Alignment

- In a parallel text (or when we translate), we align words in one language with the words in the other

- Word positions are numbered 1-4

Reordering

Words may be reordered during translation

$a:\{1 \rightarrow 3,2 \rightarrow 4,3 \rightarrow 2,4 \rightarrow 1\}$

Alignment Function

- Formalizing alignment with an alignment function
- Mapping an English target word at position i to a German source word at position j with a function $a: i \rightarrow j$
- Example

$$
a:\{1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4\}
$$

One-to-Many Translation

A source word may translate into multiple target words

$a:\{1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4,5 \rightarrow 4\}$

Dropping Words

Words may be dropped when translated (German article das is dropped)

$$
a:\{1 \rightarrow 2,2 \rightarrow 3,3 \rightarrow 4\}
$$

IBM Model 1

- Generative model: break up translation process into smaller steps
- IBM Model 1 only uses lexical translation
- Translation probability
- for a foreign sentence $\mathbf{f}=\left(f_{1}, \ldots, f_{l_{f}}\right)$ of length l_{f}
- to an English sentence $\mathbf{e}=\left(e_{1}, \ldots, e_{l_{e}}\right)$ of length l_{e}
- with an alignment of each English word e_{j} to a foreign word f_{i} according to the alignment function $a: j \rightarrow i$

$$
p(\mathbf{e}, a \mid \mathbf{f})=\frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} t\left(e_{j} \mid f_{a(j)}\right)
$$

- parameter ϵ is a normalization constant

Inserting Words

- Words may be added during translation
- The English just does not have an equivalent in German
- We still need to map it to something: special NULL token

$a:\{1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 0,5 \rightarrow 4\}$

Example

das		Haus		ist		klein	
e	$t(e \mid f)$						
the	0.7	house	0.8	is	0.8	small	0.4
that	0.15	building	0.16	's	0.16	little	0.4
which	0.075	home	0.02	exists	0.02	short	0.1
who	0.05	household	0.015	has	0.015	minor	0.06
this	0.025	shell	0.005	are	0.005	petty	0.04

$$
\begin{aligned}
p(e, a \mid f) & =\frac{\epsilon}{4^{3}} \times t(\text { the } \mid \text { das }) \times t(\text { house } \mid \text { Haus }) \times t(\text { is } \mid \text { ist }) \times t(\text { small } \mid \text { klein }) \\
& =\frac{\epsilon}{4^{3}} \times 0.7 \times 0.8 \times 0.8 \times 0.4 \\
& =0.0028 \epsilon
\end{aligned}
$$

em algorithm

EM Algorithm

... the house ... the blue house ... the flower ...

- Initial step: all alignments equally likely
- Model learns that, e.g., la is often aligned with the

EM Algorithm

- After another iteration
- It becomes apparent that alignments, e.g., between fleur and flower are more likely (pigeon hole principle)

EM Algorithm

- Parameter estimation from the aligned corpus
- Probabilities
- Alignments

$$
\begin{array}{cc}
p(\text { the } \mid \text { la })=0.7 & p(\text { house } \mid \text { la })=0.05 \\
p(\text { the } \mid \text { maison })=0.1 & p(\text { house } \mid \text { maison })=0.8
\end{array}
$$

	$p(\mathbf{e}, a \mid \mathbf{f})=0.035$	$p(\mathbf{e}, a \mid \mathbf{f})=0.08$	$p(\mathbf{e}, a \mid \mathbf{f})=0.005$
$p(\mathbf{e}, a \mid \mathbf{f})=0.56$			
$p(a \mid \mathbf{e}, \mathbf{f})=0.824$	$p(a \mid \mathbf{e}, \mathbf{f})=0.052$	$p(a \mid \mathbf{e}, \mathbf{f})=0.118$	$p(a \mid \mathbf{e}, \mathbf{f})=0.007$

- Counts $\begin{array}{cc}c(\text { the } \mid \text { la })=0.824+0.052 & c(\text { house } \mid \text { la })=0.052+0.007 \\ c(\text { the } \mid \text { maison })=0.118+0.007 & c(\text { house } \mid \text { maison })=0.824+0.118\end{array}$

Philipp Koehn Machine Translation: IBM Model 1 and the EM Algorithm $\quad 13$ September 2018

IBM Model 1 and EM: Expectation Step

- We need to compute $p(\mathbf{e} \mid \mathbf{f})$

$$
\begin{aligned}
p(\mathbf{e} \mid \mathbf{f}) & =\sum_{a} p(\mathbf{e}, a \mid \mathbf{f}) \\
& =\sum_{a(1)=0}^{l_{f}} \ldots \sum_{a\left(l_{e}\right)=0}^{l_{f}} p(\mathbf{e}, a \mid \mathbf{f}) \\
& =\sum_{a(1)=0}^{l_{f}} \ldots \sum_{a\left(l_{e}\right)=0}^{l_{f}} \frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} t\left(e_{j} \mid f_{a(j)}\right)
\end{aligned}
$$

