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Truth-Conditional Semantics



Truth-Conditional Semantics

Linguistic expressions:
= “Bob sings”

Logical translations:
= sings(bob)
* Couldbep 1218(e_397)

Denotation:

= [[bob]] = some specific person (in some context)
= [[sings(bob)]] = ???

Types on translations:
" bob:e (for entity)
= sings(bob) : t (for truth-value)

NP

|
Bob

S sings(bob)
/\
VP

sings



Truth-Conditional Semantics

= Proper names:

= Refer directly to some entity in the world

= Bob: bob [[bob]]W = ??7? S sings(bob)
/\
NP VP

| |
Bob sings
bob Ay.sings(y)

= Sentences:
= Are either true or false (given
how the world actually is)
= Bob sings : sings(bob)

= So what about verbs (and verb phrases)?
" sings must combine with bob to produce sings(bob)
= The A-calculus is a notation for functions whose arguments are not yet filled.
= sings : Ax.sings(x)
= This is a predicate — a function which takes an entity (type e) and produces a truth value (type t).
We can write its type as e—>t.

= Adjectives?



Compositional Semantics

So now we have meanings for the words
How do we know how to combine words?
Associate a combination rule with each grammar rule:

= S:B(a) >NP:a VP:[  (function application)
" VP:iAx.a(x) AB(X) > VP:a and: Y VP:[B (intersection)

Example:
sings(bob) A dances(bob)
S [Ax.sings(x) A dances(x)](bob)

/\
NP VP  AX.sings(x) A dances(x)
| /’\
Bob VP and VP
bob | |
sings dances

Ay.sings(y) Az.dances(z)



Denotation

= What do we do with logical translations?
* Translation language (logical form) has fewer ambiguities
= Can check truth value against a database
= Denotation (“evaluation”) calculated using the database

= More usefully: assert truth and modify a database, either explicitly or implicitly
eg prove a consequence from asserted axioms
= Questions: check whether a statement in a corpus entails the (question, answer)
pair:
= “Bob sings and dances” — “Who sings?” + “Bob”

= Chain together facts and use them for comprehension



Other Cases

" Transitive verbs:

= Two-place predicates of type e—>(e—t).

likes : Ax.Ay.likes(y,x)

= |ikes Amy : Ay.likes(y,Amy) is just like a one-place predicate.

=  Quantifiers:

What does “Everyone” mean here?
Everyone : Af.Vx.f(x)

Mostly works, but some problems
= Have to change our NP/VP rule.

= Won't work for “Amy likes everyone.”

“Everyone likes someone.”
This gets tricky quickly!

vx.likes(x,amy)
S [M.YX.f(X)](Ly.likes(y,amy))

/\
NP VP Ay.likes(y,amy)
| N
Everyone  VBP NP
MUxfx) | |
likes Amy

AX.Ay.likes(y,x) amy



Indefinites

= First try

= “Bob ate a waffle” : ate(bob,waffle)
= “Amy ate a waffle” : ate(amy,waffle)

= Can’t be right!

= Jx:waffle(x) A ate(bob,x)
» What does the translation

of “a” have to be?
= \What about “the”?

= What about “every”?

S
/\
NP VP
| /\
Bob VBD NP
| N\

ate a waffle



Grounding

= Grounding

= So why does the translation likes : Ax.Ay.likes(y,x) have anything to do
with actual liking?

= |t doesn’t (unless the denotation model says so)

= Sometimes that’s enough: wire up bought to the appropriate entry in
a database

= Meaning postulates
" |nsist, e.g Vx,y.likes(y,x) — knows(y,x)
= This gets into lexical semantics issues

= Statistical / neural version?



