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Syntactic Parsing
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Output Correlations
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Grammars
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Input-Output Correlations
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Span-Based Parsing
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Parsing as Span Classification
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Routing with LSTMs
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Routing with LSTMs
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Routing with LSTMs
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Span Classification
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Non-Constituents
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... But Will We Get a Tree Out?¢
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Reconciliation
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Does It Work?

Grammar-Based
[Carreras et al, 08]

91.0

LSTM-Based
[Stern et al, 17]

92.6
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What's Going on in There?

Neural parsers no longer have
much of the model structure
provided to classical parsers.

How do they perform so well
without it?



What's Going on in There?

(Why don’t we need a grammar?\

Adjacent tree labels are redundant with
LSTM features

If we can predict surrounding tree labels
from our LSTM representation of the input,
then this information doesn’t need to be
provided explicitly by grammar production
rules

We find that for 92.3% of spans, the label
of the span’s parent can predicted from the
neural representation of the span

T T
»(f1,b1) »(£1,ba)

LR,

<START> She  played soccer in the park . <STOP>




What's Going on in There?

a . ™\
Do we need tree constraints?

Not for F1

Many neural parsers no longer model
output correlations with grammar rules, but
still use output correlations from tree
constraints

Predicting span brackets independently
gives nearly identical performance on
PTB development set F1 and produces
Q/alid trees for 94.5% of sentences




What's Going on in There?

i Is distant context important?

Yes!

——[fi — f1, by — by
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PP

<START> She played soccer in the park s <STOP>
'(f'I-bl]

Almost a full point of F1 is lost by
truncating context 5 words away from span

\endpoints and half a point with 10 words )




What's Going on in There?

i Do LSTMs introduce useful b

inductive bias compared to
feedforward networks?

Yes!

We compare a truncated LSTM with
feedforward architectures that are given
the same inputs

The LSTM outperformed the best
\feedforward by 6.5 F1




Routing with Transformers

Query:
verb

She enjoys playing tennis



Routing with Transformers

Query:
verb

\ verb [VBZ]

She enjoys

verb [VBG]

f

playing

noun

f

tennis

punctuation

f



Routing with Transformers
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Routing with Transformers
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Routing with Transformers
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Routing with Transformers
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What Helps?

LSTM

Self-Attentive

+Factored

<4418

92

<518 <6

F1 (English, dev)

<618

38



Results: Multilingual

W Bjorkelund et al. (2014) " Coavoux and Crabbé (2017) B Cross and Huang (2016) " Qurs
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Pre-Training

Problem: Input has more variation than output

Need to handle:

® Rare words not seen during training

®* Word forms in morphologically rich languages
* Contextual paraphrase / lexical variation



Historical Trends
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Knowledge Modularity

Knowledge modularity: Learn domain-general knowledge from one
data source and use it solve specific problems elsewhere

plan
letter
request
memo
case
question
charge
statement
draft

day
year
week
month
quarter
half

evaluation

assessment

analysis
understanding
opinion
conversation
discussion

accounts
people
customers
individuals
employees
students

reps
representatives
representative
rep

dog

bad

great
good
enjoyable
IS



Context Embeddings and Pretraining

Key Idea: Embed contexts, not words. Use these embeddings for other tasks.

Example: BERT (Devlin et al., 2019) -- bidirectional Transformer trained on
masked language modeling and next-sentence prediction

OpenAl GPT




Explosion of Pretraining Work

Model

URL Score

ALBERT (Ensemble) 89.4
ALICE v2 large ensemble (Alibaba DAMO NLP) & 89.0
FreeLB-RoBERTa (ensemble) ' 888
RoBERTa @ 885
XLNet-Large (ensemble) 7' 884
MT-DNN-ensemble @ 876
GLUE Human Baselines @ 871
Snorkel MeTaL @ 832
XLM (English only) ' 83.1
SemBERT @ 829
SpanBERT (single-task training) @ sg28
BERT + BAM & 823
Span-Extractive BERT on STILTs &' 823
BERT on STILTs @ 820
RGLM-Base (Huawei Noah's Ark Lab) 81.3
BERT: 24-layers, 16-heads, 1024-hidden & 805
BERT + Single-task Adapters @ 802
Macaron Net-base © 797
SesameBERT-Base 78.6
MobileBERT 78.5
StackingBERT-Base & 784
TinyBERT & 754
BILSTM+ELMo+Attn & 700

