Natural Language Processing

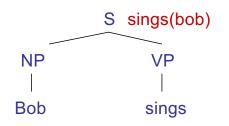
Compositional Semantics

Dan Klein – UC Berkeley

Truth-Conditional Semantics

Truth-Conditional Semantics

- Linguistic expressions:
 - "Bob sings"
- Logical translations:
 - sings(bob)
 - Could be p_1218(e_397)



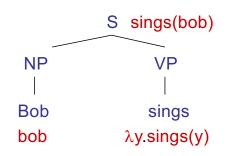
Denotation:

- [[bob]] = some specific person (in some context)
- [[sings(bob)]] = ???
- Types on translations:
 - bob : e (for entity)
 - sings(bob) : t (for truth-value)

Truth-Conditional Semantics

Proper names:

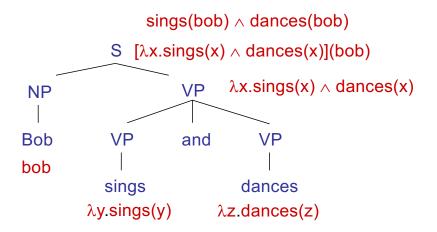
- Refer directly to some entity in the world
- Bob : bob [[bob]]^w → ???
- Sentences:
 - Are either true or false (given how the world actually is)
 - Bob sings : sings(bob)



- So what about verbs (and verb phrases)?
 - sings must combine with bob to produce sings(bob)
 - The λ-calculus is a notation for functions whose arguments are not yet filled.
 - sings : λx.sings(x)
 - This is a *predicate* a function which takes an entity (type e) and produces a truth value (type t). We can write its type as e→t.
 - Adjectives?

Compositional Semantics

- So now we have meanings for the words
- How do we know how to combine words?
- Associate a combination rule with each grammar rule:
 - $S: \beta(\alpha) \rightarrow NP: \alpha \quad VP: \beta$ (function application)
 - $VP : \lambda x . \alpha(x) \land \beta(x) \rightarrow VP : \alpha$ and $: \emptyset$ $VP : \beta$ (intersection)
- Example:



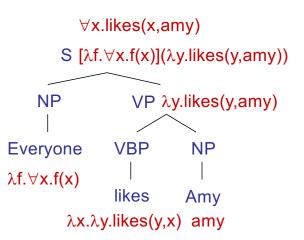
Denotation

What do we do with logical translations?

- Translation language (logical form) has fewer ambiguities
- Can check truth value against a database
 - Denotation ("evaluation") calculated using the database
- More usefully: assert truth and modify a database, either explicitly or implicitly eg prove a consequence from asserted axioms
- Questions: check whether a statement in a corpus entails the (question, answer) pair:
 - "Bob sings and dances" → "Who sings?" + "Bob"
- Chain together facts and use them for comprehension

Other Cases

- Transitive verbs:
 - likes : λx.λy.likes(y,x)
 - Two-place predicates of type $e \rightarrow (e \rightarrow t)$.
 - likes Amy : λy.likes(y,Amy) is just like a one-place predicate.
- Quantifiers:
 - What does "Everyone" mean here?
 - Everyone : $\lambda f. \forall x. f(x)$
 - Mostly works, but some problems
 - Have to change our NP/VP rule.
 - Won't work for "Amy likes everyone."
 - "Everyone likes someone."
 - This gets tricky quickly!



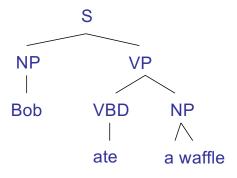
Indefinites

First try

- Bob ate a waffle" : ate(bob,waffle)
- "Amy ate a waffle" : ate(amy,waffle)

Can't be right!

- ∃ x : waffle(x) ∧ ate(bob,x)
- What does the translation
 - of "a" have to be?
- What about "the"?
- What about "every"?



Grounding

Grounding

- So why does the translation likes : λx.λy.likes(y,x) have anything to do with actual liking?
- It doesn't (unless the denotation model says so)
- Sometimes that's enough: wire up bought to the appropriate entry in a database
- Meaning postulates
 - Insist, e.g $\forall x, y. likes(y, x) \rightarrow knows(y, x)$
 - This gets into lexical semantics issues
- Statistical version?