Tense and Events

In general, you don’t get far with verbs as predicates
Better to have event variables e

= “Alice danced” : danced(alice)
= Je:dance(e) A agent(e,alice) A (time(e) < now)
Event variables let you talk about non-trivial tense / aspect structures
= “Alice had been dancing when Bob sneezed”
= Je, e’ : dance(e) A agent(e,alice) A
sneeze(e’) A agent(e’,bob) A
(start(e) < start(e’) A end(e) = end(e’)) A
(time(e’) < now)

Minimal recursion semantics, cf “object oriented” thinking



Adverbs

= What about adverbs?
= “Bob sings terribly”

= terribly(sings(bob))? S
/\
= (terribly(sings))(bob)? NP VP
. | N
de present(e) A type(e, Bob VBP  ADVP

singing) A agent(e,bob) | |
A manner(e, terrible) ? sings terribly
Gets complex quickly...



Propositional Attitudes

“Bob thinks that | am a gummi bear”
= thinks(bob, gummi(me)) ?
= thinks(bob, “I am a gummi bear”) ?
= thinks(bob, *gummi(me)) ?

Usual solution involves intensions (*X) which are, roughly, the set of possible worlds
(or conditions) in which Xis true

Hard to deal with computationally

= Modeling other agents’ models, etc
= Can come up in even simple dialog scenarios, e.g., if you want to talk about what your bill claims

you bought vs. what you actually bought



Trickier Stuff

Non-Intersective Adjectives

green ball : Ax.[green(x) A ball(x)]
fake diamond : Ax.[fake(x) A diamond(x)] ? —» AX.[fake(diamond(x))

Generalized Quantifiers

the : Af.[unique-member(f)]
all : AMf. Ag [Vx.f(x) = g(x)]
most?

Could do with more general second order predicates, too (why worse?)
= the(cat, meows), all(cat, meows)

Generics

“Cats like naps”
“The players scored a goa

|II

Pronouns (and bound anaphora)

“If you have a dime, put it in the meter.”

... the list goes on and on!



Scope Ambiguities

= Quantifier scope
= “All majors take a data science class”
= “Someone took each of the electives”
= “Everyone didn’t hand in their exam”

= Deciding between readings

= Multiple ways to work this out
= Make it syntactic (movement)
= Make it lexical (type-shifting)



Classic Implementation, TAG, Idioms

= Add a “sem” feature to each context-free rule
= S —> NPloves NP
= S[sem=loves(x,y)] — NP[sem=x] loves NP[sem=y]

= Meaning of S depends on meaning of NPs

= TAG version: s loves(x,y) s died(x)
NP VP NP VP
X /\ X /\
V NP V NP
loves Y kicked the bucket

= Template filling: S[sem=showflights(x,y)] —
I want a flight from NP[sem=x] to NP[sem=Y]



Logical Form Translation



Mapping to LF: Zettlemoyer & Collins 05/07

The task:

Input: List one way flights to Prague.
Output: Ax.flight (x)A one way(x)A to(x,PRG)

Challenging learning problem:

= Derivations (or parses) are not annotated
= Approach: [Zettlemoyer & Collins 2005]

= Learn a lexicon and parameters for a weighted Combinatory
Categorial Grammar (CCG)

[Slides from Luke Zettlemoyer]



Background

= Combinatory Categorial Grammar (CCG)
= Weighted CCGs

= Learning lexical entries: GENLEX



CCG Parsing

= Combinatory
Categorial Grammar

Fully (mono-)
lexicalized grammar

Categories encode
argument sequences

Very closely related
to the lambda
calculus

Can have spurious
ambiguities (why?)

