Neural Machine Translation

Dan Klein, John DeNero UC Berkeley

Attention

P(e|f) could just be estimated from a sequence model P(f, e)

Run an RNN over the whole sequence, which first computes P(f), then computes P(e, f).

Encoder-Decoder: Use different parameters or architectures encoding f and predicting e.

"Sequence to sequence" learning (Sutskever et al., 2014)

(Sutskever et al., 2014) Sequence to sequence learning with neural networks.

Impact of Attention on Long Sequence Generation

(Badhanau et al., 2016) Neural Machine Translation by Jointly Learning to Align and Translate

Conditional Gated Recurrent Unit with Attention

 \mathbf{s}_{j-1}

 \mathbf{s}_j' .

GRU •

 \mathbf{s}_{j}

GRU

Conditional Gated Recurrent Unit with Attention

$$\mathbf{s}_{j} = \operatorname{cGRU}_{\operatorname{att}}(\mathbf{s}_{j-1}, y_{j-1}, \mathbf{C})$$

$$\mathbf{s}_{j}' = (1 - \mathbf{z}_{j}') \odot \mathbf{s}_{j}' + \mathbf{z}_{j}' \odot \mathbf{s}_{j-1}$$

$$\mathbf{E}[y_{j-1}]$$

$$T_{x}$$

$$\mathbf{c}_{j} = \operatorname{ATT}(\mathbf{C}, \mathbf{s}_{j}') = \sum_{i}^{T_{x}} \alpha_{ij} \mathbf{h}_{i},$$

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_{x}} \exp(e_{kj})},$$

$$e_{ij} = \mathbf{v}_{a}^{\mathsf{T}} \tanh\left(\mathbf{U}_{a} \mathbf{s}_{j}' + \mathbf{W}_{a} \mathbf{h}_{i}\right)$$

$$\mathbf{s}_{j} = (1 - \mathbf{z}_{j}) \odot \mathbf{s}_{j} + \mathbf{z}_{j} \odot \mathbf{s}_{j}'$$

$$\mathbf{c}_{j}$$

$$\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \mathbf{x}_{\mathsf{T}}$$

Neural Machine Translation

SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Attention Activations

Attention activations above 0.1

English-German

German-English

Transformer Architecture

Transformer

In lieu of an RNN, use attention.

High throughput & expressivity: compute queries, keys and values as (different) linear transformations of the input.

Attention weights are queries • keys; outputs are sums of weighted values.

 $\operatorname{Attention}(Q, K, V) =$

(Vaswani et al., 2017) Attention is All You Need Figure: http://jalammar.github.io/illustrated-transformer/ Problem: Bag-of-words representation of the input.
Remedy: Position embeddings are added to the word embeddings.

Problem: During generation, can't attend to future words.
Remedy: Masked training that zeroes attention to future words.

Problem: Deep networks needed to integrated lots of context.
Remedies: Residual connections and multi-head attention.

Problem: Optimization is hard.
Remedies: Large mini-batch sizes and layer normalization.

Transformer Architecture

- Layer normalization
 ("Add & Norm" cells)
 helps with RNN+attention
 architectures as well.
- Positional encodings can be learned or based on a formula that makes it easy to represent distance.

	EN-DE
ByteNet [18]	23.75
Deep-Att + PosUnk [39]	
GNMT + RL [<u>38</u>]	24.6
ConvS2S [9]	25.16
MoE [32]	26.03
Deep-Att + PosUnk Ensemble [39]	
GNMT + RL Ensemble [38]	26.30
ConvS2S Ensemble [9]	26.36
Transformer (base model)	27.3
Transformer (big)	28.4

Training and Inference

Training Loss Function

Teacher forcing: During training, only use the predictions of the model for the loss, not the input.

Label smoothing: Update toward a distribution in which0.9 probability is assigned to the observed word, and0.1 probability is divided uniformly among all other words.

Sequence-level loss has been explored, but (so far) abandoned.

For each target position, each word in the vocabulary is scored. (Alternatively, a restricted list of vocabulary items can be selected based on the source sentence, but quality can degrade.)

Greedy decoding: Extend a single hypothesis (partial translation) with the next word that has highest probability.

Beam search: Extend multiple hypotheses, then prune.

Training Data

Subwords

The sequence of symbols that are embedded should be common enough that an embedding can be estimated robustly for each, and all symbols have been observed during training.

Solution 1: Symbols are words with rare words replaced by UNK.

- Replacing UNK in the output is a new problem (like alignment).
- UNK in the input loses all information that might have been relevant from the rare input word (e.g., tense, length, POS).

Solution 2: Symbols are subwords.

- Byte-Pair Encoding is the most common approach.
- Other techniques that find common subwords work equally well (but are more complicated).
- Training on many sampled subword decompositions improves out-of-domain translations.

Algorithm 1 Learn BPE operations

```
import re, collections
def get_stats(vocab):
  pairs = collections.defaultdict(int)
  for word, freq in vocab.items():
    symbols = word.split()
    for i in range(len(symbols)-1):
     pairs[symbols[i],symbols[i+1]] += freq
  return pairs
def merge_vocab(pair, v_in):
  v \text{ out} = \{\}
  bigram = re.escape(' '.join(pair))
  p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')</pre>
  for word in v in:
   w_out = p.sub(''.join(pair), word)
    v_out[w_out] = v_in[word]
  return v out
vocab = {'l o w </w>' : 5, 'l o w e r </w>' : 2,
         'newest </w>':6, 'widest </w>':3}
num_merges = 10
for i in range(num merges):
  pairs = get stats(vocab)
  best = max(pairs, key=pairs.get)
  vocab = merge_vocab(best, vocab)
  print(best)
```

system	sentence
source	health research institutes
reference	Gesundheitsforschungsinstitute
word-level (with back-off)	Forschungsinstitute
character bigrams	Fo rs ch un gs in st it ut io ne n
BPE	Gesundheits forsch ungsin stitute

Synthesize an en-de parallel corpus by using a de-en system to translate monolingual de sentences.

- Better generating systems don't seem to matter much.
- Can help even if the de sentences are already in an existing en-de parallel corpus!

system	$EN \rightarrow DE$		DE→EN	
	dev	test	dev	test
baseline	22.4	26.8	26.4	28.5
+synthetic	25.8	31.6	29.9	36.2
+ensemble	27.5	33.1	31.5	37.5
+r2l reranking	28.1	34.2	32.1	38.6

Table 2: English \leftrightarrow German translation results (BLEU) on dev (newstest2015) and test (newstest2016). Submitted system in bold.