Natural Language Processing

Syntax and Parsing

Dan Klein – UC Berkeley

Syntax

Parse Trees

The move followed a round of similar increases by other lenders, reflecting a continuing decline in that market

Phrase Structure Parsing

- Phrase structure parsing organizes syntax into constituents or brackets
- In general, this involves nested trees
- Linguists can, and do, argue about details
- Lots of ambiguity
- Not the only kind of syntax...

new art critics write reviews with computers

Constituency Tests

- How do we know what nodes go in the tree?
- Classic constituency tests:
 - Substitution by proform
 - Question answers
 - Semantic gounds
 - Coherence
 - Reference
 - Idioms
 - Dislocation
 - Conjunction

Cross-linguistic arguments, too

Conflicting Tests

Constituency isn't always clear

- Units of transfer:
 - think about ~ penser à
 - talk about ~ hablar de
- Phonological reduction:
 - I will go \rightarrow I'll go
 - I want to go → I wanna go
 - a le centre → au centre

La vélocité des ondes sismiques

Coordination

He went to and came from the store.

Questions from Last Time

Q: Do we model deep vs surface structure?

[Example: Johnson 02]

[Example: Cai et al 11]

Ambiguities

Parts-of-Speech (English)

One basic kind of linguistic structure: syntactic word classes

Part-of-Speech Ambiguity

Words can have multiple parts of speech

VBD VB
VBN VBZ VBP VBZ
NNP NNS NN NNS CD NN

Fed raises interest rates 0.5 percent

Mrs./NNP Shaefer/NNP never/RB got/VBD **around/RP** to/TO joining/VBG All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB **around/IN** the/DT corner/NN Chateau/NNP Petrus/NNP costs/VBZ **around/RB** 250/CD

- Two basic sources of constraint:
 - Grammatical environment
 - Identity of the current word
- Many more possible features:
 - Suffixes, capitalization, name databases (gazetteers), etc...

Why POS Tagging?

- Useful in and of itself (more than you'd think)
 - Text-to-speech: record, lead
 - Lemmatization: $saw[v] \rightarrow see$, $saw[n] \rightarrow saw$
 - Quick-and-dirty NP-chunk detection: grep {JJ | NN}* {NN | NNS}
- Useful as a pre-processing step for parsing
 - Less tag ambiguity means fewer parses
 - However, some tag choices are better decided by parsers

```
IN
DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments ...
```

```
VDN
DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted ...
```


Classical NLP: Parsing

Write symbolic or logical rules:

Grammar (CFG)		Lexicon
$ROOT \to S$	$NP \rightarrow NP PP$	$NN \rightarrow interest$
$S \to NP VP$	$VP \rightarrow VBP NP$	$NNS \to raises$
$NP \rightarrow DT NN$	$VP \rightarrow VBP NP PP$	$VBP \rightarrow interest$
$NP \rightarrow NN NNS$	$PP \rightarrow IN NP$	$VBZ \to raises$
		•••

- Use deduction systems to prove parses from words
 - Minimal grammar on "Fed raises" sentence: 36 parses
 - Simple 10-rule grammar: 592 parses
 - Real-size grammar: many millions of parses
- This scaled very badly, didn't yield broad-coverage tools

Ambiguities: PP Attachment

Attachments

I cleaned the dishes from dinner

I cleaned the dishes with detergent

I cleaned the dishes in my pajamas

I cleaned the dishes in the sink

Syntactic Ambiguities I

- Prepositional phrases:
 They cooked the beans in the pot on the stove with handles.
- Particle vs. preposition:
 The puppy tore up the staircase.
- Complement structures The tourists objected to the guide that they couldn't hear. She knows you like the back of her hand.
- Gerund vs. participial adjective
 Visiting relatives can be boring.
 Changing schedules frequently confused passengers.

Syntactic Ambiguities II

- Modifier scope within NPs impractical design requirements plastic cup holder
- Multiple gap constructions
 The chicken is ready to eat.
 The contractors are rich enough to sue.
- Coordination scope: Small rats and mice can squeeze into holes or cracks in the wall.

Dark Ambiguities

 Dark ambiguities: most analyses are shockingly bad (meaning, they don't have an interpretation you can get your mind around)

This analysis corresponds to the correct parse of

"This will panic buyers!"

