
Natural Language Processing

Syntax and Parsing
Dan Klein – UC Berkeley

Syntax

Parse Trees

The move followed a round of similar increases by other lenders,
reflecting a continuing decline in that market

Phrase Structure Parsing
§ Phrase structure parsing

organizes syntax into
constituents or brackets

§ In general, this involves
nested trees

§ Linguists can, and do,
argue about details

§ Lots of ambiguity

§ Not the only kind of
syntax…

new art critics write reviews with computers

PP

NP
NP

N’

NP

VP

S

Constituency Tests

§ How do we know what nodes go in the tree?

§ Classic constituency tests:
§ Substitution by proform
§ Question answers
§ Semantic gounds

§ Coherence
§ Reference
§ Idioms

§ Dislocation
§ Conjunction

§ Cross-linguistic arguments, too

Conflicting Tests
§ Constituency isn’t always clear

§ Units of transfer:
§ think about ~ penser à
§ talk about ~ hablar de

§ Phonological reduction:
§ I will go ® I’ll go
§ I want to go ® I wanna go
§ a le centre ® au centre

§ Coordination
§ He went to and came from the store.

La vélocité des ondes sismiques

Structure Depth
§ Q: Do we model deep vs surface structure?

[Example: Johnson 02]

[Example: Johnson 02]

[Example: Cai et al 11]

Ambiguities

Parts-of-Speech (English)
§ One basic kind of linguistic structure: syntactic word classes

Open class (lexical) words

Closed class (functional)

Nouns Verbs

Proper Common

Auxiliary

Main

Adjectives

Adverbs

Prepositions

Particles

Determiners

Conjunctions

Pronouns

… more

… more

IBM
Italy

cat / cats
snow

see
registered

can
had

yellow

slowly

to with

off up

the some

and or

he its

Numbers

122,312
one

Part-of-Speech Ambiguity
§ Words can have multiple parts of speech

§ Two basic sources of constraint:
§ Grammatical environment
§ Identity of the current word

§ Many more possible features:
§ Suffixes, capitalization, name databases (gazetteers), etc…

Fed raises interest rates 0.5 percent
NNP NNS NN NNS CD NN
VBN VBZ VBP VBZ
VBD VB

Why POS Tagging?
§ Useful in and of itself (more than you’d think)

§ Text-to-speech: record, lead
§ Lemmatization: saw[v] ® see, saw[n] ® saw
§ Quick-and-dirty NP-chunk detection: grep {JJ | NN}* {NN | NNS}

§ Useful as a pre-processing step for parsing
§ Less tag ambiguity means fewer parses
§ However, some tag choices are better decided by parsers

DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted …

DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments …

IN

VDN

Classical NLP: Parsing

§ Write symbolic or logical rules:

§ Use deduction systems to prove parses from words
§ Minimal grammar on “Fed raises” sentence: 36 parses
§ Simple 10-rule grammar: 592 parses
§ Real-size grammar: many millions of parses

§ This scaled very badly, didn’t yield broad-coverage tools

Grammar (CFG) Lexicon

ROOT ® S

S ® NP VP

NP ® DT NN

NP ® NN NNS

NN ® interest

NNS ® raises

VBP ® interest

VBZ ® raises

…

NP ® NP PP

VP ® VBP NP

VP ® VBP NP PP

PP ® IN NP

Ambiguities: PP Attachment

Attachments

§ I cleaned the dishes from dinner

§ I cleaned the dishes with detergent

§ I cleaned the dishes in my pajamas

§ I cleaned the dishes in the sink

Syntactic Ambiguities I

§ Prepositional phrases:
They cooked the beans in the pot on the stove with handles.

§ Particle vs. preposition:
The puppy tore up the staircase.

§ Complement structures
The tourists objected to the guide that they couldn’t hear.
She knows you like the back of her hand.

§ Gerund vs. participial adjective
Visiting relatives can be boring.
Changing schedules frequently confused passengers.

Syntactic Ambiguities II
§ Modifier scope within NPs

impractical design requirements
plastic cup holder

§ Multiple gap constructions
The chicken is ready to eat.
The contractors are rich enough to sue.

§ Coordination scope:
Small rats and mice can squeeze into holes or cracks in the wall.

