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Attention



Conditional Sequence Generation

P(e|f) could just be estimated from a sequence model P(f, e)

<f>  das  Haus  ist  klein  </f>  the  house  is  small  </e>

Run an RNN over the whole sequence, which first computes P(f), 
then computes P(e, f).

Encoder-Decoder: Use different parameters or architectures 
encoding f and predicting e.

(Sutskever et al., 2014) Sequence to sequence learning with neural networks.

"Sequence to sequence" learning (Sutskever et al., 2014)



Impact of Attention on Long Sequence Generation

Trained on sentences 
with up to 50 words

(Badhanau et al., 2016) Neural Machine Translation by Jointly Learning to Align and Translate 



Conditional Gated Recurrent Unit with Attention

Reset gate masks the 
previous state's 

projection within the 
nonlinear forward step

Update gate mixes 
the output of the 
forward step with 
the previous state

GRU GRU

Attend

Architecture for the 
top research system in 

WMT16 and WMT17  
(Univ. Edinburgh)



Conditional Gated Recurrent Unit with Attention





Attention Activations

English-German German-English

Attention activations above 0.1

(Koehn & Knowles 2017) Six Challenges for Neural Machine Translation



Transformer Architecture



Transformer

In lieu of an RNN, 
use attention. 

High throughput & 
expressivity: 
compute queries, 
keys and values as 
(different) linear 
transformations of 
the input. 

Attention weights 
are queries • keys; 
outputs are sums of 
weighted values. 

(Vaswani et al., 2017) Attention is All You Need 
Figure: http://jalammar.github.io/illustrated-transformer/



Some Transformer Concerns

Problem: Bag-of-words representation of the input. 
Remedy: Position embeddings are added to the word embeddings. 

Problem: During generation, can't attend to future words. 
Remedy: Masked training that zeroes attention to future words. 

Problem: Deep networks needed to integrated lots of context. 
Remedies: Residual connections and multi-head attention. 

Problem: Optimization is hard. 
Remedies: Large mini-batch sizes and layer normalization.



Transformer Architecture

•Layer normalization 
("Add & Norm" cells) 
helps with RNN+attention 
architectures as well. 

•Positional encodings can be 
learned or based on a 
formula that makes it easy 
to represent distance.



Training and Inference



Training Loss Function

Teacher forcing: During training, only use the predictions of 
the model for the loss, not the input.

Label smoothing: Update toward a distribution in which  
•0.9 probability is assigned to the observed word, and 
•0.1 probability is divided uniformly among all other words.

Sequence-level loss has been explored, but (so far) abandoned.



Search Strategies

For each target position, each word in the vocabulary is scored. 
(Alternatively, a restricted list of vocabulary items can be 
selected based on the source sentence, but quality can degrade.) 

Greedy decoding: Extend a single hypothesis (partial translation) 
with the next word that has highest probability. 

Beam search: Extend multiple hypotheses, then prune.

A

An

A fruit

A grape

An apple

An orange

0.3

0.2

0.3 • 0.3

0.3 • 0.1

0.2 • 0.6

0.2 • 0.1

An apple 0.2 • 0.6

A fruit 0.3 • 0.3



Training Data



Subwords

The sequence of symbols that are embedded should be common 
enough that an embedding can be estimated robustly for each, and 
all symbols have been observed during training. 

Solution 1: Symbols are words with rare words replaced by UNK. 

•Replacing UNK in the output is a new problem (like alignment). 

•UNK in the input loses all information that might have been 
relevant from the rare input word (e.g., tense, length, POS). 

Solution 2: Symbols are subwords. 

•Byte-Pair Encoding is the most common approach. 

•Other techniques that find common subwords 
work equally well (but are more complicated). 

•Training on many sampled subword decompositions 
improves out-of-domain translations.

(Sennrich et al., 2016) Neural Machine Translation of Rare Words with Subword Units  
(Kudo, 2018) Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates



BPE Example

Example from Rico Sennrich



Back Translations

Synthesize an en-de parallel corpus by using a de-en system to 
translate monolingual de sentences. 
•Better generating systems don't seem to matter much. 
•Can help even if the de sentences are already in an existing 
en-de parallel corpus!

(Sennrich et al., 2015) Improving Neural Machine Translation Models with Monolingual Data
(Sennrich et al., 2016) Edinburgh Neural Machine Translation Systems for WMT 16  


