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Language is Contextual

“Add the tomatoes and mix” “Take me to the shop on the corner”

‣ Some problems depend on grounding into perceptual or physical 
environments:

‣ Most of today: these kinds of problems

‣ The world only looks like a database some of the time!



“Stop at the second car”

What things in the world does language refer to?

Grounded Semantics



How does context influence interpretation and action?

“Stop at the car”

Pragmatics



‣ I am speaking
‣ We won (a team I’m on; a team I support)
‣ He had rich taste (walking through the Taj Mahal)

Language is Contextual

‣ I am here (in my apartment; in this Zoom room)
‣ We are here (pointing to a map)

‣ I’m in a class now
‣ I’m in a graduate program now
‣ I’m not here right now (note on an office door)

‣ Some problems depend on grounding indexicals, or references to context
‣ Deixis: “pointing or indicating”. Often demonstratives, pronouns,  time 

and place adverbs



Language is Contextual

‣“Can you pass me the salt”
-> please pass me the salt

‣“Do you have any kombucha?” // “I have tea”
-> I don’t have any kombucha

‣“The movie had a plot, and the actors spoke audibly”
-> the movie wasn’t very good

‣ “You’re fired!”
-> performative, that changes the state of the world

‣ Some problems depend on grounding into speaker intents or goals:

‣ More on these in a future pragmatics lecture!



Language is Contextual
‣ Some knowledge seems easier to get with grounding:

The large ball crashed right through the table because it 
was made of styrofoam. What was made of styrofoam? 

-> table

Winograd 1972; Levesque 2013; Wang et al. 2018

Winograd schemas
The large ball crashed right through the table because it 
was made of steel. What was made of steel? 

-> ball

Gordon and Van Durme, 2013

“blinking and breathing problem” 



Language is Contextual
‣ Children learn word meanings incredibly fast, from incredibly few data

• Regularity and contrast in the input signal
• Social cues
• Inferring speaker intent  
• Regularities in the physical environment

Tomasello et al. 2005, Frank et al. 2012, Frank and Goodman 2014



Grounding
‣ (Some) possible things to ground into:
• Percepts: red means this set of RGB values, loud means lots of decibels 

on our microphone, soft means these properties on our haptic 
sensor…

• High-level precepts: cat means this type of pattern
• Effects on the world: go left means the robot turns left, speed up

means increasing actuation
• Effects on others: polite language is correlated with longer forum 

discussions



Grounding
‣ (Some) key problems:
• Representation: matching low-level percepts to high-level language 

(pixels vs cat)
• Alignment: aligning parts of language and parts of the world
• Content Selection / Context: what are the important parts of the 

environment to describe (for a generation system) or focus on (for 
interpretation)?

• Balance: it’s easy for multi-modal models to “cheat”, rely on imperfect 
heuristics, or ignore important parts of the input

• Generalization: to novel world contexts / combinations



Grounding
‣ Today, survey:
• Spatial relations
• Image captioning
• Visual question answering
• Instruction following



Spatial Relations



Spatial Relations

‣ How would you indicate O1 to 
someone with relation to the other 
two objects? 
(not calling it a vase, or describing 
its inherent properties)

‣ What about O2?

‣ Requires modeling listener —
“right of O2” is insufficient 
though true

Golland et al. (2010)



Spatial Relations
Golland et al. (2010)

‣ We can compute expected success:

U = 1 if correct, else 0

‣ Modeled after cooperative principle of Grice (1975) : listeners 
should assume speakers are cooperative, and vice-versa 

‣ Two models: a speaker, and a listener

‣ For a fixed listener, we can solve for the optimal speaker, and 
vice-versa



Spatial Relations

‣ Objects are associated with 
coordinates (bounding boxes of 
their projections). Features map 
lexical items to distributions 
(“right” modifies the distribution 
over objects to focus on those 
with higher x coordinate)

‣ Language -> spatial 
relations -> distribution 
over what object is 
intended

Golland et al. (2010)‣ Listener model:



Spatial Relations

‣ Syntactic analysis of the 
particular expression gives 
structure

‣ Rules (O2 = 100% prob of 
O2), features on words 
modify distributions as 
you go up the tree 

Golland et al. (2010)‣ Listener model:



Spatial Relations

‣ Put it all together: speaker will learn to say things that evoke the right 
interpretation

‣ Language is grounded in what the speaker understands about it

Golland et al. (2010)



Image Captioning



How do we caption these images?