Dark Ambiguities

§ Dark ambiguities: most analyses are shockingly bad
(meaning, they don’t have an interpretation you can get
your mind around)

§ Unknown words and new usages
§ Solution: We need mechanisms to focus attention on the

best ones, probabilistic techniques do this

This analysis corresponds to
the correct parse of

“This will panic buyers ! ”

Ambiguities as Trees

PCFGs

Probabilistic Context-Free Grammars

§ A context-free grammar is a tuple <N, T, S, R>
§ N : the set of non-terminals

§ Phrasal categories: S, NP, VP, ADJP, etc.
§ Parts-of-speech (pre-terminals): NN, JJ, DT, VB

§ T : the set of terminals (the words)
§ S : the start symbol

§ Often written as ROOT or TOP
§ Not usually the sentence non-terminal S

§ R : the set of rules
§ Of the form X ® Y1 Y2 … Yk, with X, Yi Î N
§ Examples: S ® NP VP, VP ® VP CC VP
§ Also called rewrites, productions, or local trees

§ A PCFG adds:
§ A top-down production probability per rule P(Y1 Y2 … Yk | X)

Treebank Sentences

Treebank Grammars

§ Need a PCFG for broad coverage parsing.
§ Can take a grammar right off the trees (doesn’t work well):

§ Better results by enriching the grammar (e.g., lexicalization).
§ Can also get state-of-the-art parsers without lexicalization.

ROOT ® S 1

S ® NP VP . 1

NP ® PRP 1

VP ® VBD ADJP 1

…..

PLURAL NOUN

NOUNDET
DET

ADJ

NOUN

NP NP

CONJ

NP PP

Treebank Grammar Scale

§ Treebank grammars can be enormous
§ As FSAs, the raw grammar has ~10K states, excluding the lexicon
§ Better parsers usually make the grammars larger, not smaller

NP

Chomsky Normal Form

§ Chomsky normal form:
§ All rules of the form X ® Y Z or X ® w
§ In principle, this is no limitation on the space of (P)CFGs

§ N-ary rules introduce new non-terminals

§ Unaries / empties are “promoted”
§ In practice it’s kind of a pain:

§ Reconstructing n-aries is easy
§ Reconstructing unaries is trickier
§ The straightforward transformations don’t preserve tree scores

§ Makes parsing algorithms simpler!

VP

[VP ® VBD NP •]

VBD NP PP PP

[VP ® VBD NP PP •]

VBD NP PP PP

VP

CKY Parsing

A Recursive Parser

§ Will this parser work?
§ Why or why not?
§ Memory requirements?

bestScore(X,i,j)
if (j = i+1)

return tagScore(X,s[i])
else

return max score(X->YZ) *
bestScore(Y,i,k) *
bestScore(Z,k,j)

A Memoized Parser
§ One small change:

bestScore(X,i,j)
if (scores[X][i][j] == null)

if (j = i+1)
score = tagScore(X,s[i])

else
score = max score(X->YZ) *

bestScore(Y,i,k) *
bestScore(Z,k,j)

scores[X][i][j] = score
return scores[X][i][j]

§ Can also organize things bottom-up

A Bottom-Up Parser (CKY)

bestScore(s)
for (i : [0,n-1])

for (X : tags[s[i]])
score[X][i][i+1] =

tagScore(X,s[i])
for (diff : [2,n])

for (i : [0,n-diff])
j = i + diff
for (X->YZ : rule)

for (k : [i+1, j-1])
score[X][i][j] = max score[X][i][j],

score(X->YZ) *
score[Y][i][k] *
score[Z][k][j]

Y Z

X

i k j

Unary Rules
§ Unary rules?

bestScore(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max max score(X->YZ) *
bestScore(Y,i,k) *
bestScore(Z,k,j)

max score(X->Y) *
bestScore(Y,i,j)

CNF + Unary Closure

§ We need unaries to be non-cyclic
§ Can address by pre-calculating the unary closure
§ Rather than having zero or more unaries, always have

exactly one

§ Alternate unary and binary layers
§ Reconstruct unary chains afterwards

NP

DT NN

VP

VBD
NP

DT NN

VP

VBD NP

VP

S

SBAR

VP

SBAR

Alternating Layers

bestScoreU(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max max score(X->Y) *
bestScoreB(Y,i,j)

bestScoreB(X,i,j,s)
return max max score(X->YZ) *

bestScoreU(Y,i,k) *
bestScoreU(Z,k,j)

Learning PCFGs

Treebank PCFGs
§ Use PCFGs for broad coverage parsing
§ Can take a grammar right off the trees (doesn’t work well):

ROOT ® S 1

S ® NP VP . 1

NP ® PRP 1

VP ® VBD ADJP 1

…..

