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Language Models




Noisy Channel Model: ASR

= \We want to predict a sentence given acoustics:
w* = arg max P(wla)
w
=" The noisy-channel approach:

w* = arg max P(wla)
= arg max P(alw)P(w)/P(a)

x arg max P(a|w)P(w)
w

/ \
Acoustic model: score fit Language model: score
between sounds and words plausibility of word sequences




The Speech Signal



Speech in a Slide

Frequency gives pitch; amplitude gives volume
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Articulation



culatory System

Art

Nasal cavity

-, Oral cavity
~ Pharynx

~ Vocal folds (in the larynx)

Trachea

Lungs

Sagittal section of the vocal tract (Techmer 1880)
Text from Ohala, Sept 2001, from Sharon Rose slide



Space of Phonemes

= Standard international phonetic alphabet (IPA) chart of consonants

LABIAL CORONAL DORSAL RADICAL LARYNGEAL
Bilabial | -1 | Dental [Alveolar| %" Retroflex] Palatal | Velar | Uvular [Pharyngeal gfoi;tal Glottal

Nasal m m n n n n N

Plosive pb oo td tdlcylkglqgec

Fricative (1)[3 fv| i03d|sz JS S 7, (;J XY XK

Approximant 1)) A 4 J W

Trill B r

Tap, Flap r ‘[:

frcative t k R ES

];;glc;’r:)!imant l l, K

Lateral flap 1 U{




Articulation: Place



Places of Articulation

post-alveolar/palatal
M velar
4 1

uvular

pharyngeal

labial

laryngeal/glottal

Figure thanks to Jennifer Venditti



Labial place

, Bilabial:
labid 0, b, m
Labiodental:
bilabial fv

Figure thanks to Jennifer Venditti



Coronal place

Dental:
th/dh
Alveolar:

t/d/s/z/|/n
Post:

sh/zh/y

Figure thanks to Jennifer Venditti



Dorsal Place

velar

Velar: uvular
k/g/ng pharyngeal

Figure thanks to Jennifer Venditti



Space of Phonemes

= Standard international phonetic alphabet (IPA) chart of consonants

LABIAL CORONAL DORSAL RADICAL LARYNGEAL
Bilabial | -1 | Dental [Alveolar| %" Retroflex] Palatal | Velar | Uvular [Pharyngeal gfoi;tal Glottal

Nasal m m n n n n N

Plosive pb oo td tdlcylkglqgec

Fricative (1)[3 fv| i03d|sz JS S 7, (;J XY XK

Approximant 1)) A 4 J W

Trill B r

Tap, Flap r ‘[:

frcative t k R ES

];;glc;’r:)!imant l l, K

Lateral flap 1 U{




Articulation: Manner



Manner of Articulation

In addition to varying by place, sounds vary by manner

Stop: complete closure of articulators, no air escapes via mouth
Oral stop: palate is raised (p, t, k, b, d, g)

Nasal stop: oral closure, but palate is lowered (m, n, ng)

Fricatives: substantial closure, turbulent: (f, v, s, z)

Approximants: slight closure, sonorant: (I, r, w)

Vowels: no closure, sonorant: (i, e, a)



Space of Phonemes

= Standard international phonetic alphabet (IPA) chart of consonants

LABIAL CORONAL DORSAL RADICAL LARYNGEAL
Bilabial | -1 | Dental [Alveolar| %" Retroflex] Palatal | Velar | Uvular [Pharyngeal gfoi;tal Glottal

Nasal m m n n n n N

Plosive pb oo td tdlcylkglqgec

Fricative (1)[3 fv| i03d|sz JS S 7, (;J XY XK

Approximant 1)) A 4 J W

Trill B r

Tap, Flap r ‘[:

frcative t k R ES

];;glc;’r:)!imant l l, K

Lateral flap 1 U{




Articulation: Vowels



Vowel Space

Front Nearfront Central Nearback Back

Close 1 fqg—uw
Near close Iey *0
Closemid € \ @ 946 ¥
Mid C)

Open mid € (2_3\3_1\
Near open e

Open a CEA_ a

U
} 0

)

' D

Vowels at right & left of bullets are rounded & unrounded.