IBM Model 1 and EM: Expectation Step

$$
\begin{aligned}
p(\mathbf{e} \mid \mathbf{f}) & =\sum_{a(1)=0}^{l_{f}} \ldots \sum_{a\left(l_{e}\right)=0}^{l_{f}} \frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} t\left(e_{j} \mid f_{a(j)}\right) \\
& =\frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \sum_{a(1)=0}^{l_{f}} \ldots \sum_{a\left(l_{e}\right)=0}^{l_{f}} \prod_{j=1}^{l_{e}} t\left(e_{j} \mid f_{a(j)}\right) \\
& =\frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} \sum_{i=0}^{l_{f}} t\left(e_{j} \mid f_{i}\right)
\end{aligned}
$$

- Note the trick in the last line
- removes the need for an exponential number of products
\rightarrow this makes IBM Model 1 estimation tractable

IBM Model 1 and EM: Expectation Step

- Combine what we have:

$$
\begin{aligned}
p(\mathbf{a} \mid \mathbf{e}, \mathbf{f}) & =p(\mathbf{e}, \mathbf{a} \mid \mathbf{f}) / p(\mathbf{e} \mid \mathbf{f}) \\
& =\frac{\frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} t\left(e_{j} \mid f_{a(j)}\right)}{\frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} \sum_{i=0}^{l_{f}} t\left(e_{j} \mid f_{i}\right)} \\
& =\prod_{j=1}^{l_{e}} \frac{t\left(e_{j} \mid f_{a(j)}\right)}{\sum_{i=0}^{l_{f}} t\left(e_{j} \mid f_{i}\right)}
\end{aligned}
$$

IBM Model 1 and EM: Maximization Step

- Now we have to collect counts
- Evidence from a sentence pair \mathbf{e}, \mathbf{f} that word e is a translation of word f :

$$
c(e \mid f ; \mathbf{e}, \mathbf{f})=\sum_{a} p(a \mid \mathbf{e}, \mathbf{f}) \sum_{j=1}^{l_{e}} \delta\left(e, e_{j}\right) \delta\left(f, f_{a(j)}\right)
$$

- With the same simplication as before:

$$
c(e \mid f ; \mathbf{e}, \mathbf{f})=\frac{t(e \mid f)}{\sum_{i=0}^{l_{f}} t\left(e \mid f_{i}\right)} \sum_{j=1}^{l_{e}} \delta\left(e, e_{j}\right) \sum_{i=0}^{l_{f}} \delta\left(f, f_{i}\right)
$$

IBM Model 1 and EM: Maximization Step ${ }^{51}$ E

After collecting these counts over a corpus, we can estimate the model:

$$
t(e \mid f ; \mathbf{e}, \mathbf{f})=\frac{\left.\sum_{(\mathbf{e}, \mathbf{f})} c(e \mid f ; \mathbf{e}, \mathbf{f})\right)}{\left.\sum_{e} \sum_{(\mathbf{e}, \mathbf{f})} c(e \mid f ; \mathbf{e}, \mathbf{f})\right)}
$$

Convergence

das Haus " the house					ein Buch		
e	f	initial	1st it.	2nd it.	3rd it.	...	final
the	das	0.25	0.5	0.6364	0.7479	\ldots	1
book	das	0.25	0.25	0.1818	0.1208	...	0
house	das	0.25	0.25	0.1818	0.1313	\ldots	0
the	buch	0.25	0.25	0.1818	0.1208	...	0
book	buch	0.25	0.5	0.6364	0.7479	...	1
a	buch	0.25	0.25	0.1818	0.1313	...	0
book	ein	0.25	0.5	0.4286	0.3466	...	0
a	ein	0.25	0.5	0.5714	0.6534	...	1
the	haus	0.25	0.5	0.4286	0.3466	...	0
house	haus	0.25	0.5	0.5714	0.6534	...	1

Perplexity

- How well does the model fit the data?
- Perplexity: derived from probability of the training data according to the model

$$
\log _{2} P P=-\sum_{s} \log _{2} p\left(\mathbf{e}_{s} \mid \mathbf{f}_{s}\right)
$$