Model F1
Baseline 72.0

[Charniak 96]

Conditional Independence?

§ Not every NP expansion can fill every NP slot
§ A grammar with symbols like “NP” won’t be context-free
§ Statistically, conditional independence too strong

Non-Independence
§ Independence assumptions are often too strong.

§ Example: the expansion of an NP is highly dependent on the
parent of the NP (i.e., subjects vs. objects).

§ Also: the subject and object expansions are correlated!

11%
9%

6%

NP PP DT NN PRP

9% 9%

21%

NP PP DT NN PRP

7%
4%

23%

NP PP DT NN PRP

All NPs NPs under S NPs under VP

Grammar Refinement

§ Example: PP attachment

Grammar Refinement

§ Structure Annotation [Johnson ’98, Klein&Manning ’03]
§ Lexicalization [Collins ’99, Charniak ’00]
§ Latent Variables [Matsuzaki et al. 05, Petrov et al. ’06]

Structural Annotation

The Game of Designing a Grammar

§ Annotation refines base treebank symbols to
improve statistical fit of the grammar
§ Structural annotation

Lexicalization

§ Annotation refines base treebank symbols to improve
statistical fit of the grammar
§ Structural annotation [Johnson ’98, Klein and Manning 03]
§ Head lexicalization [Collins ’99, Charniak ’00]

The Game of Designing a Grammar

Problems with PCFGs

§ If we do no annotation, these trees differ only in one rule:
§ VP ® VP PP
§ NP ® NP PP

§ Parse will go one way or the other, regardless of words
§ We addressed this in one way with unlexicalized grammars (how?)
§ Lexicalization allows us to be sensitive to specific words

Problems with PCFGs

§ What’s different between basic PCFG scores here?
§ What (lexical) correlations need to be scored?

Lexicalized Trees

§ Add “head words” to
each phrasal node
§ Syntactic vs. semantic

heads
§ Headship not in (most)

treebanks
§ Usually use head rules,

e.g.:
§ NP:

§ Take leftmost NP
§ Take rightmost N*
§ Take rightmost JJ
§ Take right child

§ VP:
§ Take leftmost VB*
§ Take leftmost VP
§ Take left child

Lexicalized PCFGs?
§ Problem: we now have to estimate probabilities like

§ Never going to get these atomically off of a treebank

§ Solution: break up derivation into smaller steps

Lexical Derivation Steps
§ A derivation of a local tree [Collins 99]

Choose a head tag and word

Choose a complement bag

Generate children (incl. adjuncts)

Recursively derive children

Lexicalized CKY

bestScore(X,i,j,h)
if (j = i+1)

return tagScore(X,s[i])
else

return
max max score(X[h]->Y[h] Z[h’]) *

bestScore(Y,i,k,h) *
bestScore(Z,k,j,h’)

max score(X[h]->Y[h’] Z[h]) *
bestScore(Y,i,k,h’) *
bestScore(Z,k,j,h)

Y[h] Z[h’]

X[h]

i h k h’ j

k,h’,X->YZ

(VP->VBD •)[saw] NP[her]

(VP->VBD...NP •)[saw]

k,h’,X->YZ

Results

§ Some results
§ Collins 99 – 88.6 F1 (generative lexical)
§ Charniak and Johnson 05 – 89.7 / 91.3 F1 (generative

lexical / reranked)
§ Petrov et al 06 – 90.7 F1 (generative unlexical)
§ McClosky et al 06 – 92.1 F1 (gen + rerank + self-train)

§ However
§ Bilexical counts rarely make a difference (why?)
§ Gildea 01 – Removing bilexical counts costs < 0.5 F1

Latent Variable PCFGs

§ Annotation refines base treebank symbols to improve
statistical fit of the grammar
§ Parent annotation [Johnson ’98]
§ Head lexicalization [Collins ’99, Charniak ’00]
§ Automatic clustering?

The Game of Designing a Grammar

Latent Variable Grammars

Parse Tree
Sentence Parameters

...

Derivations

Forward

Learning Latent Annotations

EM algorithm:

X1

X2 X7X4

X5 X6X3

He was right

.