Acoustics




“She just had a baby”

2000

2000

What can we learn from a wavefile?

No gaps between words (!)

Vowels are voiced, long, loud

Length in time = length in space in waveform picture

Voicing: regular peaks in amplitude

When stops closed: no peaks, silence

Peaks = voicing: .46 to .58 (vowel [iy], from second .65 to .74 (vowel [ax]) and so on
Silence of stop closure (1.06 to 1.08 for first [b], or 1.26 to 1.28 for second [b])

Fricatives like [sh]: intense irregular pattern; see .33 to .46



Time-Domain Information
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Example from Ladefoged



Simple Periodic Waves of Sound

i

0.99

-0.99; U
0

e Y axis: Amplitude = amount of air pressure at that point in time
e Zero is normal air pressure, negative is rarefaction

e X axis: Time

e Frequency = number of cycles per second

* 20 cycles in .02 seconds = 1000 cycles/second = 1000 Hz

0.02
Time (s)



Complex Waves: 100Hz+1000Hz

0.99

—0.9654

0 0.05
Time (s)



Spectrum

Frequency components (100 and 1000 Hz) on x-axis

Amplitude

1000

100 Frequency in Hz



Part of [ae] waveform from “had”
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2000
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Note complex wave repeating nine times in figure

Smaller waves which repeat 4 times for every large pattern
Large wave has frequency of 250 Hz (9 times in .036 seconds)
Small wave roughly 4 times this, or roughly 1000 Hz

Two little tiny waves on top of peak of 1000 Hz waves



Spectrum of an Actual Soundwave

e level (dB/Hz)
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Source / Channel



Qutput sound - =~ -—=---=-=-+ 3 C Output spectrum

Why these Peaks?

Output amplitude (decibe

= Articulation process: A

" The vocal cord vibrations create W\A
harmonics w am a

" The mouth is an amplifier ', _ B e

= Depending on shape of mouth, r
some harmonics are amplified more N :
than others | A, m

Source



Vowel [i] at increasing pitches
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Resonances of the Vocal Tract

The human vocal tract as an open tube:

Closed end

]
B

Open end

Mousfrc ty

Length 17.5 cm.

Air in a tube of a given length will tend to vibrate at
resonance frequency of tube.

>
%5971 mbuoL N

—|u
Constraint: Pressure differential should be maximal at
(closed) glottal end and minimal at (open) lip end.

(a)

Figure from W. Barry



From Sundberg



Computing the 3 Formants of Schwa

= Let the length of the tube be L
= F,=c/A, =c/(4L) = 35,000/4*17.5 = 500Hz
= F,=c/A,=c/(4/3L) =3c/4L =3*35,000/4*17.5 = 1500Hz
= F,=c/Ay=c/(4/5L) = 5c/4L = 5*35,000/4*17.5 = 2500Hz

= So we expect a neutral vowel to have 3 resonances at 500, 1500, and 2500 Hz

" These vowel resonances are called formants



From
Mark
Liberman

Cross section of vocal tract

Masal cavity

Lips

Teeth

Model of voeal tract

Back of
monith

T

hiroat

Back of
mouth Lips

Throat
Mouch

Back of

muouth Lips

Throat Mouth

Filter ratio (decibels) Filter ratio (decibels)

Filter ratio (decibels)
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Acoustic spectrum
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Seeing Formants: the Spectrogram
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Vowel Space

Front Near front

Close 1
Near close
Close mid
Mid

Open mid
Near open

Open

Vowels at right & left of bullets are rounded & unrounded.
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Spectrograms



How to Read Spectrograms

4000

J000

2000 17

1000

Hz L

0 =00 0 =00

[bab]: closure of lips lowers all formants: so rapid increase in all formants at
beginning of "bab"

[dad]: first formant increases, but F2 and F3 slight fall

[gag]: F2 and F3 come together: this is a characteristic of velars. Formant
transitions take longer in velars than in alveolars or labials

From Ladefoged “A Course in Phonetics”
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“She came back and started again
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From Ladefoged “A Course in Phonetics”



