

#### **Reasoning About Alternatives**

#### Core Idea:

Large chunks of linguistic understanding can be attributed to reasoning about alternatives. E.g., if a speaker says X but not Y, then perhaps Y isn't true, or the speaker doesn't want to talk about Y.

2

### Reasoning About Alternatives

Core Idea:

Large chunks of linguistic understanding can be attributed to reasoning about alternatives. E.g., if a speaker says X but not Y, then perhaps Y isn't true, or the speaker doesn't want to talk about Y.

Example:

"I didn't steal your car."



#### **Reasoning About Alternatives**

#### Core Idea:

Large chunks of linguistic understanding can be attributed to reasoning about alternatives. E.g., if a speaker says X but not Y, then perhaps Y isn't true, or the speaker doesn't want to talk about Y.

Example:

"I didn't steal your car."

Conveyed meaning:

Someone stole your car, but it wasn't me.

### **Reasoning About Alternatives**

#### Core Idea:

Large chunks of linguistic understanding can be attributed to reasoning about alternatives. E.g., if a speaker says X but not Y, then perhaps Y isn't true, or the speaker doesn't want to talk about Y.

Example:

"I didn't steal your car."

Conveyed meaning: Contrary to what you think, I did not steal your car.

5

# Reasoning About Alternatives

#### Core Idea:

Large chunks of linguistic understanding can be attributed to reasoning about alternatives. E.g., if a speaker says X but not Y, then perhaps Y isn't true, or the speaker doesn't want to talk about Y.

Example:

"I didn't steal your car."

Conveyed meaning: I did something to your car, but not stealing it. E.g., I just borrowed it.

6

8

#### **Reasoning About Alternatives**

Core Idea:

Large chunks of linguistic understanding can be attributed to reasoning about alternatives. E.g., if a speaker says X but not Y, then perhaps Y isn't true, or the speaker doesn't want to talk about Y.

Example:

"I didn't steal your car."

Conveyed meaning: I stole somebody else's car.



#### **Reasoning About Alternatives**

#### Core Idea:

Large chunks of linguistic understanding can be attributed to reasoning about alternatives. E.g., if a speaker says X but not Y, then perhaps Y isn't true, or the speaker doesn't want to talk about Y.

Example:

"I didn't steal your car."

Conveyed meaning:

I stole something you own, but not your car.





Q: Does some mean not all?

A: Not always:

"Some of the students were late for class; in fact, they all were."

Scalar Implicature

"I'd be much happier if some grocery stores had eggs in stock."

We call this *implicature*. The implicature occurs because a rational listener might assume that the speaker would have said *all* if they meant to, since *all* is the more informative choice.



### Implicature ≠ Entailment

Implicatures are cancellable:

"Some of the students were late for class; in fact, they all were."

But presuppositions and entailments aren't:

"I stopped going into the office; in fact, I've never been there before." "I stopped going into the office; in fact, I didn't stop going in."

### Implicature ≠ Entailment

This distinction even shows up in perjury law (Bronston v. United States):

Q. "Do you have any bank accounts in Swiss banks, Mr. Bronston?"

- A. "No, sir."
- Q. "Have you ever?"

A. "The company had an account there for about six months, in Zürich."

- Q. "Have you any nominees who have bank accounts in Swiss banks?"
- A. "No, sir."
- Q. "Have you ever?"

A. "No, sir."

13



14

#### Gricean Maxims

Grice (1975) claims that speakers and listeners typically follow four maxims for cooperative communication.

- 1. <u>Quantity</u> be as informative as possible, give as much information as needed, but no more
- 2. <u>Quality</u> be truthful, and don't give information that is false or unsupported by evidence
- 3. <u>Relation</u> be relevant, and say things that are pertinent to the discussion
- 4. <u>Manner</u> be clear, brief, and orderly as possible; avoid unnecessary prolixity



#### The Cooperative Principle

The Cooperative Principle (Grice 1975):

Make your contribution such as is required, at the stage at which it occurs, by the accepted purpose or direction of the talk exchange in which you are engaged.







|          | Rational        | Speech Act        | s (RSA) Model             |
|----------|-----------------|-------------------|---------------------------|
| Sample F | RSA Calculation | n: Look at the ma | n who is wearing glasses. |
|          | Glasses         | Hat               | $L_2$                     |
| <b></b>  | 1               | 0                 | $S_1^2$                   |
|          | 1               | 1                 | $L_0$                     |
|          | 1               | T                 |                           |



# Rational Speech Acts (RSA) Model

Sample RSA Calculation: Look at the man who is wearing glasses.