John = NP : john'

shares = NP : shares’'

buys = (S\NP) /NP : Ax.Ay.buys'xy
sleeps = S\NP : Ax.sleeps'x

well = (S\NP)\(S\NP) : A/ Ax.well'( fx)

/S\
NP S\NP

I ’ ~
John (S\NP)/NP NP
' |

buys shares



CCG Lexicon

Words Category
flights N : Ax.flight (x)

to (N\N) /NP : Ax.Af.Ay.f(x) A to(y,x)
Prague NP : PRG

New York city NP : NYC




Parsing Rules (Combinators)

Application
= X/Y : £ Y : a =>
- Y @ a X\Y f =>

Composition
= X/Y : £
= Y\Z : f

Additional rules:
= Type Raising
= Crossed Composition

X/7
X\Z :



CCG Parsing

Show me flights to Prague
S/N N (N\N) /NP NP
Af. £ Ax.flight(x) Ay.Af.Ax.f(y)Ato(x,y) PRG

N\N

Af.Ax.f(x) Ato(x,PRG)

N
Ax.flight (x) Anto(x,PRG)

S
Ax.flight (x) Anto(x,PRG)



Weighted CCG

Given a log-linear model with a CCG lexicon A, a
feature vector f, and weights w.

= The best parse is:

y*=argmax w- f(x,))
Y

Where we consider all possible parses y for
the sentence x given the lexicon A.



Lexical Generation

Input Training Example

Sentence: Show me flights to Prague.
Logic Form: Ax.flight (x)A to(x,PRG)

Output Lexicon

Words Category
Show me S/N : Af.f
flights N : Ax.flight (x)
to (N\N) /NP : Ax.Af.Ay.f(x) A tol(y,x)

Prague NP : PRG




GENLEX: Substrings X Categories

Input Training Example

Sentence: Show me flights to Prague.
Logic Form: Ax.flight (x)A to(x,PRG)

Output Lexicon

All possible substrings: Categories created by rules that
Show trigger on the logical form:
me
NP : PRG
flights
cee X N : Ax.flight (x)
Show me (S\NP) /NP : Ax.Ay.to(y,x)

Show me flights

, N\N) /NP : Ay.Af.Ax. ..
Show me flights to ( ) Y B

[Zettlemoyer & Collins 2005]



Robustness

The lexical entries that work for:

Show me the latest flight from Boston to Prague on Friday

S/NP NP/N N N\N N\N N\N

Will not parse:

Boston to Prague the latest on Friday

NP N\N NP/N NAN



Relaxed Parsing Rules

Two changes

= Add application and composition rules that relax word order

= Add type shifting rules to recover missing words

These rules significantly relax the grammar

» |ntroduce features to count the number of times each new rule is
used in a parse



Review: Application




Disharmonic Application

= Reverse the direction of the principal category:

X\Y : £ Y : a => X : f(a)
Y : a X/Y : £ => X : f(a)
flights one way
N N/N
Ax.flight (x) Af.Ax.f (x)none_ way (x)
N

Ax.flight (x) none way (x)



Missing content words

Insert missing semantic content

" NP : ¢ => N\N : Af.Ax.f(x) A p(x,cC)

flights Boston to Prague
N NP N\N
Ax.flight (x) BOS Af.Ax.f(x) Anto(x,PRG)
N\N

Af.Ax.f(x) Afrom(x,BOS)

N
Ax.flight (x) Afrom(x,BOS)

N
Ax.flight (x) Afrom(x,BOS) Ato(x,PRG)



Missing content-free words

Bypass missing nouns

= N\N : £ => N : f(Ax.true)

Northwest Air to Prague
N/N N\N
Af.Ax.f (x)rairline (x,NWA) Af.Ax.f (x)nto(x,PRG)
N

Ax. to(x,PRG)

N
Ax.airline(x,NWA) A to(x,PRG)



Inputs: Training set {(x, z,) | i=1...n} of sentences and logical forms.

lexicon A. Initial parameters w. Number of iterations T.
Training: Fort=1...T, i =1...n:
Step 1: Check Correctness
» Let y*=argmax w- f(x;y)
« If L(y*) =z, go to the next example
Step 2: Lexical Generation
« SetA=A U GENLEX(x,z,)
« Let y=arg max w- f(x,)

. y st L(y)Fz . ) .
 Define A, to be the lexical entries in y*

« Setlexiconto A=A U A,
Step 3: Update Parameters

o Let y'=argmax w- f(x,y)

c If LO) 2z,

* Set w=w+ f(x,9)— f(x,))
Output: Lexicon A and parameters w.

