

- Also: the subject and object expansions are correlated!
Grammar Refinement

- **Example: PP attachment**

```
They
  VP
  NP
  raised
      |  a point of order
```
Grammar Refinement

- Structure Annotation [Johnson ’98, Klein&Manning ’03]
- Lexicalization [Collins ’99, Charniak ’00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. ’06]
Structural Annotation
The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation

```
S
  NP^S  VP
    |     |
  PRP  VBD  NP^VP
    |     |    |
She heard DT NN
    |     |    |
the noise
```
Lexicalization
The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation [Johnson '98, Klein and Manning 03]
 - Head lexicalization [Collins '99, Charniak '00]
Problems with PCFGs

- If we do no annotation, these trees differ only in one rule:
 - VP \rightarrow VP PP
 - NP \rightarrow NP PP

- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words
Problems with PCFGs

- What’s different between basic PCFG scores here?
- What (lexical) correlations need to be scored?
Lexicalized Trees

- Add “head words” to each phrasal node
 - Syntactic vs. semantic heads
 - Headship not in (most) treebanks
 - Usually use head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost N*
 - Take rightmost JJ
 - Take right child
 - VP:
 - Take leftmost VB*
 - Take leftmost VP
 - Take left child
Lexicalized PCFGs?

- Problem: we now have to estimate probabilities like

 $\text{VP}(\text{saw}) \rightarrow \text{VBD}(\text{saw}) \text{ NP-} \text{C(her)} \text{ NP(today)}$

- Never going to get these atomically off of a treebank

- Solution: break up derivation into smaller steps
Lexical Derivation Steps

- A derivation of a local tree [Collins 99]

Choose a head tag and word

Choose a complement bag

Generate children (incl. adjuncts)

Recursively derive children
Lexicalized CKY

\[
\text{bestScore}(X,i,j,h) = \\
\begin{cases}
\text{tagScore}(X,s[i]) & \text{if } (j = i+1) \\
\max \max \text{score}(X[h] \rightarrow Y[h] Z[h']) \times \\
\text{bestScore}(Y,i,k,h) \times \\
\text{bestScore}(Z,k,j,h) & \text{else}
\end{cases}
\]

\[
\begin{aligned}
(X \rightarrow Y)[saw] \\
(Y \rightarrow VBD)[saw] \\
(VP \rightarrow VBD \ldots NP)[saw] \\
(VP \rightarrow VBD \cdot)[saw] \\
\end{aligned}
\]

\[
\begin{aligned}
\begin{array}{c}
\text{NP}[her] \\
\text{VP}[saw] \\
\text{VP}[saw] \\
\end{array}
\end{aligned}
\]
Results

- **Some results**
 - Collins 99 – 88.6 F1 (generative lexical)
 - Charniak and Johnson 05 – 89.7 / 91.3 F1 (generative lexical / reranked)
 - Petrov et al 06 – 90.7 F1 (generative unlexical)
 - McClosky et al 06 – 92.1 F1 (gen + rerank + self-train)

- **However**
 - Bilexical counts rarely make a difference *(why?)*
 - Gildea 01 – Removing bilexical counts costs < 0.5 F1
Latent Variable PCFGs
The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson ’98]
 - Head lexicalization [Collins ’99, Charniak ’00]
 - Automatic clustering?
Latent Variable Grammars

