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Source: “Color” in Wikipedia





“Apples are red”

“The numbers this month are in the red”

“Red has a wavelength between 635-700nm”

…

“Pixel (1,1) has R=240, pixel (1,2) has …”



What is Language Grounding?

“Add the tomatoes and mix” “Take me to the shop on the corner”

‣ Some settings depend on grounding into perceptual or physical environments:

‣ Focus today: Grounding language to visual perception. 

‣ The world only looks like a database some of the time!

‣ Tying language to non-linguistic things (e.g. a database in semantic parsing)
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‣ (Some) possible things to ground into:
• Low-level percepts: red means this set of RGB values, loud means lots 

of decibels on our microphone, soft means these properties on our 
haptic sensor…

• High-level percepts: cat means this type of pattern
• Embodiment (effects on the world): go left means the robot turns left, 

speed up means increasing actuation
• Social (effects on others): polite language is correlated with longer 

forum discussions

For a nice taxonomy, related work, and examples, see Experience Grounds 
Language [Bisk et al. 2020]



Grounding
‣ (Some) key problems:
• Representation: matching low-level percepts to high-level language 

(pixels vs cat)
• Abstraction and Composition: meaning as a combination of parts
• Alignment: aligning parts of language and parts of the world
• Content Selection and Context: what are the important parts of the 

environment?
• Balance: it’s easy for multi-modal models to “cheat”, rely on imperfect 

heuristics, or ignore important parts of the input
• Generalization: to novel world contexts / input combinations





A Gallery of Tasks



Image Captioning

Microsoft COCO Captions: Chen et al. 2015



Visual Question Answering

VQA 2.0: Goyal et al. 2017



Object Detection (2D)

MDETR: Kamath et al. 2021



Object Detection (3D)

ReferIt3D: Achlioptas et al. 2020



Conditional Generation (2D)

DALL-E 2: Ramesh et al. 2022



Conditional Generation (3D)

Text2Mesh: Michel et al. 2021

“Iron Man” “Astronaut Horse” “Colorful Crochet Candle”



Vision and Language Navigation

ALFRED: Shridhar et al. 2020

“Place a clean ladle on a counter”



Why Grounded Language?

• Much language refers to the world.
• Convenient medium to communicate with machines!
• For many tasks, agents will need perceptual understanding 

and motor control for this interaction. 



Source: Robohub.org



Source: cnn.com



Bottom-Up & Top-Down Reasoning

“What color is the small 
shiny cube?”

CLEVR: Johnson et al. 2016
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Bottom-Up & Top-Down Reasoning

Bottom-up 
object proposals
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Bottom-Up & Top-Down Reasoning

“What color is the small 
shiny cube?”

Neural
Network

ANSWER

Can answer by 
focusing on 
single object



Bottom-Up & Top-Down Reasoning

Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering: Anderson et al. 2018

Provides inductive bias in 
both directions!



Bottom-Up



Vision: David Marr 1982



Intrinsic Images

Recovering Intrinsic Scene Characteristics from Images: Barrow and Tenenbaum 1978
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A Game-Theoretic Approach to Generating Spatial Descriptions: Golland et al. 2010



“Solved” Perception

A Game-Theoretic Approach to Generating Spatial Descriptions: Golland et al. 2010

Task: Describe 
target object 

unambiguously



“Solved” Perception

A Game-Theoretic Approach to Generating Spatial Descriptions: Golland et al. 2010

Relationships 
between objects 

known



A Game-Theoretic Approach to Generating Spatial Descriptions: Golland et al. 2010

“Solved” Perception

Problem reduced to 
pragmatic reasoning



Walk the Talk: MacMahon et al. 2006

“Go to the last butterfly on the right”

“Solved” Perception



Walk the Talk: MacMahon et al. 2006

“Solved” Perception

What annotators 
see



Walk the Talk: MacMahon et al. 2006
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What agent sees



Walk the Talk: MacMahon et al. 2006

“Go to the last butterfly on the right”

“Solved” Perception

Reduced to 
structured 

prediction problem



“Solved” Perception

• Pro: In early days of vision and language, assuming sub-
problems provided traction. 