- Unknown words and new usages
- Solution: We need mechanisms to focus attention on the best ones, probabilistic techniques do this

Ambiguities as Trees

PCFGs

Probabilistic Context-Free Grammars

A context-free grammar is a tuple <N, T, S, R>

- N: the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
- T: the set of terminals (the words)
- *S* : the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
- R: the set of rules
 - Of the form $X \rightarrow Y_1 Y_2 ... Y_k$, with $X, Y_i \in N$
 - Examples: $S \rightarrow NP VP$, $VP \rightarrow VP CC VP$
 - Also called rewrites, productions, or local trees

A PCFG adds:

A top-down production probability per rule P(Y₁ Y₂ ... Y_k | X)

Treebank Sentences

```
( (S (NP-SBJ The move)
     (VP followed
         (NP (NP a round)
             (PP of
                 (NP (NP similar increases)
                      (PP by
                          (NP other lenders))
                      (PP against
                          (NP Arizona real estate loans)))))
         (S-ADV (NP-SBJ *)
                (VP reflecting
                     (NP (NP a continuing decline)
                         (PP-LOC in
                                 (NP that market))))))
     .))
```


Treebank Grammars

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn't work well):

- Better results by enriching the grammar (e.g., lexicalization).
- Can also get state-of-the-art parsers without lexicalization.

Treebank Grammar Scale

Treebank grammars can be enormous

- As FSAs, the raw grammar has ~10K states, excluding the lexicon
- Better parsers usually make the grammars larger, not smaller

NP

Chomsky Normal Form

Chomsky normal form:

- All rules of the form $X \rightarrow Y Z$ or $X \rightarrow w$
- In principle, this is no limitation on the space of (P)CFGs
 - N-ary rules introduce new non-terminals

- Unaries / empties are "promoted"
- In practice it's kind of a pain:
 - Reconstructing n-aries is easy
 - Reconstructing unaries is trickier
 - The straightforward transformations don't preserve tree scores
- Makes parsing algorithms simpler!

CKY Parsing

A Recursive Parser

```
bestScore(X,i,j)
  if (j = i+1)
     return tagScore(X,s[i])
  else
     return max score(X->YZ) *
          bestScore(Y,i,k) *
          bestScore(Z,k,j)
```

- Will this parser work?
- Why or why not?
- Memory requirements?

A Memoized Parser

One small change:

```
bestScore(X,i,j)
  if (scores[X][i][j] == null)
    if (j = i+1)
        score = tagScore(X,s[i])
    else
        score = max score(X->YZ) *
              bestScore(Y,i,k) *
              bestScore(Z,k,j)
        scores[X][i][j] = score
  return scores[X][i][j]
```


A Bottom-Up Parser (CKY)

Can also organize things bottom-up

```
bestScore(s)
                                               X
  for (i : [0,n-1])
     for (X : tags[s[i]])
       score[X][i][i+1] =
          tagScore(X,s[i])
  for (diff : [2,n])
                                               k
     for (i : [0,n-diff])
       j = i + diff
       for (X->YZ : rule)
         for (k : [i+1, j-1])
           score[X][i][j] = max score[X][i][j],
                                 score(X->YZ) *
                                 score[Y][i][k] *
                                 score[Z][k][j]
```


Unary Rules

• Unary rules?

```
bestScore(X,i,j,s)
  if (j = i+1)
     return tagScore(X,s[i])
  else
     return max max score(X->YZ) *
          bestScore(Y,i,k) *
          bestScore(Z,k,j)
          max score(X->Y) *
          bestScore(Y,i,j)
```


CNF + Unary Closure

- We need unaries to be non-cyclic
 - Can address by pre-calculating the unary closure
 - Rather than having zero or more unaries, always have exactly one

- Alternate unary and binary layers
- Reconstruct unary chains afterwards

Alternating Layers

```
bestScoreB(X,i,j,s)
      return max max score(X->YZ) *
                      bestScoreU(Y,i,k) *
                       bestScoreU(Z,k,j)
bestScoreU(X,i,j,s)
  if (j = i+1)
       return tagScore(X,s[i])
  else
       return max max score (X->Y) *
                       bestScoreB(Y,i,j)
```

Learning PCFGs

Treebank PCFGs

[Charniak 96]

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn't work well):

Model	F1
Baseline	72.0

Conditional Independence?

- Not every NP expansion can fill every NP slot
 - A grammar with symbols like "NP" won't be context-free
 - Statistically, conditional independence too strong

Non-Independence

Independence assumptions are often too strong.

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!

Grammar Refinement

Example: PP attachment

Grammar Refinement

- Structure Annotation [Johnson '98, Klein&Manning '03]
- Lexicalization [Collins '99, Charniak '00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]

Structural Annotation

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation

Lexicalization

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation [Johnson '98, Klein and Manning 03]
 - Head lexicalization [Collins '99, Charniak '00]

Problems with PCFGs

- If we do no annotation, these trees differ only in one rule:
 - $VP \rightarrow VP PP$
 - $NP \rightarrow NP PP$
- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words

Problems with PCFGs

- What's different between basic PCFG scores here?
- What (lexical) correlations need to be scored?