GLUE SoTA
(ICLR 2020)

KERMIT

Insertion-based Generation

ULMFiT

Transformer

GPT

Bidirectional LM

Human

Cross-lingual

Multi-task

XLM

UDify »ITDNN

Knowledge [distillai ;
nowledge |distillation VideoBERT

CBT
ViLBERT
VisualBERT
B2T2
Unicoder-VL
LXMBERT
VL-BERT
UNITER

MT-DNNgj,

BERT

ERNIE
(Tsinghua)

SpanBERT Neural entity linker

RoBERTa

KnowBert

GLUE Baseline (ICLR 2019)

Larger model
More data

Defense
Grover

ord Masking

ERNIE (Baidu)
BERT-wwm

By Xiaozhi Wang & Zhengyan Zhang @ THUNLP



Parsing as Span Classification
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Architecture
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Encoder Architectures

LSTM Self-Attention
F0-0 M
No pre-training 92.08 Fi ?3.55 Fl
[Gaddy+ 2018] [Kitaev & Klein 2018]
95.13 F1 95.60 F1

Pre-training

(with ELMo) (with BERT)

[Kitaev & Klein 2018] [Kitaev et al 2019]



/]\ Encoder Architectures

F1 Score (English) Number of Parameters

No pre-training 3. No pre-training 26M

ELMo ELMo

BERT-base BERT-base

BERT-large BERT-large

XLNet-large XLNet-large
92.25 93 93.7594.595.25 96 96.75 M 100M  200M 300M 400M
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Results: Multilingual

German Arabic

Korean

W Bjorkelund et al. (2014) " Coavoux and Crabbé (2017) B Cross and Huang (201 6)

= Kitaev and Klein (201 8) 2 This work (one model per language) 1 This work (joint multilingual model)
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Does Structure Help?
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Figure 1: Labelled bracketing F1 versus minimum span length for the English corpora. F1 scores for the In-Order
parser with BERT (orange) and the Chart parser with BERT (cyan) start to diverge for longer spans.



Out of Domain Parsing

Berkeley BLLIP In-Order Chart
F1 A Err. Fl A Err. Fl A Err. Fl A Err.
WSIJ Test | 90.06 +0.0% | 91.48 +0.0% | 91.47 +0.0% | 93.27 +0.0%
Brown All | 84.64 +54.5% | 85.89  +65.6% | 85.60  +68.9% | 88.04 +77.7%
Genia All | 79.11 +110.2% | 79.63 +139.1% | 80.31 +130.9% | 82.68 +157.4%
EWT All | 77.38 +127.6% | 7991 +135.8% | 79.07 +145.4% | 82.22 +164.2%

Neural parsers improve out-of-domain numbers, but not more

than in-domain numbers



Other Neural Constituency Parsers
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steps | structural action label action | stack after bracket
1-2 sh(I/PRP) label-NP \YmN] oNP,;

34 sh(do/MD) nolabel 01

5-6 sh(like/VBP) nolabel 01N/ \g

7-8 comb nolabel 013

9-10 | sh(eating/VBG) nolabel 01 /N3y

11-12 Sh(ﬁSh/NN) label-NP (/AN VAN VALV VAR 4 4NP5
13-14 | comb label-S-VP 0421 \3/ Ny 3S5, 3VP5
15-16 | comb label-VP [I(JAAN VAN 1 VPs
17-18 | comb label-S 025 0Ss

= Back to at least Henderson 1998!

m Recent directions:

= Shift-Reduce, eg Cross and Huang 2016
= SR/Generative, eg Dyer et al 2016 (RNNG)

= In-Order Generative, eg Liu and Zhang 2017



Open Source Release

Code and models are publicly available at: github.com/nikitakit/self-attentive-parser

Sample Usage (with spaCy integration) Sample Usage (with NLTK integration)
O O o0 e
>>> import >>> import
>>> from ! 31 « ST impor: . >2>> = } . ( )
22> = - ( ) -3 = ~ (
>>> . ‘ ( , . ( )) >>> print( )
>>> > = ( ) (
>>> = list(doc. ) [01 (NP ( ) ( ))
>>> print( o ng) ( ( ) ( ( ) ( )))

(S (NP ( ) (NN )) (VP ( ) (NP ( (- =)
) (NN 5))) (- +))

>2>>

( ‘)
>>> list( o« o )[0]