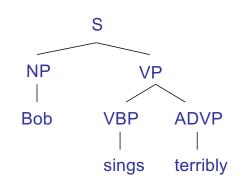
Tense and Events

- In general, you don't get far with verbs as predicates
- Better to have event variables e
 - "Alice danced" : danced(alice)
 - ∃ e : dance(e) ∧ agent(e,alice) ∧ (time(e) < now)</p>
- Event variables let you talk about non-trivial tense / aspect structures
 - "Alice had been dancing when Bob sneezed"
 - \exists e, e' : dance(e) \land agent(e,alice) \land

sneeze(e') \lapha agent(e',bob) \lapha
(start(e) < start(e') \lapha end(e) = end(e')) \lapha
(time(e') < now)</pre>

Adverbs

- What about adverbs?
 - "Bob sings terribly"
 - terribly(sings(bob))?
 - (terribly(sings))(bob)?
 - ∃e present(e) ∧ type(e, singing) ∧ agent(e,bob)
 ∧ manner(e, terrible) ?
 - It's really not this simple...



Propositional Attitudes

- "Bob thinks that I am a gummi bear"
 - thinks(bob, gummi(me)) ?
 - thinks(bob, "I am a gummi bear") ?
 - thinks(bob, ^gummi(me)) ?
- Usual solution involves intensions (^x) which are, roughly, the set of possible worlds (or conditions) in which X is true
- Hard to deal with computationally
 - Modeling other agents models, etc
 - Can come up in simple dialog scenarios, e.g., if you want to talk about what your bill claims you bought vs. what you actually bought

Trickier Stuff

- Non-Intersective Adjectives
 - green ball : λx .[green(x) \wedge ball(x)]
 - fake diamond : $\lambda x.[fake(x) \land diamond(x)]$? $\longrightarrow \lambda x.[fake(diamond(x))]$
- Generalized Quantifiers
 - the : λf.[unique-member(f)]
 - all : $\lambda f. \lambda g [\forall x.f(x) \rightarrow g(x)]$
 - most?
 - Could do with more general second order predicates, too (why worse?)
 - the(cat, meows), all(cat, meows)
- Generics
 - "Cats like naps"
 - "The players scored a goal"
- Pronouns (and bound anaphora)
 - "If you have a dime, put <u>it</u> in the meter."
- ... the list goes on and on!

Scope Ambiguities

Quantifier scope

- "All majors take a data science class"
- "Someone took each of the electives"
- "Everyone didn't hand in their exam"

Deciding between readings

- Multiple ways to work this out
 - Make it syntactic (movement)
 - Make it lexical (type-shifting)

Modeling Uncertainty

Big difference between statistical disambiguation and statistical reasoning.

The scout saw the enemy soldiers with night goggles.

- With probabilistic parsers, can say things like "72% belief that the PP attaches to the NP."
- That means that *probably* the enemy has night vision goggles.
- However, you can't throw a logical assertion into a theorem prover with 72% confidence.
- Use this to decide the expected utility of calling reinforcements?
- Do we need probabilistic reasoning, not just probabilistic disambiguation followed by symbolic reasoning?

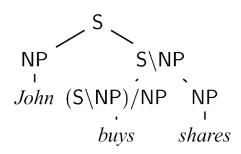
Logical Form Translation

CCG Parsing

Combinatory Categorial Grammar

- Fully (mono-) lexicalized grammar
- Categories encode argument sequences
- Very closely related to the lambda calculus
- Can have spurious ambiguities (why?)