Speech Recognition



Speech Recognition Architecture
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Feature Extraction



Digitizing Speech
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wave Samples ° =

Figure: Bryan Pellom



Frame Extraction

= A 25 ms wide frame is extracted every 10 ms

10ms

a, a, a;

Figure: Simon Arnfield



Mel Freq. Cepstral Coefficients

= Do FFT to get spectral information

= Like the spectrogram we saw earlier

= Apply Mel scaling il
2000
= Models human ear; more sensitivity in lower freqs - B I
1600 /
= Approx linear below 1kHz, log above, equal samples above and 2 e
1200 T t
below 1kHz -
800 /
600 /
. . 400 T
= Plus discrete cosine transform - /

ot b b b b 1y

0 1000 2000 3000 4000 5000

[Graph: Wikipedia]



Final Feature Vector

= 39 (real) features per 10 ms frame:
= 12 MFCC features
= 12 delta MFCC features
= 12 delta-delta MFCC features
" 1 (log) frame energy
= 1 delta (log) frame energy

= 1 delta-delta (log frame energy)

= So each frame is represented by a 39D vector



Emission Model



HMMs for Continuous Observations

Solution 1: discretization

Solution 2: continuous emission models

Gaussians

Multivariate Gaussians

Mixtures of multivariate Gaussians

Solution 3: neural classifiers

A state is progressively

Context independent subphone (~3 per phone)

Context dependent phone (triphones)

State tying of CD phone

ency of second formant/Hz
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Vector Quantization

Codebook of 256

Idea: discretization |
_ (I 2
=  Map MFCC vectors onto discrete symbols 3
Input Feature Vector 4
(L
(OO, ...
(I
o o (I 144 s 1 44
This is called vector quantization or VQ Compare to Codebook
f best vector
MM ©* PSSt vector
(I

=  Compute probabilities just by counting

Output index

Not used for ASR any more

But: useful to consider as a starting point, and
for understanding neural methods

frequency of second formant Hz

00 00
frequency of first formant/Hz




Gaussian Emissions

= VQ s insufficient for top-quality ASR

= Hard to cover high-dimensional space with 308.3
codebook

=  Moves ambiguity from the model to the
preprocessing

6089

F, (Hz)

909.6+

= |nstead: assume the possible values
of the observation vectors are | |
normaIIy distributed. 000 2188 1337 485.3

=  Represent the observation likelihood
function as a Gaussian?

From bartus.org/akustyk



But we’re not there yet

Single Gaussians may do a bad job of
modeling a complex distribution in any
dimension

Even worse for diagonal covariances

Classic solution: mixtures of Gaussians

Modern solution: NN-based acoustic
models map feature vectors to
(sub)states

frequency of second formant/Hz

£

ad
o
=

g

]
L
e

g

g

g

500
0

KEY
= beat
bit
e bet
» bat
* bum
but
= rock
s ball
boot
o put

| | | | |
200 400 600 800 1000 1200 1400
frequency of first formant/Hz

From openlearn.open.ac.uk




HMM / State Model



State Transition Diagrams

= Bayes Net: HMM as a Graphical Model

= State Transition Diagram: Markov Model as a Weighted FSA

_—

chased




ASR Lexicon

Word model for "on"

Word model for "the"
80
o () (o)
CaUa0Os0=0 (aa)

Word model for " need" Word model for "I"

Figure: ] & M



Lexical State Structure

Word Model

Y
Observation e M M
Sequence
(spectral feature

vectors)

Figure:J & M



Adding an LM

P(W, | W)
P(W, | w,)\

P(W, | W,)}

W, @

P(W, | W)
P(W, | W)

P(W, | W)

P(W, | W,)
P(W W)

. Wi ' .

P(W, | W)

Figure from Huang et al page 618



State Space

= State space must include
= Current word (|V| on order of 50K+)
= |ndex within current word (|L| on order of 5)

= E.g. (lec[t]ure) (though not in orthography!)