‣ Need to know what’s going on in the 
images — objects, activities, etc.

‣ Choose what to talk about

‣ Generate fluid language



Pre-Neural Captioning: Objects and Relations

‣ Detect objects using (non-neural) object detectors trained on a separate dataset
‣ Label objects, attributes, and relations. CRF with potentials from features on the object 

and attribute detections, spatial relations, and and text co-occurrence
‣ Convert labels to sentences using templates

‣ Baby Talk, Kulkarni et al. (2011) [see also Farhadi et al. 2010, Mitchell et al. 2012, Kuznetsova et al. 2012]



ImageNet models

‣ Last layer is just a linear transformation away from object detection — should capture high-level 
semantics of the image, especially what objects are in there

‣ 2012 ImageNet classification competition: drastic error reduction from deep CNNs

AlexNet, Krizhevsky et al. (2012)

‣ ImageNet dataset (Deng et al. 2009, Russakovsky et al. 2015)
Object classification: single class for the image. 1.2M images, 1000 categories
Object detection: bounding boxes and classes. 500K images, 200 categories 



Neural Captioning: Encoder-Decoder

‣ Use a CNN encoder pre-trained for object classification (usually on ImageNet). 
Freeze the parameters.

‣ Generate captions using an LSTM conditioning on the CNN representation



What’s the grounding here?

a close up of a plate of ___

a couple of bears walking across ____

food

a dirt road

‣ What are the vectors really capturing? 
Objects, but maybe not deep relationships



Simple Baselines

‣ MRNN: take the last layer of the 
ImageNet-trained CNN, feed into 
RNN

‣ k-NN: use last layer of the CNN, find 
most similar train images based on 
cosine similarity with that vector. 
Obtain a consensus caption.

Devlin et al. (2015)



Simple Baselines

Devlin et al. (2015)

‣ Even from CNN+RNN methods (MRNN), relatively few unique captions 
even though it’s not quite regurgitating the training



Neural Captioning: Object Detections
‣ Follow the pre-neural object-based systems: use features predictive of 

individual objects and their attributes
Training data 
(Visual Genome, Krishna et al. 2015) :

Object and attribute detections 
(Faster R-CNN, Ren et al. 2015):

Anderson et al. (2018)



‣ Also add an attention mechanism: attend over the visual features from 
individual detected objects

Neural Captioning: Object Detections

Anderson et al. (2018)



Neural Hallucination

A group of people sitting 
around a table with laptops

A kitchen with a 
stove and a sink

Rohrbach & Hendricks et al. (2018)

‣ Language model often overrides the visual context:

‣ Standard text overlap metrics (BLEU, METEOR) aren’t sensitive to this!

Slide credit: Anja Rohrbach



Visual Question Answering



Visual Question Answering
‣ Answer questions about images

VQA: Agrawal et al. (2015)
Human-written questions

‣ Frequently require compositional understanding of multiple objects or activities in 
the image

What size is the cylinder that is left of the brown 
metal thing that is left of the big sphere?

CLEVR: Johnson et al. (2017)
Synthetic, but allows careful control 
of complexity and generalization



‣ Fuse modalities: pre-trained CNN processing of the image, RNN processing of the 
language

‣ What could go wrong here? Agrawal et al. (2015)

Visual Question Answering



Neural Module Networks

‣ Integrate compositional 
reasoning + image 
recognition

Andreas et al. (2016), Hu et al. (2017)

‣ Have neural network 
components like 
find[sheep]whose 
composition is governed by 
a parse of the question

‣ Like a semantic parser, with 
a learned execution  
function

What is in the sheep’s ear? => tag



Neural Module Networks
‣ Able to handle complex compositional reasoning, at least with simple 

visual inputs

Andreas et al. (2016), Hu et al. (2017)



Visual Question Answering

‣ In many cases, language as a 
prior is pretty good!