§ Brackets are known
§ Base categories are known
§ Only induce subcategories

Just like Forward-Backward for HMMs.
Backward

Refinement of the DT tag

DT

DT-1 DT-2 DT-3 DT-4

Hierarchical refinement

Hierarchical Estimation Results

74

76

78

80

82

84

86

88

90

100 300 500 700 900 1100 1300 1500 1700
Total Number of grammar symbols

P
ar

si
ng

 a
cc

ur
ac

y
(F

1)

Model F1
Flat Training 87.3
Hierarchical Training 88.4

Refinement of the , tag
§ Splitting all categories equally is wasteful:

Adaptive Splitting

§ Want to split complex categories more
§ Idea: split everything, roll back splits which

were least useful

Adaptive Splitting Results

Model F1
Previous 88.4
With 50% Merging 89.5

0

5

10

15

20

25

30

35

40

N
P

VP PP

AD
VP S

AD
JP

SB
AR Q

P

W
H

N
P

PR
N

N
X

SI
N

V

PR
T

W
H

PP SQ

C
O

N
JP

FR
AG

N
AC U
C

P

W
H

AD
VP IN
TJ

SB
AR

Q

R
R

C

W
H

AD
JP X

R
O

O
T

LS
T

Number of Phrasal Subcategories

Number of Lexical Subcategories

0

10

20

30

40

50

60

70

NN
P JJ

NN
S NN VB
N RB

VB
G VB VB
D CD IN

VB
Z

VB
P DT

NN
PS CC JJ

R
JJ

S :
PR

P
PR

P$ M
D

RB
R

W
P

PO
S

PD
T

W
RB

-L
RB

- .
EX

W
P$

W
DT

-R
RB

- ''
FW RB

S TO
$

UH
, ``

SY
M RP LS #

Learned Splits

§ Proper Nouns (NNP):

§ Personal pronouns (PRP):

NNP-14 Oct. Nov. Sept.
NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters
NNP-15 New San Wall
NNP-3 York Francisco Street

PRP-0 It He I
PRP-1 it he they
PRP-2 it them him

§ Relative adverbs (RBR):

§ Cardinal Numbers (CD):

RBR-0 further lower higher
RBR-1 more less More
RBR-2 earlier Earlier later

CD-7 one two Three
CD-4 1989 1990 1988
CD-11 million billion trillion
CD-0 1 50 100
CD-3 1 30 31
CD-9 78 58 34

Learned Splits

Coarse-to-Fine Inference
§ Example: PP attachment

?????????

Hierarchical Pruning

… QP NP VP …coarse:

split in two: … QP1 QP2 NP1 NP2 VP1 VP2 …

… QP1 QP1 QP3 QP4 NP1 NP2 NP3 NP4 VP1 VP2 VP3 VP4 …split in four:

split in eight: … … … … … … … … … … … … … … … … …

Bracket Posteriors

Other Syntactic Models

Parse Reranking

§ Assume the number of parses is very small
§ We can represent each parse T as a feature vector j(T)

§ Typically, all local rules are features
§ Also non-local features, like how right-branching the overall tree is
§ [Charniak and Johnson 05] gives a rich set of features

Dependency Parsing

§ Lexicalized parsers can be seen as producing dependency trees

§ Each local binary tree corresponds to an attachment in the dependency
graph

questioned

lawyer witness

the the

Dependency Parsing

§ Pure dependency parsing is only cubic [Eisner 99]

§ Some work on non-projective dependencies
§ Common in, e.g. Czech parsing
§ Can do with MST algorithms [McDonald and Pereira 05]

Y[h] Z[h’]

X[h]

i h k h’ j

h h’

h

h k h’

Shift-Reduce Parsers

§ Another way to derive a tree:

§ Parsing
§ No useful dynamic programming search
§ Can still use beam search [Ratnaparkhi 97]

Data-oriented parsing:

§ Rewrite large (possibly lexicalized) subtrees in a single step

§ Formally, a tree-insertion grammar
§ Derivational ambiguity whether subtrees were generated atomically

or compositionally
§ Most probable parse is NP-complete

TIG: Insertion

Tree-adjoining grammars

§ Start with local trees
§ Can insert structure

with adjunction
operators

§ Mildly context-
sensitive

§ Models long-distance
dependencies
naturally

§ … as well as other
weird stuff that CFGs
don’t capture well
(e.g. cross-serial
dependencies)

TAG: Long Distance

CCG Parsing

§ Combinatory
Categorial Grammar
§ Fully (mono-)

lexicalized grammar
§ Categories encode

argument sequences
§ Very closely related

to the lambda
calculus (more later)

§ Can have spurious
ambiguities (why?)