Parse Tree T
Sentence w
Derivations $t : T$
Parameters θ

Grammar G

<table>
<thead>
<tr>
<th>Rule</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_0 \rightarrow NP_0 \ VP_0$</td>
<td>?</td>
</tr>
<tr>
<td>$S_0 \rightarrow NP_1 \ VP_0$</td>
<td>?</td>
</tr>
<tr>
<td>$S_0 \rightarrow NP_0 \ VP_1$</td>
<td>?</td>
</tr>
<tr>
<td>$S_0 \rightarrow NP_1 \ VP_1$</td>
<td>?</td>
</tr>
<tr>
<td>$S_1 \rightarrow NP_0 \ VP_0$</td>
<td>?</td>
</tr>
<tr>
<td>$S_1 \rightarrow NP_1 \ VP_1$</td>
<td>?</td>
</tr>
<tr>
<td>$NP_0 \rightarrow PRP_0$</td>
<td>?</td>
</tr>
<tr>
<td>$NP_0 \rightarrow PRP_1$</td>
<td>?</td>
</tr>
<tr>
<td>$VBD_0 \rightarrow was$</td>
<td>?</td>
</tr>
<tr>
<td>$VBD_1 \rightarrow was$</td>
<td>?</td>
</tr>
<tr>
<td>$VBD_2 \rightarrow was$</td>
<td>?</td>
</tr>
</tbody>
</table>
EM algorithm:

- Brackets are known
- Base categories are known
- Only induce subcategories

Just like Forward-Backward for HMMs.
Refinement of the DT tag

DT
- the (0.50)
- a (0.24)
- The (0.08)

<table>
<thead>
<tr>
<th>DT-1</th>
<th>DT-2</th>
<th>DT-3</th>
<th>DT-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (0.61) the (0.19) an (0.11)</td>
<td>the (0.80) The (0.15) a (0.01)</td>
<td>this (0.39) that (0.28) That (0.11)</td>
<td>some (0.20) all (0.19) those (0.12)</td>
</tr>
</tbody>
</table>
Hierarchical refinement

- the (0.50)
 - a (0.24)
 - The (0.08)
 - the (0.54)
 - a (0.25)
 - The (0.09)
 - that (0.15)
 - this (0.14)
 - some (0.11)
 - a (0.61)
 - the (0.19)
 - an (0.11)
 - the (0.80)
 - The (0.15)
 - a (0.01)
 - this (0.39)
 - that (0.28)
 - That (0.11)
 - some (0.20)
 - all (0.19)
 - those (0.12)
Hierarchical Estimation Results

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Training</td>
<td>87.3</td>
</tr>
<tr>
<td>Hierarchical Training</td>
<td>88.4</td>
</tr>
</tbody>
</table>
Refinement of the , tag

- Splitting all categories equally is wasteful:
Adaptive Splitting

- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful
Adaptive Splitting Results

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>88.4</td>
</tr>
<tr>
<td>With 50% Merging</td>
<td>89.5</td>
</tr>
</tbody>
</table>
Number of Phrasal Subcategories
Number of Lexical Subcategories
Learned Splits

- **Proper Nouns (NNP):**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NNP-12</td>
<td>John</td>
<td>Robert</td>
<td>James</td>
</tr>
<tr>
<td>NNP-2</td>
<td>J.</td>
<td>E.</td>
<td>L.</td>
</tr>
<tr>
<td>NNP-1</td>
<td>Bush</td>
<td>Noriega</td>
<td>Peters</td>
</tr>
<tr>
<td>NNP-15</td>
<td>New</td>
<td>San</td>
<td>Wall</td>
</tr>
<tr>
<td>NNP-3</td>
<td>York</td>
<td>Francisco</td>
<td>Street</td>
</tr>
</tbody>
</table>

- **Personal pronouns (PRP):**

<table>
<thead>
<tr>
<th>PRP-0</th>
<th>It</th>
<th>He</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRP-1</td>
<td>it</td>
<td>he</td>
<td>they</td>
</tr>
<tr>
<td>PRP-2</td>
<td>it</td>
<td>them</td>
<td>him</td>
</tr>
</tbody>
</table>
Learned Splits

- Relative adverbs (RBR):
 - RBR-0: further, lower, higher
 - RBR-1: more, less, More
 - RBR-2: earlier, Earlier, later

- Cardinal Numbers (CD):
 - CD-7: one, two, Three
 - CD-11: million, billion, trillion
 - CD-0: 1, 50, 100
 - CD-3: 1, 30, 31
 - CD-9: 78, 58, 34
Natural Language Processing