‣ Balanced VQA: reduce these 
regularities by having pairs of 
images with different answers

‣ “Do you see a…” = yes (87% 
of the time)

‣ “How many…” = 2 (39%)

‣ “What sport…” = tennis 
(41%)

Goyal et al. (2017)

‣ When only the question is 
available, baseline models 
are super-human!



Challenge Datasets

‣ NLVR2: Difficult comparative reasoning; balanced dataset construction; human-written

Suhr & Zhou et al., 2019

Majority class baseline: 50%
Current best system:      80%
Human performance:    96%



Instruction Following



MacMahon et al., 2006; Chen and Mooney, 2011

Instruction Following
‣ SAIL dataset: navigational instructions in synthetic grid worlds, 

with furniture and patterns

Human annotator view System view



Input
instruction:

go to the chair. turn left and go forward to the fish 
painting. head to the right until you get to a coat 
rack

Output
actions:

Instruction Following



Input
instruction:

go to the chair. turn left and go forward to the fish 
painting. head to the right until you get to a coat 
rack

Output
actions:

Instruction Following



‣ Several successful approaches using semantic parsing 
(Chen and Mooney 2011; Artzi and Zettlemoyer 2013; Artzi et al. 2014)

examples from Yoav Artzi

Instruction Following



‣ Several successful approaches using semantic parsing 
(Chen and Mooney 2011; Artzi and Zettlemoyer 2013; Artzi et al. 2014)

examples from Yoav Artzi

‣ Logical forms denote action sequences, often using post-conditions
‣ Learn from action sequences paired with instructions

Instruction Following



Listener
go forward to the 

grey hallway

Instruction Actions in context

Inputs Outputs

Instruction Following

‣ This is a sequence-to-sequence task, right?



Neural Instruction Following

…
…

+

go  forward  to    the     chair … 

…
…

LSTM encoder LSTM decoder with attention

‣ Encoder-decoder setup with attention to the instruction

‣ Decoder takes as input embeddings for all the (symbolic) world features the 
agent can see

‣ Almost as good as the best semantic parsing approach
Mei et al. (2016)



Turn left and take a right at the table. Take a left at the painting and then 
take your first right. Wait next to the exercise equipment.

Vision-and-Language Navigation

Anderson et al. (2018)



Discrete motion, but 
real images



…
…

+LSTM Encoder

go past the couch   …

LSTM Decoder with Attention

Anderson et al. (2018)

Vision-and-Language Navigation
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…
…

+LSTM Encoder

go past the couch   …

…
…

LSTM Decoder with Attention

Vision-and-Language Navigation

Anderson et al. (2018)



Walk past hall table. Walk into bedroom. Make left at table clock. 
Wait at bathroom door threshold.

Fried, Hu, Cirik et al. (2018)



go past the couch   …

go past the couch   …

go past the couch   …

couch door
lamp

chair

stairs
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Vision-and-Language Navigation

‣ But, what are the models actually 
grounding into?

‣ Some combination of: 
• generalizable representations
• environments seen in training
• biases in the routes themselves

‣ Best current models: 72% accuracy; 
humans: 86%



Challenge Tasks

Turn and go with the flow of traffic. At 
the first traffic light turn left. Go past the 

next two traffic lights …

Touchdown
Chen et al. 2019, Mehta et al. 2020

‣ Long, complex routes through NYC’s 
StreetView graph, with associated 
imagery

‣ SOTA model: 5% accuracy. Human: 92%



Challenge Tasks
ALFRED  Shridhar et al. 2020

‣ Interact with objects in a 
household setting

‣ Long time horizons, non-
reversible state changes

‣ Baseline model: 1% 
accuracy. Human: 91%



Takeaways
‣ Lots of problems where natural language has to be interpreted in 

an environment and can be understood in the context of that 
environment

‣ Neural models make it easier to fuse representations from 
multiple modalities (but they sometimes learn to cheat)

‣ Symbolic methods guided by linguistic structure; neural systems with 
learned representations; some work productively combines both