- Example ($\epsilon=1$)

	initial	1st it.	2nd it.	3rd it.	\ldots	final
p (the haus \mid das haus $)$	0.0625	0.1875	0.1905	0.1913	\ldots	0.1875
p (the book \mid das buch $)$	0.0625	0.1406	0.1790	0.2075	\ldots	0.25
p (a book \mid ein buch $)$	0.0625	0.1875	0.1907	0.1913	\ldots	0.1875
perplexity	4095	202.3	153.6	131.6	\ldots	113.8

Higher IBM Models

IBM Model 1	lexical translation
IBM Model 2	adds absolute reordering model
IBM Model 3	adds fertility model
IBM Model 4	relative reordering model
IBM Model 5	fixes deficiency

- Only IBM Model 1 has global maximum
- training of a higher IBM model builds on previous model
- Compuationally biggest change in Model 3
- trick to simplify estimation does not work anymore
\rightarrow exhaustive count collection becomes computationally too expensive
- sampling over high probability alignments is used instead

word alignment

Word Alignment

Given a sentence pair, which words correspond to each other?

Word Alignment?

How do the idioms kicked the bucket and biss ins grass match up? Outside this exceptional context, bucket is never a good translation for grass

symmetrization

Measuring Word Alignment Quality

- Manually align corpus with sure (S) and possible (P) alignment points $(S \subseteq P)$
- Common metric for evaluation word alignments: Alignment Error Rate (AER)

$$
\operatorname{AER}(S, P ; A)=1-\frac{|A \cap S|+|A \cap P|}{|A|+|S|}
$$

- $\operatorname{AER}=0$: alignment A matches all sure, any possible alignment points
- However: different applications require different precision/recall trade-offs

Word Alignment with IBM Models

- IBM Models create a many-to-one mapping
- words are aligned using an alignment function
- a function may return the same value for different input (one-to-many mapping)
- a function can not return multiple values for one input (no many-to-one mapping)
- Real word alignments have many-to-many mappings

Symmetrization

- Run IBM Model training in both directions
\rightarrow two sets of word alignment points
- Intersection: high precision alignment points
- Union: high recall alignment points
- Refinement methods explore the sets between intersection and union

Growing Heuristics

- Add alignment points from union based on heuristics:
- directly/diagonally neighboring points
- finally, add alignments that connect unaligned words in source and/or target
- Popular method: grow-diag-final-and

- Foreign input is segmented in phrases
- Each phrase is translated into English
- Phrases are reordered

Scoring Phrase Translations

- Phrase pair extraction: collect all phrase pairs from the data
- Phrase pair scoring: assign probabilities to phrase translations
- Score by relative frequency:

$$
\phi(\bar{f} \mid \bar{e})=\frac{\operatorname{count}(\bar{e}, \bar{f})}{\sum_{\bar{f}_{i}} \operatorname{count}\left(\bar{e}, \bar{f}_{i}\right)}
$$

- Main knowledge source: table with phrase translations and their probabilities
- Example: phrase translations for natuerlich

Translation	Probability $\phi(\bar{e} \mid f)$
of course	0.5
naturally	0.3
of course ,	0.15
, of course ,	0.05

Real Example

- Phrase translations for den Vorschlag learned from the Europarl corpus:

English	$\phi(\bar{e} \mid f)$	English	$\phi(\bar{e} \mid f)$
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal ,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159	\ldots	\ldots

- lexical variation (proposal vs suggestions)
- morphological variation (proposal vs proposals)
- included function words (the, a, ...)
- noise (it)

Extracting Phrase Pairs EN

extract phrase pair consistent with word alignment: assumes that / geht davon aus, dass

Phrase Pair Extraction

Smallest phrase pairs:
assumes - geht davon aus / geht davon aus,
that - dass / , dass
he-er
will stay - bleibt
in the -im
house - haus
unaligned words (here: German comma) lead to multiple translations

Consistent

ok

violated
one point outside

consistent
ok
unaligned word is fine

Larger Phrase Pairs

michael assumes - michael geht davon aus / michael geht davon aus
assumes that - geht davon aus, dass ; assumes that he - geht davon aus, dass er that he - dass er /, dass er , in the house - im haus michael assumes that he - michael geht davon aus, dass er
michael assumes that he will stay in the house - michael geht davon aus, dass er im haus bleibt
assumes that he will stay in the house - geht davon aus, dass er im haus bleibt
assumes that he will stay in the house - geht davon aus, dass er im haus bleibt
that he will stay in the house - dass er im haus bleibt ; dass er im haus bleibt,
he will stay in the house - er im haus bleibt ; will stay in the house - im haus bleibt