Lexicalized Trees

- Add "head words" to each phrasal node
 - Syntactic vs. semantic heads
 - Headship not in (most) treebanks
 - Usually use head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost N*
 - Take rightmost JJ
 - Take right child
 - VP:
 - Take leftmost VB*
 - Take leftmost VP
 - Take left child

Lexicalized PCFGs?

Problem: we now have to estimate probabilities like

- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps

Lexical Derivation Steps

A derivation of a local tree [Collins 99]

Choose a head tag and word

Choose a complement bag

Generate children (incl. adjuncts)

Recursively derive children

Lexicalized CKY

```
(VP->VBD...NP \bullet) [saw]
                                                            X[h]
                                 NP[her]
               (VP->VBD •) [saw]
                                                              Z[h]
                                                         Y[h]
bestScore(X,i,j,h)
  if (j = i+1)
                                                                   h'
                                                             k
                                                      h
     return tagScore(X,s[i])
  else
     return
       \max_{k,h',X->YZ} score (X[h]->Y[h] Z[h']) *
                 bestScore(Y,i,k,h) *
                 bestScore(Z,k,j,h')
            max score (X[h] \rightarrow Y[h'] Z[h]) *
          k,h',X->YZ
                 bestScore(Y,i,k,h') *
                 bestScore(Z,k,j,h)
```


Results

Some results

- Collins 99 88.6 F1 (generative lexical)
- Charniak and Johnson 05 89.7 / 91.3 F1 (generative lexical / reranked)
- Petrov et al 06 90.7 F1 (generative unlexical)
- McClosky et al 06 92.1 F1 (gen + rerank + self-train)

However

- Bilexical counts rarely make a difference (why?)
- Gildea 01 Removing bilexical counts costs < 0.5 F1

Latent Variable PCFGs

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]
 - Head lexicalization [Collins '99, Charniak '00]
 - Automatic clustering?

Latent Variable Grammars

Parse Tree TSentence w

Derivations t:T

Parameters θ

Learning Latent Annotations

EM algorithm:

- Brackets are known
- Base categories are known
- Only induce subcategories

Just like Forward-Backward for HMMs.

Refinement of the DT tag

Hierarchical refinement

Hierarchical Estimation Results

Refinement of the, tag

Splitting all categories equally is wasteful:

Adaptive Splitting

- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful

Adaptive Splitting Results

Number of Phrasal Subcategories

Number of Lexical Subcategories

Learned Splits

Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco	Street

Personal pronouns (PRP):

PRP-0	It	He	I
PRP-1	it	he	they
PRP-2	it	them	him

Learned Splits

Relative adverbs (RBR):

RBR-0	further	lower	higher
RBR-1	more	less	More
RBR-2	earlier	Earlier	later

Cardinal Numbers (CD):

CD-7	one	two	Three
CD-4	1989	1990	1988
CD-11	million	billion	trillion
CD-0	1	50	100
CD-3	1	30	31
CD-9	78	58	34

Coarse-to-Fine Inference

Example: PP attachment

Hierarchical Pruning

Bracket Posteriors

Other Syntactic Models

Parse Reranking

- Assume the number of parses is very small
- We can represent each parse T as a feature vector $\varphi(T)$
 - Typically, all local rules are features
 - Also non-local features, like how right-branching the overall tree is
 - [Charniak and Johnson 05] gives a rich set of features

Dependency Parsing

Lexicalized parsers can be seen as producing dependency trees

 Each local binary tree corresponds to an attachment in the dependency graph

Dependency Parsing

Pure dependency parsing is only cubic [Eisner 99]

- Some work on non-projective dependencies
 - Common in, e.g. Czech parsing
 - Can do with MST algorithms [McDonald and Pereira 05]

Shift-Reduce Parsers

Another way to derive a tree:

Parsing

- No useful dynamic programming search
- Can still use beam search [Ratnaparkhi 97]

Data-oriented parsing:

Rewrite large (possibly lexicalized) subtrees in a single step

- Formally, a *tree-insertion grammar*
- Derivational ambiguity whether subtrees were generated atomically or compositionally
- Most probable parse is NP-complete

TIG: Insertion

Tree-adjoining grammars

- Start with local trees
- Can insert structure with adjunction operators
- Mildly contextsensitive
- Models long-distance dependencies naturally
- ... as well as other weird stuff that CFGs don't capture well (e.g. cross-serial dependencies)

TAG: Long Distance

CCG Parsing

- CombinatoryCategorial Grammar
 - Fully (mono-) lexicalized grammar
 - Categories encode argument sequences
 - Very closely related to the lambda calculus (more later)
 - Can have spurious ambiguities (why?)

 $John \vdash NP$ $shares \vdash NP$ $buys \vdash (S \setminus NP) / NP$ $sleeps \vdash S \setminus NP$ $well \vdash (S \setminus NP) \setminus (S \setminus NP)$