• Con: Strong assumptions that don’t hold in real world. 



Intermediate Representations

BabyTalk: Kulkarni et al. 2013



Intermediate Representations

BabyTalk: Kulkarni et al. 2013

Extract regions of 
interest using 

pretrained detector



Intermediate Representations

BabyTalk: Kulkarni et al. 2013

Classifiers score 
attributes for each 

region and 
relationships 
across them



Intermediate Representations

BabyTalk: Kulkarni et al. 2013

Use CRF to predict 
highest likelihood 

assignment of 
labels



Intermediate Representations

BabyTalk: Kulkarni et al. 2013

Generate caption 
conditioned on 

labels



Intermediate Representations

BabyTalk: Kulkarni et al. 2013

Language model never sees pixels!



Intermediate Representations

BabyTalk: Kulkarni et al. 2013



Intermediate Representations

Learning by Abstraction: The Neural State Machine: Hudson and Manning 2019



Intermediate Representations

Learning by Abstraction: The Neural State Machine: Hudson and Manning 2019

Generate scene 
graph from image



Intermediate Representations

Learning by Abstraction: The Neural State Machine: Hudson and Manning 2019

Graph vocabulary 
predefined



Intermediate Representations

Learning by Abstraction: The Neural State Machine: Hudson and Manning 2019

Transform 
question into 

program traversing 
graph for answer



Intermediate Representations

Learning by Abstraction: The Neural State Machine: Hudson and Manning 2019

Answer by 
executing program 

in state machine



Intermediate Representations

Learning by Abstraction: The Neural State Machine: Hudson and Manning 2019

Allows language 
reasoning to occur 

solely within 
abstract structure



Intermediate Representations

Learning by Abstraction: The Neural State Machine: Hudson and Manning 2019



DALL-E 1: Ramesh et al. 2021



Intermediate Representations

DALL-E 1: Ramesh et al. 2021



Intermediate Representations

DALL-E 1: Ramesh et al. 2021

Neural Discrete Representation Learning: van Oord et al. 2017



Intermediate Representations

DALL-E 1: Ramesh et al. 2021
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Intermediate Representations

DALL-E 1: Ramesh et al. 2021

Generating Long Sequences with Sparse Transformers: Child et al. 2019

Reduced to language modeling 
problem!



DALL-E 1: Ramesh et al. 2021



Anchoring to 3D

“The goal of an image understanding system is to transform 
two-dimensional data into a representation of the three-

dimensional spatio-temporal world”

Image Understanding: John Tsotsos 1987



Anchoring to 3D

ALFRED: Shridhar et al. 2020

“Place a clean ladle on a counter”



Anchoring to 3D

A Persistent Spatial Semantic Representation for High-Level Natural Language Instruction Execution: Blukis et al. 2021



Anchoring to 3D

A Persistent Spatial Semantic Representation for High-Level Natural Language Instruction Execution: Blukis et al. 2021

Perceptual module 
extracts 2D 

semantic 
segmentation and 

depth maps 



Anchoring to 3D

A Persistent Spatial Semantic Representation for High-Level Natural Language Instruction Execution: Blukis et al. 2021

Maps integrated 
into persistent 3D 

map



Anchoring to 3D

A Persistent Spatial Semantic Representation for High-Level Natural Language Instruction Execution: Blukis et al. 2021

Controller operates 
exclusively over 

3D map



Anchoring to 3D

A Persistent Spatial Semantic Representation for High-Level Natural Language Instruction Execution: Blukis et al. 2021

3D Map 
useful for 
improving 

performance



Anchoring to 3D

A Persistent Spatial Semantic Representation for High-Level Natural Language Instruction Execution: Blukis et al. 2021