More Feature Functions

- Bidirectional alignment probabilities: $\phi(\bar{e} \mid \bar{f})$ and $\phi(\bar{f} \mid \bar{e})$
- Rare phrase pairs have unreliable phrase translation probability estimates \rightarrow lexical weighting with word translation probabilities

$$
\operatorname{lex}(\bar{e} \mid \bar{f}, a)=\prod_{i=1}^{\text {length }(\bar{e})} \frac{1}{|\{j \mid(i, j) \in a\}|} \sum_{\forall(i, j) \in a} w\left(e_{i} \mid f_{j}\right)
$$

Decoding

Philipp Koehn
20 September 2018

Translation Options

- The machine translation decoder does not know the right answer
- picking the right translation options
- arranging them in the right order
\rightarrow Search problem solved by heuristic beam search

Decoding: Start with Initial Hypothesis

$\square \square$
initial hypothesis: no input words covered, no output produced

Decoding: Precompute Translation Options

consult phrase translation table for all input phrases

[^0]
Decoding: Hypothesis Expansion

pick any translation option, create new hypothesis

Decoding: Hypothesis Expansion

create hypotheses for all other translation options

Decoding: Find Best Path

backtrack from highest scoring complete hypothesis

Computational Complexity

Recombination

- Two hypothesis paths lead to two matching hypotheses
- same foreign words translated
- same English words in the output

- Reduction of search space:
- recombination (risk-free)
- pruning (risky)

pruning

Stacks

no word
translated
translated
e word
one word
translated

two words translated
three word

- Hypothesis expansion in a stack decoder
- translation option is applied to hypothesis
- new hypothesis is dropped into a stack further down

Stack Decoding Algorithm

place empty hypothesis into stack 0

for all stacks $0 . . . n-1$ do
for all hypotheses in stack do
for all translation options do
if applicable then
create new hypothesis
place in stack
recombine with existing hypothesis if possible prune stack if too big
end if
end for
end for
end for

future cost estimation

Pruning

- Pruning strategies
- histogram pruning: keep at most k hypotheses in each stack
- stack pruning: keep hypothesis with score $\alpha \times$ best score ($\alpha<1$)
- Computational time complexity of decoding with histogram pruning
$O($ max stack size \times translation options \times sentence length $)$
- Number of translation options is linear with sentence length, hence:
$O\left(\right.$ max stack size \times sentence length $\left.{ }^{2}\right)$
- Quadratic complexity
Philipp Koehn Machine Translation: Decoding 20 September 2018

Translating the Easy Part First?
the tourism initiative addresses this for the first time

both hypotheses translate 3 words worse hypothesis has better score

Estimating Future Cost

 5- Future cost estimate: how expensive is translation of rest of sentence?
- Optimistic: choose cheapest translation options
- Cost for each translation option
- translation model: cost known
- language model: output words known, but not context \rightarrow estimate without context
- reordering model: unknown, ignored for future cost estimation

Cost Estimates for all Spans

- Compute cost estimate for all contiguous spans by combining cheapest options

first word	future cost estimate for n words (from first)								
	1	2	3	4	5	6	7	8	9
the	-1.0	-3.0	-4.5	-6.9	-8.3	-9.3	-9.6	-10.6	-10.6
tourism	-2.0	-3.5	-5.9	-7.3	-8.3	-8.6	-9.6	-9.6	
initiative	-1.5	-3.9	-5.3	-6.3	-6.6	-7.6	-7.6		
addresses	-2.4	-3.8	-4.8	-5.1	-6.1	-6.1			
this	-1.4	-2.4	-2.7	-3.7	-3.7				
for	-1.0	-1.3	-2.3	-2.3					
the	-1.0	-2.2	-2.3						
first	-1.9	-2.4							
time	-1.6								

- Function words cheaper (the: -1.0) than content words (tourism -2.0)
- Common phrases cheaper (for the first time: -2.3)
than unusual ones (tourism initiative addresses: -5.9)

Cost Estimates from Translation Options

the tourism initiative addresses this for the first time

cost of cheapest translation options for each input span (log-probabilities)

- Hypothesis score and future cost estimate are combined for pruning
- left hypothesis starts with hard part: the tourism initiative score: -5.88 , future cost: $-6.1 \rightarrow$ total cost -11.98
- middle hypothesis starts with easiest part: the first time score: -4.11, future cost: $-9.3 \rightarrow$ total cost -13.41
- right hypothesis picks easy parts: this for ... time score: -4.86 , future cost: $-9.1 \rightarrow$ total cost -13.96

A* Search

- Uses admissible future cost heuristic: never overestimates cost
- Translation agenda: create hypothesis with lowest score + heuristic cost
- Done, when complete hypothesis created
Philipp Koehn Machine Translation: Decoding 20 September 2018

[^0]: Philipp Koehn
 Machine Translation: Decoding

