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Parsing as Span Classification
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Routing with LSTMs
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Verb at the start
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Span Classification
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... But Will We Get a Tree Out?
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Does It Work?

Grammar-Based
[Carreras et al, 08]

LSTM-Based 926
[Stern et al, 17] ’
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91.0

F1 (English, dev)

What's Going on in There?

Neural parsers no longer have
much of the model structure
provided to classical parsers.

How do they perform so well
without it?

4/10/20



What's Going on in There?

What's Goi

ing on in There?

(Why don’t we need a grammar?\

Adjacent tree labels are redundant with
LSTM features

If we can predict surrounding tree labels
from our LSTM representation of the input,
then this information doesn’t need to be
provided explicitly by grammar production
rules

We find that for 92.3% of spans, the label
of the span’s parent can predicted from the
neural representation of the span
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constraints

gives nearly

( Do we need tree constraints? )

Many neural parsers no longer model
output correlations with grammar rules, but
still use output correlations from tree

Predicting span brackets independently

PTB development set F1 and produces
\Yalid trees for 94.5% of sentences

Not for F1

identical performance on

What's Going on in There?

What's Go

ing on in There?

( Is distant context important? )

Yes!

i

STD She  played soccor  In | the  park P

£.b0)
STD She  played soccer  In  the  park <

Almost a full point of F1 is lost by
truncating context 5 words away from span

sTO>

\endpoints and half a point with 10 words

A

( What word representations do )

we need?

A character LSTM is sufficient

Word Only 91.44
Word and Tag 92.09
Character LSTM Only 92.24
Character LSTM and Word 92.22

Character LSTM, Word, and Tag 92.24
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What's Going on in There? What's Going on in There?
. )
Do LSTMs introduce useful
N inductive bias compared to
What about lexicon features?
( feedforward networks?
The character LSTM captures the same '
information Yes!
Heavily engineered lexicons used to be We compare a truncated LSTM with
critical to good performance, but neural feedforward architectures that are given
models typically don’t use them the same inputs
Word features from the Berkeley Parser
(Petrov and Klein 2007) can be predicted The LSTM outperformed the best
with over 99.7% accuracy from the feedforward by 6.5 F1
character LSTM representation N J
S J
Routing with Transformers Routing with Transformers
Query: Query:
verb verb
\ verb [VBZ] verb [VBG] noun punctuation
t t t t
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Routing with Transformers
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What Helps?

LSTV 92

Self-Attentive 93
+Factorec 94
915 92 25 e 9B5 94

F1 (English, dev)

Results: Multilingual
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38
Data Hunger
Problem: Input has more variation than output
Need to handle:
® Rare words not seen during training
® Word forms in morphologically rich languages
40
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Knowledge Modularity

= Knowledge modularity: Learn domain-general knowledge from one
data source and use it solve specific problems elsewhere
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Context Embeddings and Pretraining

Key Idea: Embed contexts, not words. Use these embeddings for other tasks.

Example: BERT (Devlin et al., 2019) -- bidirectional Transformer trained on
masked language modeling and next-sentence prediction
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Pretraining
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Encoder Architectures

LSTM Self-Attention
==
No pre-training 92.08 F1 93.55 F1
[Gaddy+ 2018] [Kitaev & Klein 2018]
Pre-traini 95.13 F1 95.60 F1
re-training| (with ELMo) (with BERT)

[Kitaev & Klein 2018]

Encoder Architectures

F1 Score (English) Number of Parameters

No pre-training 93.6 No pre-training | 26M
ELMo 95.2 ELMo |107M
BERT-base 5.8 BERT-base | 117M
BERT-large 95.6 BERT-large 343M
XLNet-large 96.0 XLNet-large 361M
92.259393.7%4.35.259696.75 M 100M 200M 300M 400M
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Results: Multilingual

Does Structure Help?
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Figure 1: Labelled bracketing F1 versus minimum span length for the English corpora. F1 scores for the In-Order
parser with BERT (orange) and the Chart parser with BERT (cyan) start to diverge for longer spans.
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Out of Domain Parsing

Other Neural Constituency Parsers

Berkeley BLLIP In-Order Chart
F1 A Err. F1 A Err. Fl1 A Err. Fl1 A Err.

WSJ Test | 90.06 +0.0% | 91.48 +0.0% | 91.47 +0.0% | 93.27 +0.0%

Brown All | 84.64 +54.5% | 85.89 +65.6% | 85.60 +68.9% | 88.04 +77.7%
Genia All | 79.11  +110.2% | 79.63  +139.1% | 80.31 +130.9% | 82.68 +157.4%
EWTAIl | 77.38  +127.6% | 7991 +1358% | 79.07 +145.4% | 8222 +164.2%

Neural parsers improve out-of-domain numbers, but not more
than in-domain numbers

Steps | structural action label action | stack after bracket
1-2 [ sh(/PRP) label- NP | o oNP;
34 [sh(@oMD)  nolabel | g/
PRP MD VBP S 56 sh(like/VBP)  nolabel | prsmary
| 7-8 | comb nolabel | oy
o xdoalike VP 9-10 | sh(eating/VBG) nolabel | g
VBG Np  11-12 label-NP 4NPs
I 1 1314 | comb label-S-VP 385, 3VPs
seating NN 15-16 | comb label-VP 1VPs
|
Lfish, 17718 | comb label-s | 0Ss

= Back to at least Henderson 1998!
= Recent directions:
= Shift-Reduce, eg Cross and Huang 2016
= SR/Generative, eg Dyer et al 2016 (RNNG)
= |n-Order Generative, eg Liu and Zhang 2017
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Thank You!
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