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Output Correlations
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Parsing as Span Classification
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Routing with LSTMs
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Span Classification
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… But Will We Get a Tree Out?
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Grammar-Based
[Carreras et al, 08] 

LSTM-Based
[Stern et al, 17] 
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What’s Going on in There?
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What’s Going on in There?
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Routing with Transformers
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Routing with Transformers
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What Helps?
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Data Hunger
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Problem: Input has more variation than output

Need to handle:
• Rare words not seen during training
• Word forms in morphologically rich languages

Historical Trends
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Knowledge Modularity
§ Knowledge modularity: Learn domain-general knowledge from one 

data source and use it solve specific problems elsewhere

Context Embeddings and Pretraining

Key Idea: Embed contexts, not words.  Use these embeddings for other tasks.

Example: BERT (Devlin et al., 2019) -- bidirectional Transformer trained on 
masked language modeling and next-sentence prediction

Recent Explosion of Pretraining Work

GLUE Baseline (ICLR 2019)

BERT

Human

GLUE SoTA
(ICLR 2020) Insertion-based Generation KERMIT

Parsing as Span Classification
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Pretraining
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LSTM Self-Attention

No pre-training 92.08 F1 93.55 F1

Pre-training 95.13 F1
(with ELMo)

95.60 F1
(with BERT)

[Kitaev & Klein 2018]

[Gaddy+ 2018] [Kitaev & Klein 2018]

Encoder Architectures

51

93.6

95.2 

95.3 

95.6 

96.0 

92.259393.7594.595.259696.75

No pre-training

ELMo

BERT-base

BERT-large

XLNet-large

F1 Score (English)

26M

107M 

117M 

343M 

361M 

M 100M 200M 300M 400M

No pre-training

ELMo

BERT-base

BERT-large

XLNet-large

Number of Parameters



4/10/20

13

Results: Multilingual
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Does Structure Help?

Out of Domain Parsing

Neural parsers improve out-of-domain numbers, but not more 
than in-domain numbers

Other Neural Constituency Parsers

§ Back to at least Henderson 1998!

§ Recent directions:
§ Shift-Reduce, eg Cross and Huang 2016

§ SR/Generative, eg Dyer et al 2016 (RNNG)

§ In-Order Generative, eg Liu and Zhang 2017
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Thank You!

nlp.cs.berkeley.edu