However, 
benefits held 

back by 
cascading 

errors



Anchoring to 3D

Voxel-informed Language Grounding: Corona et al. 2022



Anchoring to 3D

Voxel-informed Language Grounding: Corona et al. 2022

Standard 
approaches 

perform grounding 
from 2D only



Anchoring to 3D

Voxel-informed Language Grounding: Corona et al. 2022

Can supplement 
with predicted 

geometry from 3D 
reconstruction 

model



Anchoring to 3D

Voxel-informed Language Grounding: Corona et al. 2022

Improves performance over 2D-only 
approaches



Bottom-Up Takeaways

• Grounding to intermediate representations more tractable 
than grounding directly to pixels. 

• Constrains the space of things to ground to. 
• Limitation: 
– May suffer from cascading error. 
– Not always informed by language. 



Top-Down

“What color is the 
small shiny cube?”





Language, thought, and color: Regier and Kay 2009



ImageNet: Deng et al. 2009



WordNet: Miller 1995



Modular Systems

Neural Module Networks: Andreas et al. 2016

“Is there a red sphere above a circle?”



Modular Systems

The Neuro-Symbolic Concept Learner: Mao et al. 2020



Parse question 
into program in 
Domain Specific 
Language (DSL)

The Neuro-Symbolic Concept Learner: Mao et al. 2020

Modular Systems



Extract objects 
ROIs and embed 

them

The Neuro-Symbolic Concept Learner: Mao et al. 2020

Modular Systems



Abstract 
concepts in DSL 

have 
embeddings

The Neuro-Symbolic Concept Learner: Mao et al. 2020

Modular Systems



All operations 
deterministic 

and pre-defined!

Modular Systems

The Neuro-Symbolic Concept Learner: Mao et al. 2020



Visual Concept-Metaconcept Learning: Han et al. 2019

Modular Systems



Visual Concept-Metaconcept Learning: Han et al. 2019

Modular Systems

Regularize 
concept 

embeddings on 
“meta question” 

task



Visual Concept-Metaconcept Learning: Han et al. 2019

Modular Systems

Learning synonyms helps zero-shot generalization

“block” == “square”



Visual Concept-Metaconcept Learning: Han et al. 2019

Modular Systems

Learning same kind helps compositional generalization

== ”purple” + “square”



Modular Systems

Obtaining Faithful Interpretations from Compositional Neural Networks: Subramanian et al. 2020



Language as Signal for Abstractions

Learning with Latent Language: Andreas et al. 2017



Available at Training

Language as Signal for Abstractions

Learning with Latent Language: Andreas et al. 2017



Language as Signal for Abstractions

Shaping Visual Representations with Language for Few-Shot Classification: Mu et al. 2020



Language as Signal for Abstractions

Shaping Visual Representations with Language for Few-Shot Classification: Mu et al. 2020

Prototype 
network 

(no language)



Language as Signal for Abstractions

Shaping Visual Representations with Language for Few-Shot Classification: Mu et al. 2020

Discrete 
language 

bottleneck



Language as Signal for Abstractions

Shaping Visual Representations with Language for Few-Shot Classification: Mu et al. 2020

Auxiliary 
summarization 

task



Test Set Accuracy

Shaping Visual Representations with Language for Few-Shot Classification: Mu et al. 2020

Language as Signal for Abstractions



Top-Down Takeaways

• Language provides labels for supervised learning of perceptual 
systems. 

• Can provide powerful inductive biases in computational 
structure if known. 

• Serves as signal for useful perceptual abstractions to learn 
either as bottleneck or auxiliary signal. 



Bottom-Up & Top-Down Reasoning

“What color is the small 
shiny cube?”



Bottom-Up & Top-Down Reasoning

“What color is the small 
shiny cube?”