Initial



Neural Encoder-Decoder
Approaches



Encoder-Decoder Models

» Can view many tasks as mapping from an input sequence of tokens to an
output sequence of tokens

» Semantic parsing:
What states border Texas — A x state( x ) A borders( x , e89 )

» Syntactic parsing
The dogran —— (S (NP (DT the) (NN dog) ) (VP (VBD ran) ) )

(but what if we produce an invalid tree or one with different words?)

» Machine translation, summarization, dialogue can all be viewed in this
framework as well — our examples will be MT for now

Next slides from Greg Durrett



Semantic Parsing as Translation

GEO
x: “what is the population of iowa ?”
y: _answer ( NV , (
_population ( NV , V1 ) , _const (
VO , _stateid ( iowa ) ) ) )

ATIS
x: “can you list all flights from chicago to milwaukee”
y: ( _lambda $0 e ( _and

( _flight $0 )

( _from $0 chicago : _ci )

( _to $0 milwaukee : _ci ) ) )
Overnight

x: “when is the weekly standup”

y: ( call listValue ( call
getProperty meeting.weekly_standup
( string start_time ) ) )

» Prolog

» Lambda calculus

» Other DSLs



Semantic Parsing as Seq2Seq

“what states border Texas”

{

lambda x ( state( x ) and border( x , e89 ) ) )

» Write down a linearized form of the semantic parse, train seq2seq models
to directly translate into this representation

» What are some benefits of this approach compared to grammar-based?

» What might be some concerns about this approach? How do we mitigate
them?

Jia and Liang (2016)



Problem: Lack of Inductive Bias

“what states border Texas” “What states border Ohio”

» Parsing-based approaches handle these the same way

» Possible divergences: features, different weights in the lexicon
» Can we get seq2seq semantic parsers to handle these the same way?
» Key idea: don’t change the model, change the data

» “Data augmentation”: encode invariances by automatically generating
new training examples



Possible Solution: Data Augmentation

Examples Jia and Liang (2016)

(“what states border texas ?”,
answer (NV, (state(V0), next_to(V0, NV), const(V0, stateid(texas)))))

Rules created by ABSENTITIES
ROOT — ( “what states border STATEID ?”,

answer (NV, (state(V0), next_to(V0, NV), const (V0, stateid(STATEID)))))
STATEID — ( “fexas”, texas )

STATEID — (“ohio”, ohio)

» Lets us synthesize a “what states border ohio ?” example

» Abstract out entities: now we can “remix” examples and encode
invariance to entity ID. More complicated remixes too



Possible Solution: Copying

GEO | ATIS
No Copying 74.6 | 69.9
With Copying | 85.0 | 76.3

» For semantic parsing, copying tokens from the input (texas) can be
very useful

» Copying typically helps a bit, but attention captures most of the
benefit. However, vocabulary expansion is critical for some tasks
(machine translation)

Jia and Liang (2016)



Mapping to Programs

show me the fare from ci0O to cil

lambda $0 e
( exists $1 ( and ( from $1 ciO )
{ to 51 gil )
( = ( fare $1 ) $0 ) ) )

2“ (3 \ name: [
L \ )'& 'p’, Ii!, rpr, el ’
’

\ :g':ﬁi':H'ZEf :’i class DireWolfAlpha (MinionCard) :
’ ’ P a ' .
' -‘\ gemks [P9] def _ _init__ (self):
N B type: ['Minion’] super () .__init__ {
!ﬂj_!_‘\ izgfy}gizgﬁnl "Dire Wolf Alpha", 2, CHARACTER_CLASS.ALL,
DireWOLLAIDNA, IR ETS CARD_RARITY.COMMON, minion_type=MINION_TYPE.BEAST)
- e def;g%zziggj [’minions’ S def create_minion(self, player):
~ | ’+’?’U,:Aﬂncw, 2 ’ return Minion(2, 2, auras=|[
health: [’2’] Aura (ChangeAttack (1), MinionSelector (Adjacent()))

attack: [’2’

\ i ) 1)
O - 4 N\ durability: [7-17]
‘ Y S Beastin o ;2

[Rabinovich, Stern, Klein, 2017]



Structured Models

e Meaning representations (e.g., Python) have strong underlying syntax

e How can we explicitly model the underlying syntax/grammar of the target meaning
representations in the decoding process?

