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Attention

Conditional Sequence Generation

P(e|f) could just be estimated from a sequence model P(f, e)

‘<f> das Haus ist klein </f>“the house is small </e>

Run an RNN over the whole sequence, which first computes P(f),
then computes P(e, f).

Encoder-Decoder: Use different parameters or architectures
encoding f and predicting e.

"Sequence to sequence" learning (Sutskever et al., 2014)
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(Sutskever et al., 2014) Sequence to sequence learning with neural networks.

Impact of Attention on Long Sequence Generation
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(Badhanau et al., 2016) Neural Machine Translation by Jointly Learning to Align and Translate




Conditional Gated Recurrent Unit with Attention

S; = CGRUatt (Sj—l, Yj—1, C) Architecture for the
top research system in
WMT16 and WMT17
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the output of the
forward step with

the previous state

Conditional Gated Recurrent Unit with Attention
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Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION
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(Koehn & Knowles 2017) Six Challenges for Neural Machine Translation




Input Thinking Machines
Transformer
Embedding 08 B x. [
In lieu of an RNN,
use attention. Queries a [T q: [
i Keys
High throughput & [T EEE
expressivity: Values v [ v. I
compute queries,
keys and values as s _ B
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. (different) linear
Transformer Architecture transformations of

the input. Divide by 8 (/dj )

Softmax
Attention weights
are queries ¢ keys; Softmax
outputs are sums of X v [
weighted values.
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Some Transformer Concerns Transformer Architecture
Problem: Bag-of-words representation of the input. e Layer normalization
Remedy: Position embeddings are added to the word embeddings. ("Add & Norm" cells)

helps with RNN+attention
architectures as well.

Problem: During generation, can't attend to future words.
Remedy: Masked training that zeroes attention to future words. « Positional encodings can be
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learned or based on a Add & Norm ==
Problem: Deep networks needed to integrated lots of context. Iormula tha:E ge_)kis it easy Attention
Remedies: Residual connections and multi-head attention. 0 represent distance. oward N
EN-DE Add & Norm
Add & N
Problem: Optimization is hard. ByteNet [18] 23.75 Mmel: asked
Remedies: Large mini-batch sizes and layer normalization. Deep-Att + PosUnk [39] e e
GNMT + RL [38] 24.6 Iy 7
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(shifted right)




Training and Inference

Training Loss Function

Teacher forcing: During training, only use the predictions of
the model for the loss, not the input.
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Label smoothing: Update toward a distribution in which
*0.9 probability is assigned to the observed word, and
*0.1 probability is divided uniformly among all other words.

Sequence-level loss has been explored, but (so far) abandoned.

Search Strategies

For each target position, each word in the vocabulary is scored.
(Alternatively, a restricted list of vocabulary items can be
selected based on the source sentence, but quality can degrade.)

Greedy decoding: Extend a single hypothesis (partial translation)
with the next word that has highest probability.

Beam search: Extend multiple hypotheses, then prune.

A fruit 0.3 ¢ 0.3
A 0.3 <
A-grape—8-3——6+1— An apple 0.2 * 0.6
An apple 0.2 + 0.6 A fruit 0.3 « 0.3
An @.2<

An—orange—02 =01

Training Data




Subwords

The sequence of symbols that are embedded should be common
enough that an embedding can be estimated robustly for each, and
all symbols have been observed during training.

Solution 1: Symbols are words with rare words replaced by UNK.
*Replacing UNK in the output is a new problem (like alignment).

*UNK in the input loses all information that might have been
relevant from the rare input word (e.g., tense, length, P0S).

Solution 2: Symbols are subwords.

PE operations

*Byte-Pair Encoding is the most common approach.

*0ther techniques that find common subwords
work equally well (but are more complicated).

*Training on many sampled subword decompositions

improves out-of-domain translations.

(Sennrich et al., 2016) Neural Machine Translation of Rare Words with Subword Units
(Kudo, 2018) Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates

BPE Example

system sentence
source health research
reference

Gesundheitsforschungs

word-level (with back-off) | Forschungs

character bigrams
BPE

Folrs|ch|un|gs|in]st|it|ut|io|
Gesundheits|forsch|ungsin|

Example from Rico Sennrich

Back Translations

Synthesize an en-de parallel corpus by using a de-en system to
translate monolingual de sentences.

*Better generating systems don't seem to matter much.

*Can help even if the de sentences are already in an existing
en—de parallel corpus!

system EN—DE DE—EN

‘ dev  test ‘ dev  test
baseline 224 268 | 264 285
+synthetic 25.8 31.6 | 299 36.2

+ensemble 27.5 33.1 | 315 375
+r2l reranking | 28.1 34.2 | 32.1 38.6

Table 2: English<»German translation results
(BLEU) on dev (newstest2015) and test (new-
stest2016). Submitted system in bold.

(Sennrich et al., 2015) Improving Neural Machine Translation Models with Monolingual Data
(Sennrich et al., 2016) Edinburgh Neural Machine Translation Systems for WMT 16