Syntax and Parsing

Dan Klein – UC Berkeley
Latent Variable Grammars

Parse Tree T
Sentence w
Derivations $t : T$
Parameters θ

Grammar G
- $S_0 \rightarrow NP_0 \ VP_0$
- $S_0 \rightarrow NP_1 \ VP_0$
- $S_0 \rightarrow NP_0 \ VP_1$
- $S_0 \rightarrow NP_1 \ VP_1$
- $S_1 \rightarrow NP_0 \ VP_0$
- $S_1 \rightarrow NP_1 \ VP_1$
- $NP_0 \rightarrow PRP_0$
- $NP_0 \rightarrow PRP_1$
- $VBD_0 \rightarrow was$
- $VBD_1 \rightarrow was$
- $VBD_2 \rightarrow was$

Lexicon
- PRP_0 \rightarrow She
- PRP_1 \rightarrow She
- VBD_0 \rightarrow was
- VBD_1 \rightarrow was
- VBD_2 \rightarrow was
Coarse-to-Fine Inference

- Example: PP attachment

```
S
  NP
    PRP
      They
  VP
    ??????????
      V
        raised
      NP
        DT
          a
        NN
          point
      IN
        of
      NP
        order
```
Hierarchical Pruning

course:

split in two:

split in four:

split in eight:
Other Syntactic Models
Parse Reranking

- Assume the number of parses is very small
- We can represent each parse T as a feature vector $\varphi(T)$
 - Typically, all local rules are features
 - Also non-local features, like how right-branching the overall tree is
 - [Charniak and Johnson 05] gives a rich set of features
Shift-Reduce Parsers

- Another way to derive a tree:

- Parsing
 - No useful dynamic programming search
 - Can still use beam search [Ratnaparkhi 97]
Other Transformations

- Example: Left-Corner Transforms, Tetra-Tags
K-Best Parsing

[Huang and Chiang 05, Pauls, Klein, Quirk 10]
Dependency Parsing

- Lexicalized parsers can be seen as producing *dependency trees*

```
S(questioned)
  /   \
/    \ 
NP(lawyer) VP(questioned)
  /   \
/     \
PDT(the) NN(lawyer) Vt(questioned) NP(witness)
 /  \
/   \
the lawyer questioned 
```

- Each local binary tree corresponds to an attachment in the dependency graph
Dependency Parsing

- Pure dependency parsing is only cubic [Eisner 99]

- Some work on non-projective dependencies
 - Common in, e.g. Czech parsing
 - Can do with MST algorithms [McDonald and Pereira 05]
Data-oriented parsing:

- Rewrite large (possibly lexicalized) subtrees in a single step

- Formally, a *tree-insertion grammar*
- Derivational ambiguity whether subtrees were generated atomically or compositionally
- Most probable *parse* is NP-complete
TIG: Insertion

\[\phi, \psi, \phi', \psi \]

\[S \quad \text{NP} \quad \text{VP} \quad \text{NP} \quad \text{D} \quad \text{N} \quad \text{man} \quad \text{NP} \quad \text{V} \quad \text{NP} \quad \text{saw} \]
Tree-adjoining grammars

- Start with local trees
- Can insert structure with adjunction operators
- Mildly context-sensitive
- Models long-distance dependencies naturally
- ... as well as other weird stuff that CFGs don’t capture well (e.g. cross-serial dependencies)
TAG: Long Distance
CCG Parsing

- **Combinatory Categorial Grammar**
 - Fully (mono-) lexicalized grammar
 - Categories encode argument sequences
 - Very closely related to the lambda calculus (more later)
 - Can have spurious ambiguities (why?)

\[
\begin{align*}
John & \vdash NP \\
shares & \vdash NP \\
buys & \vdash (S\backslash NP)/NP \\
sleeps & \vdash S\backslash NP \\
well & \vdash (S\backslash NP)\backslash(S\backslash NP)
\end{align*}
\]

\[
S \rightarrow S \backslash NP \rightarrow (S\backslash NP)\backslash(S\backslash NP) \rightarrow NP \rightarrow John \rightarrow \text{buys shares}
\]