= Acoustic probabilities only depend on (contextual) phone type

= E.g. P(x|lec[t]ure) = P(x]|t)

" From a state sequence, Can read a word sequence



State Refinement



Phones Aren’t Homogeneous

Frequency (Hz)

5000
N1/
W

0.48152 ‘%7203

Time (S)



Subphones

Phone Model

@)/ \bi(o) hl{“ﬁf wf*‘“ﬁ?' | by(0)
Observation : ! ,
Sequence
(spectral feature

0, o, 0; 0, 0; 0,

Figure: J & M



A Word with Subphones

Figure: J & M



Modeling phonetic context




“Need” with triphone models

38833383

#-n+iy n—iy+d iy—d+#

Figure: J & M



Lots of Triphones

= Possible triphones: 50x50x50=125,000

= How many triphone types actually occur?

= 20K word WSIJ Task (from Bryan Pellom)

= Word internal models: need 14,300 triphones

= Cross word models: need 54,400 triphones

= Need to generalize models, tie triphones



State Tying / Clustering

[Young, Odell, Woodland 1994] Initial set of untied states

How do we decide which triphones to
cluster together?

Use phonetic features (or "broad
phonetic classes’)

Stop
Nasal
Fricative
Sibilant
Vowel

lateral

Tie states in each leaf node

Figure:J & M



State Space

= Full state space
(LM context, lexicon index, subphone)

= Details:
= LM context is the past n-1 words
= Lexicon index is a phone position within a word (or a trie of the lexicon)
= Subphone is begin, middle, or end

= E.g. (after the, lec[t-mid]ure)

= Acoustic model depends on clustered phone context

= But this doesn’t grow the state space



Learning Acoustic Models



What Needs to be Learned?

= Emissions: P(x | phone class) S Q
= Xis MFCC-valued

* In neural methods, actually have P( phone | window around x )
and then coerce those scores into P(x | phone)

* Transitions: P(state | prev state)
» If between words, this is P(word | history)
= |finside words, this is P(advance | phone class)

= (Really a hierarchical model)



Estimation from Aligned Data

What if each time step were labeled with its (context-dependent sub) phone?

/k/ /ae/ /ae/ /ae/ /t/

Can estimate P(x|/ae/) as empirical mean and (co-)variance of x’s with label
/ae/, or mixture, etc/

Problem: Don’t know alignment at the frame and phone level



Forced Alignment

= What if the acoustic model P(x| phone) were known (or approximately known)?

= ... and also the correct sequences of words / phones

= Can predict the best alighnment of frames to phones

“speech lab”

ssssssssppppeeeeeeetshshshshllllaeaeaebbbbb

-"lw‘. " | | l | TR “I"Iill-ll lllllllllnlnull..a .,,,I,,”
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= Called “forced alignment”



Forced Alignment

Create a new state space that forces the hidden variables to transition through phones in the
(known) order

O
DalPaliatat®aCOnD

Still have uncertainty about durations: this key uncertainty persists in neural models (and in
some ways is worse now)

In this HMM, all the parameters are known
Transitions determined by known utterance
Emissions assumed to be known

Minor detail: self-loop probabilities

Just run Viterbi (or approximations) to get the best alignment



EM for Alignment

= |nput: acoustic sequences with word-level transcriptions

= We don’t know either the emission model or the frame alignments

= Expectation Maximization

Alternating optimization

= |mpute completions for unlabeled variables (here, the states at each time step)
= Re-estimate model parameters (here, Gaussian means, variances, mixture ids)
= Repeat

®= One of the earliest uses of EM for structured problems



Staged Training and State Tying

Creating CD phones:

Start with monophone, do EM training

Clone Gaussians into triphones

Build decision tree and cluster Gaussians

Clone and train mixtures (GMMs)

General idea:

Introduce complexity gradually

Interleave constraint with flexibility

M -
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Neural Acoustic Models

= Given an input x, map to s; this score coerced into generative
P(x|s) via Bayes rule (liberally ignoring terms)

= One major advantage of the neural net
is that you can look at many xX’s atonce @@ @ P(s¢lxe)

to capture dynamics (important!
P y (imp ) ONN

[Diagram from Hung-vi Li]



