

1

Mha Wha	at's Going on in The	re?
	Do we need tree constraints?	
	Not for F1	
	Many neural parsers no longer model output correlations with grammar rules, but still use output correlations from tree constraints	
	Predicting span brackets independently gives nearly identical performance on PTB development set F1 and produces valid trees for 94.5% of sentences	
		27

What's	Going on in There	e?
	What word representatio we need?	ns do
	A character LSTM is sufficie	ənt
	Word Only	91.44
	Word and Tag	92.09
	Character LSTM Only	92.24
	,	
	Character LSTM and Word	92.22

Key Idea: Embed contexts, not words. Use these embeddings for other tasks.

Example: BERT (Devlin et al., 2019) -- bidirectional Transformer trained on masked language modeling and next-sentence prediction

	Out of Domain Parsing							
							-	
	Be	erkeley	B	LLIP	In-	-Order	(Chart
	F1	Δ Err.	F1	Δ Err.	F1	Δ Err.	F1	ΔE_1
WSJ Test	90.06	+0.0%	91.48	+0.0%	91.47	+0.0%	93.27	+0.
Brown All	84.64	+54.5%	85.89	+65.6%	85.60	+68.9%	88.04	+77.
Genia All	79.11	+110.2%	79.63	+139.1%	80.31	+130.9%	82.68	+157.
	77 20	127 60/-	70.01	+135.8%	79.07	+145 4%	82.22	+164'

Neural parsers improve out-of-domain numbers, but not more than in-domain numbers

Other Neural Constituency Parsers
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
 Back to at least Henderson 1998! Becent directions:
Recent directions:Shift-Reduce, eg Cross and Huang 2016
 SR/Generative, eg Dyer et al 2016 (RNNG) In-Order Generative, eg Liu and Zhang 2017