Python Abstract Grammar Abstract Syntax Tree
expr — Name | Call ;
Call — expr|func] expr*[args] keyword*[keywords] =
If +— exprtest] stmt*[body] stmt*[orelse] |::> Lexprifunc) ] (Cexprefargs ] {Keyword*[keywords]]
For v expr[target] expr*[iter] stmt*[body] keyword
stmt*[orelse] (strgsorted) | [ Name :

FunctionDef +— identifier[name] expr*|iter]

stmt*[body] stmt*[orelse] sorted(my list, reverse=True)

Next section includes slides from Yin / Neubig



Abstract Syntax Trees

Input Intent (x) sort my list in descending order

__________________________________

-
-

Generated AST (y)

[expr[func]] [expr*[args]] [keyword*[keywords]]
str(my list | Deterministic transformation

,_,;:Z'\ (using Python astor library)

Surface Code (c) sorted(my list, reverse=True)

TR —



AST-Structured Neural Modules

stmt

() ClassDef\

Q 1f
@ For
@ vwhile
@ Assign
@ Return

/

stmt*

([COOOO0)
—

[©OOO0OO)

If

stmt

[©00009)

—— expr
( 1f test
body stmt*
L orelse
——— stmt*
identifier @ init
@ create minion
© add buff add_buff
@ change_attack
@ damage
® ...

J

[Rabinovich, Stern, Klein, 2017]



AST-Structured Fragments

ClassDef

name

“DireWwolfAlpha”

body

[ identifier ]

FunctionDef FunctionDef “Aura” func args
[ identifier ] [ identifier ]
“MinionCard” Y_init_ " “create_minion” [ identifier ] [ Num ] [ identifier ] [ call ]
“ChangeAttack” “MinionSelector” func args

| object l
1

“Adjacent”



Example Results Across Tasks

ATIS GEO JOBS

System Accuracy | System Accuracy | System Accuracy
ZH15 84.2 ZH15 88.9 ZH15 85.0
ZC07 84.6 KCAZI13 89.0 PEKO3 88.0
WKZ14 91.3 WKZ14 90.4 LJK13 90.7
DL16 84.6 DL16 87.1 DL16 90.0
ASN 85.3 ASN 85.7 ASN 914

+ SUPATT 85.9 + SUPATT 87.1 + SUPATT 92.9

[Rabinovich, Stern, Klein, 2017]



Copying / Pointer Networks

Intent  join app config.path and string 'locale’ into a file path, substitute it for localedir.

Pred. localedir = os.path.join(app-config.path, ’locale’) v/

Intent  self.plural is an lambda function with an argument n, which returns result of boolean
expression n not equal to integer 1

Pred. self.plural = lambda n: len(mn) X

Ref. self.plural = lambda n: int(n!=1)

Intent  <name> Burly Rockjaw Trogg </name> <cost> 5 </cost> <attack> 3 </attack>
<defense> 5 </defense> <desc> Whenever your opponent casts a spell, gain 2 Attack.
</desc> <rarity> Common </rarity> ...

Ref.

class BurlyRockjawTrogg(MinionCard) :
def __init__(self):
super().__init__(’Burly Rockjaw Trogg’, 4, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON)
def createminion(self, player):
return Minion(3, 5, effects=[Effect(SpellCast(player=EnemyPlayer()),
ActionTag(Give (ChangeAttack(2)), SelfSelector()))]) v/