Decoding



State Trellis

qbt(st—lzst) = P($t|8t)P(St|St—1)

P(z,s) = I:P(mds%—)P(sdsi_l)

- ]::th(Si—lpsi)

Figure: Enrique Benimeli



Beam Search

= Lattice is not regular in structure! Dynamic vs static decoding

= At each time step
= Start: Beam (collection) v, of hypotheses s at time t
" Foreachsiny,
= Compute all extensions s’ at time t+1
= Scores’ froms
" Puts’inv,, replacing existing s’ if better

=  Advance to t+1l

= Beams are priority queues of fixed size* k (e.g. 30) and retain only the top k
hypotheses



Dynamic vs Static Decoding

= Dynamic decoding
= Build transitions on the fly based on model / grammar / etc

= Very flexible, allows heterogeneous contexts easily (eg complex LMs)

= Static decoding

= Compile entire subphone/vocabulary/LM into a huge weighted FST
and use FST optimization methods (eg pushing, merging)

= Much more common at scale, better eng and speed properties



Direct Neural Decoders

= Lots of work in decoders that skip explicit / discrete alignment
= Decode to phone, or character, or word

= Handle alighments softly (eg attention) or discretely (eg CTC)

H~ " 1IS_~~~"""F~~ RI"""7" 7" END™ " 'S _

i -

= Catching up but not yet as good as structured systems

probability
o =

[Diagram from Graves 2014]



Speech Synthesis

[Many slides from Dan Jurafsky]



Early TTS

Von Kempelen, 1791

SH" lever
“SH" whistle . Reed cut-off

Mostrils

4
Speech saunds\\
come out here _

Resonator
of leather

S
Auxiliary bellows "= 48" whistle

Leather Nostr\il

f— - Reed
JE
o =t Compressed
WZIZZTZA gir chamber




The Voder
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Developed by Homer Dudley at Bell Telephone Laboratories, 1939



Voder Architecture

= An early hardware
solution that
already captured
the flow of
parametric
synthesizers

Unwaiced
source

Source control

Yoiced
source

Loudspeaker

Vg
ﬁL Reconance control
N P

Armplifier

___________
|

ool

“guiet”
t-d
[p-b )
. | VODER
' | energy switch "stops" CONSOLE |
|

Pitch control pedal



Modern TTS

1960’s first full TTS: Umeda et al (1968)
1970’s
Joe Olive 1977 concatenation of linear-prediction diphones
Speak and Spell
1980’s
1979 MIT MITalk (Allen, Hunnicut, Klatt)
1990’s — 2000’s
Diphone synthesis
Unit selection synthesis
Recent

Parametric synthesis returns!




TTS Architecture

PG&E will file schedules on April 20.

2
| TextNormalizaton |
Z
[ Phonetic Analysis |

Text Analysis l

[ Prosodic Analysis |
1

piyjhiyaend

T
Waveform Synthesis IT




Typical Data for TTS

= Professional voice actor
= Carefully selected material
= High-quality recordings
= 10-100 hours @ 44kHz
= High signal-to-noise ratio
= Consistent audio levels
= No vocal issues (creaky voice)

= Anechoic-like environment

= Usually lots of post-processing
(alignments, pronunciations, ...)



Concatenative Synthesis

* Commercially dominant (diphones, unit-selection, etc)

Audio Snippets + Features —
\ J ( )
v
( ) Acoustic
Unit Scoring Function Units
\ y DB
f . . . | \_/
Join Scoring Function




Time-domain Pitch-Synchronous Overlap and Add (TD-PSOLA)



Formant Synthesis
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Direct-to-Wave Synthesis

Waveform samples
4
Wﬂ‘u‘ENEi Mol

mel 5 pectmgra m

5 Conv Layer Post-MNet ]

i

Bi-directional LSTM Linear Projection
[]
Location [
[ 3 Conv Layers Sensitive 2 LSTM Layers ].:-_}
4 Attention [
[ Character Embedding ] [ 2 Layer Pre-Net

https://ai.googleblog.com/2017/12/tacotron-2-generating-human-like-speech.html