Galatea of the Spheres, Salvador Dali 1952



Extra Slides



Open-Set Models

Models which leverage the open-vocabulary of language to enjoy 
a practically open set of labels!



Open-Set Models

CLIP: Radford et al. 2021



Open-Set Models

CLIP: Radford et al. 2021

Encode text and 
image into 

vectors



Open-Set Models

CLIP: Radford et al. 2021

Optimize 
compatibility 

with contrastive 
loss



Open-Set Models

CLIP: Radford et al. 2021

Classification 
dataset created 
with templated 

prompts



Open-Set Models

CLIP: Radford et al. 2021

Normalize 
compatibility 
scores to get 

zero-shot 
classifier!



Open-Set Models

CLIP: Radford et al. 2021



Open-Set Models

MDETR: Kamath et al. 2021



Open-Set Models

MDETR: Kamath et al. 2021

Extract image 
features with 

pre-trained CNN



Open-Set Models

MDETR: Kamath et al. 2021

Extract language 
features using 

pre-trained LM



Open-Set Models

MDETR: Kamath et al. 2021

Pass together 
through 

transformer



Open-Set Models

MDETR: Kamath et al. 2021

Learned 
embedding 

“queries” tied to 
tokens in input 

text/image 
regions



Open-Set Models

MDETR: Kamath et al. 2021



Open-Set Models

Language-Driven Semantic Segmentation: Li et al. 2022



Open-Set Models

Language-Driven Semantic Segmentation: Li et al. 2022

Extract ~per-
pixel features 

using 
transformer



Open-Set Models

Language-Driven Semantic Segmentation: Li et al. 2022

Extract CLIP 
text embeddings 

for each label



Open-Set Models

Language-Driven Semantic Segmentation: Li et al. 2022

Upsample and predict 
most compatible label 

per pixel



Open-Set Models

Language-Driven Semantic Segmentation: Li et al. 2022



Open-Set Models

Language-Driven Semantic Segmentation: Li et al. 2022



Open-Set Models

GroupViT: Semantic Segmentation Emerges from Text Supervision: Xu et al. 2022



Open-Set Models

GroupViT: Semantic Segmentation Emerges from Text Supervision: Xu et al. 2022

Tokenize image into 
patches and embed



Open-Set Models

GroupViT: Semantic Segmentation Emerges from Text Supervision: Xu et al. 2022

Each layer has learnable “group 
tokens” that will be used to 

cluster image patches



Open-Set Models

GroupViT: Semantic Segmentation Emerges from Text Supervision: Xu et al. 2022

Image patches “assigned” to 
group tokens using transformer 

self-attention scores



Open-Set Models

GroupViT: Semantic Segmentation Emerges from Text Supervision: Xu et al. 2022

Patches for each group 
aggregated through mean-pool



Open-Set Models

GroupViT: Semantic Segmentation Emerges from Text Supervision: Xu et al. 2022

Repeat until single embedding is 
left



Open-Set Models

GroupViT: Semantic Segmentation Emerges from Text Supervision: Xu et al. 2022

Optimize compatibility with text 
caption using contrastive loss



Open-Set Models
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Open-Set Models

GroupViT: Semantic Segmentation Emerges from Text Supervision: Xu et al. 2022



Open-Set Models

GroupViT: Semantic Segmentation Emerges from Text Supervision: Xu et al. 2022



Bias in Vision and Language Models

Women also Snowboard: Overcoming Bias in Caption Models: Burns et al. 2019
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Women also Snowboard: Overcoming Bias in Caption Models: Burns et al. 2019



Bias in Vision and Language Models

Evaluating CLIP: Towards Characterization of Broader Capabilities and Downstream Implications: Agarwal et al. 2021



Bias in Vision and Language Models

Multimiodal Neurons in Artificial Neural Networks: Goh et al. 2021

Neurons work
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Bias in Vision and Language Models

DALL-E 2 Preview – Risk and Limitations: Mishkin et al. 2022