# Rational Speech Acts (RSA) Model



#### Issues with the RSA Model

Some issues with the Frank & Goodman (2012) model:

- Requires explicit lexicon for semantic evaluation
- Requires normalization over small set of alternative utterances and alternative meanings
- Doesn't account for real-world pragmatic phenomena like over-informative referring expressions, anticipatory implicatures, etc.
- No model of topic relevance

26

## Learning in the RSA Model

Monroe & Potts (2015) propose a differentiable RSA model, without a fixed lexicon:

• Feature representation  $\varphi(msg, w, L)$  and parameters  $\theta$ , e.g.:

 $S_0(\text{msg} \mid w, L; \theta) \propto e^{\varphi(\text{msg}, w, L)}$ 

- Continue for layered models, and maximize probability of learned text under  $\mathrm{S}_2$  model





#### esults on TUNA Corpus

|                                     | Furniture         |      | People            |      | All               |      |
|-------------------------------------|-------------------|------|-------------------|------|-------------------|------|
| Model                               | Acc.              | Dice | Acc.              | Dice | Acc.              | Dice |
| RSA $s_0$ (random true message)     | 1.0%              | .475 | 0.6%              | .125 | 1.7%              | .314 |
| RSA $s_1$                           | 1.9%              | .522 | 2.5%              | .254 | 2.2%              | .386 |
| Learned $S_0$ , basic feats.        | 16.0%             | .779 | 9.4%              | .697 | 12.9%             | .741 |
| Learned $S_0$ , gen. feats. only    | 5.0%              | .788 | 7.8%              | .681 | 6.3%              | .738 |
| Learned $S_0$ , basic + gen. feats. | $\mathbf{28.1\%}$ | .812 | 17.8%             | .730 | <b>23.3</b> %     | .774 |
| Learned $S_1$ , basic feats.        | 23.1%             | .789 | 11.9%             | .740 | 17.9%             | .766 |
| Learned $S_1$ , gen. feats. only    | 17.4%             | .740 | 1.9%              | .712 | 10.3%             | .727 |
| Learned $S_1$ , basic + gen. feats. | <b>27.6</b> %     | .788 | $\mathbf{22.5\%}$ | .764 | $\mathbf{25.3\%}$ | .777 |

30

29

# Issues with the RSA Model

Some issues with the Frank & Goodman (2012) model:

- Requires explicit lexicon for semantic evaluation-
- Requires normalization over small set of alternative utterances and alternative meanings
- Doesn't account for real-world pragmatic phenomena like over-informative referring expressions, anticipatory implicatures, etc.
- No model of topic relevance



#### Neural RSA (Andreas & Klein, 2016)

Applies sampling-based method to address normalization over theoretically infinite set of potential utterances. Focuses on reference game task shown below:



| $\wedge$ | Neural RSA (Andreas & Klein, 2016) |         |          |           |               |  |  |
|----------|------------------------------------|---------|----------|-----------|---------------|--|--|
| Despit   | e worries about nori               | malizin | g over   | entire se | t of potentia |  |  |
| utterai  | nces, the required nu              | umber   | of sam   | ples leve | ls off:       |  |  |
|          | # complex                          | 1       | 10       | 100       | 1000          |  |  |
|          | # samples                          | 1       | 10<br>75 | 83        | 1000<br>85    |  |  |







# Colors in Context

 P(ktrue | X): distribution parameterized in HSV space as follows: there are certain ranges where a color can "definitely apply", others where it can apply



- ▶ P(k<sub>said</sub> | k<sub>true</sub>): captures availability; prior towards common colors
- Model combines language / reasoning with basic perception characteristic of grounding

McMahan and Stone (2014)

37







#### **Incremental Pragmatics**

Incremental pragmatics is a wellmotivated mechanism of human language processing.

Sedivy, et al. (1999):

- Target: "Touch the yellow bowl."
- Before the word "bowl" is uttered, participants look more toward the comb instead of the bowl



# Incremental RSA (Cohn-Gordon, et al.)

Cohn-Gordon, Goodman, & Potts (2018): Pragmatically Informative Image Captioning with Character-Level Inference

Cohn-Gordon, Goodman, & Potts (2019): An Incremental Iterated Response Model of Pragmatics

#### Pragmatic Image Captioning

Task: given multiple images, one of which is the target, write a caption to distinguish the target image from the others

Approach:

- Instead of sampling utterances, normalize over all possible characters and distractor images
- Use beam search decoding to generate optimal captions

41



# Pragmatic Image Captioning



 $S_0$  caption: a double decker bus  $S_1$  caption: a red double decker bus

### Issues with the RSA Model

Some issues with the Frank & Goodman (2012) model:

- Requires explicit lexicon for semantic evaluation-
- Requires normalization over small set of alternative utterancesand alternative meanings-
- Doesn't account for real-world pragmatic phenomena likeover-informative referring expressions, anticipatoryimplicatures, etc.
- No model of topic relevance

#### 45



Some issues with the Frank & Goodman (2012) model:

- Requires explicit lexicon for semantic evaluation-
- Requires normalization over small set of alternative utterancesand alternative meanings-
- Doesn't account for real-world pragmatic phenomena likeover informative referring expressions, anticipatoryimplicatures, etc.
- No model of topic relevance (no general solution yet)



# Visually-Grounded Instructions



#### Human Description:

walk through the kitchen. go right into the living room and stop by the rug.

#### Base Speaker: walk past the dining room table and chairs and wait there.

Pragmatic Speaker: walk past the dining room table and chairs and take a right into the living room. stop once you are on the rug.

## Connections to Semantic Parsing

- Each grounding framework requires mapping natural language to something concrete (distribution in color space, object, action sequence)
- Sometimes looks like semantic parsing, particularly when language -> discrete output
- Using linguistic structure to capture compositionality is often useful









61