 $John \vdash \mathsf{NP} : john'$ $shares \vdash \mathsf{NP} : shares'$ $buys \vdash (\mathsf{S}\backslash\mathsf{NP})/\mathsf{NP} : \lambda x.\lambda y.buys'xy$ $sleeps \vdash \mathsf{S}\backslash\mathsf{NP} : \lambda x.sleeps'x$ $well \vdash (\mathsf{S}\backslash\mathsf{NP})\backslash(\mathsf{S}\backslash\mathsf{NP}) : \lambda f.\lambda x.well'(fx)$



The task:

Input: List one way flights to Prague. Output: $\lambda x.flight(x) \wedge one way(x) \wedge to(x, PRG)$

Challenging learning problem:

- Derivations (or parses) are not annotated
- Approach: [Zettlemoyer & Collins 2005]
- Learn a lexicon and parameters for a weighted Combinatory Categorial Grammar (CCG)

[Slides from Luke Zettlemoyer]

Background

- Combinatory Categorial Grammar (CCG)
- Weighted CCGs
- Learning lexical entries: GENLEX

CCG Lexicon

Words	Category
flights	N : $\lambda x.flight(x)$
to	$(N \setminus N) / NP : \lambda x \cdot \lambda f \cdot \lambda y \cdot f(x) \land to(y, x)$
Prague	NP : PRG
New York city	NP : NYC
	•••

Parsing Rules (Combinators)

Application

•	X/Y	:	f	Y	:	а	=>	Х	•	f(a)
•	Y	•	а	Х/Х	:	f	=>	Х	:	f(a)

Composition

- X/Y : f Y/Z : g => X/Z : $\lambda x.f(g(x))$
- $Y \setminus Z$: f $X \setminus Y$: g => $X \setminus Z$: $\lambda x \cdot f(g(x))$

Additional rules:

- Type Raising
- Crossed Composition

CCG Parsing

Show me	flights	to	Prague
S/N $\lambda f.f$	Ν λx.flight(x)	$\frac{(N \setminus N) / NP}{\lambda y. \lambda f. \lambda x. f(y) \wedge to(x, y)}$	NP PRG
		$\frac{N \setminus N}{\lambda f . \lambda x . f(x) \wedge to(x, x)}$	PRG)
		N λx.flight(x)∧to(x,PRG)	
	1 61	S isht(w) (to (T, DDC)	

 $\lambda x.flight(x) \wedge to(x, PRG)$

Weighted CCG

Given a log-linear model with a CCG lexicon Λ , a feature vector f, and weights w.

The best parse is:

$$y^* = \underset{y}{\operatorname{argmax}} w \cdot f(x, y)$$

Where we consider all possible parses y for the sentence x given the lexicon Λ .

Lexical Generation

Input Training Example

Sentence:	Show me flights to Prague.
Logic Form:	λ x.flight(x) \wedge to(x,PRG)

Output Lexicon

Words	Category
Show me	S/N : <i>Af.f</i>
flights	N : $\lambda x.flight(x)$
to	$(N \setminus N) / NP : \lambda x . \lambda f . \lambda y . f (x) \land to(y, x)$
Prague	NP : PRG

GENLEX: Substrings X Categories

Input Training Example

Sentence: Logic Form:	Show me flights to Prague. : $\lambda x.flight(x) \wedge to(x, PRG)$				
	Output Le	exicon			
All possible substr	ings:	Categories created by rules that			
Show		trigger on the logical form:			
me		NP : PRG			
flights	Х	N : $\lambda x.flight(x)$			
Show me		$(S \setminus NP) / NP : \lambda x . \lambda y . to(y, x)$			
Show me fli	2	$(N \setminus N) / NP : \lambda_y . \lambda f . \lambda_x$			
Show me fli	ghts to	••••			
•••					

[Zettlemoyer & Collins 2005]

Robustness

The lexical entries that work for:

Show me	the latest	flight	from Boston	to Prague	on Friday
S/NP	NP/N	N	N/N	N\N	N/N
•••	•••	•••	•••	•••	•••

Will not parse:

Boston	to	Prague	the	latest	on	Friday
NP		N\N		NP/N		N\N
•••		•••		•••		•••

Relaxed Parsing Rules

Two changes

- Add application and composition rules that relax word order
- Add type shifting rules to recover missing words

These rules significantly relax the grammar

 Introduce features to count the number of times each new rule is used in a parse

Review: Application

X/Y : f	Y	:	а	=>	Х	:	f(a)
Y : a	Х\Ү	:	f	=>	Х	:	f(a)

Disharmonic Application

Reverse the direction of the principal category:

$X \setminus Y$: f	Y :	а	=>	х:	f(a)
Y : a	X/Y :	f	=>	х:	f(a)

flights	one way
N $\lambda x.flight(x)$	N/N $\lambda f. \lambda x. f(x) \land one_way(x)$

N $\lambda x. flight(x) \land one_way(x)$

Missing content words

Insert missing semantic content

• NP : c => N\N : λf.λx.f(x) ∧ p(x,c)

flights	Boston	to Prague
N λx.flight(x)	NP BOS	$\frac{N \ N}{\lambda f. \lambda x. f(x) \land to(x, PRG)}$
	$N \setminus N$ $\lambda f. \lambda x. f(x) \wedge from(x, BOS)$	
λx.flig	N ht(x)∧from(x,BOS)	
	N $\lambda x.flight(x) \wedge from(x,BOS)$	$\wedge to(x, PRG)$

Missing content-free words

Bypass missing nouns

• $N \setminus N$: f => N : f(λx .true)

Northwest Air	to Prague
N/N $\lambda f. \lambda x. f(x) \land airline(x, NWA)$	$N \ N$ $\lambda f. \lambda x. f(x) \land to(x, PRG)$
_	Ν λx.to(x,PRG)
N	

 $\lambda x.airline(x, NWA) \land to(x, PRG)$

Inputs: Training set $\{(x_i, z_i) \mid i=1...n\}$ of sentences and logical forms. Initial lexicon Λ . Initial parameters w. Number of iterations T.

Training: For $t = 1 \dots T$, $i = 1 \dots n$:

Step 1: Check Correctness

- Let $y^* = \operatorname{argmax} w \cdot f(x_i, y)$
- If $L(y^*) = z_i$, go to the next example

Step 2: Lexical Generation

- Set $\lambda = \Lambda \bigcup$ GENLEX (x_i, z_i)
- Let $\mathcal{Y} = \arg \max_{y, s.t. \ L(y)=z_i} w \cdot f(x_i, y)$
- Define λ_i to be the lexical entries in y^{\wedge}
- Set lexicon to $\Lambda = \Lambda \cup \lambda_i$

Step 3: Update Parameters

- Let $y' = \operatorname{argmax} w \cdot f(x_i, y)$
- If $L(y') \neq z_i$
 - Set $w = w + f(x_i, \mathbf{y}) f(x_i, \mathbf{y}')$

Output: Lexicon Λ and parameters *w*.

Related Work for Evaluation

Hidden Vector State Model: He and Young 2006

- Learns a probabilistic push-down automaton with EM
- Is integrated with speech recognition

$\lambda\text{-WASP}:$ Wong & Mooney 2007

- Builds a synchronous CFG with statistical machine translation techniques
- Easily applied to different languages

Zettlemoyer and Collins 2005

Uses GENLEX with maximum likelihood batch training and stricter grammar

Two Natural Language Interfaces

ATIS (travel planning)

- Manually-transcribed speech queries
- 4500 training examples
- 500 example development set
- 500 test examples

Geo880 (geography)

- Edited sentences
- 600 training examples
- 280 test examples

Evaluation Metrics

Precision, Recall, and F-measure for:

- Completely correct logical forms
- Attribute / value partial credit

 $\lambda x.flight(x) \land from(x,BOS) \land to(x,PRG)$

is represented as:

 $\{from = BOS, to = PRG \}$

Two-Pass Parsing

Simple method to improve recall:

- For each test sentence that can not be parsed:
 - Reparse with word skipping
 - Every skipped word adds a constant penalty
 - Output the highest scoring new parse

ATIS Test Set [Z+C 2007]

Exact Match Accuracy:

	Precision	Recall	FI
Single-Pass	90.61	81.92	86.05
Two-Pass	85.75	84.60	85.16

Geo880 Test Set

Exact Match Accuracy:

	Precision	Recall	FI
Single-Pass	95.49	83.20	88.93
Two-Pass	91.63	86.07	88.76
Zettlemoyer & Collins 2005	96.25	79.29	86.95
Wong & Mooney 2007	93.72	80.00	86.31