Neural Networks

Berkeley

N L P

Dan Klein, John DeNero
UC Berkeley

Slides adapted from Greg Durrett

Neural Net Basics

Neural Networks
» Linear classification: argmaxwaf(Ly)

» Want to learn intermediate conjunctive features of the input

the movie was not all that good

I[contains not & contains good]

» How do we learn this if our feature vector is just the unigram

indicators?
I[contains not], I[contains good]

Neural Networks

...possible because
we transformed

the space!

Linear Neural
classifier network

~ —

A

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Logistic Regression with NNs

_exp(w' f(x,y)) » Single scalar probability
P(y|x) - Zy’ exp(wa(X, y/))

» Compute scores for all possible
P(y|x) = softmax ([wa(x, y)]lyey) labels at once (returns vector)

softmax(p); = exp(pi) » softmax: exps and normalizes a
> exp(pir) given vector
P(y|x) = softmax(W f(x)) » Weight vector per class;
W is [num classes x num feats]
P(y|x) = softmax(Wg(V f(x))) » Now one hidden layer

Neural Networks for Classification

P(ylx) = softmax(Wg(V f(x)))

num_classes

] d activations of "hidden" units probs
™~ ®
B v HD Mz W Heommad|2
g
u d X n matrix num_classes x d
nonlinearity matrix
n features

(tanh, relu, ...)

Objective Function
P(ylx) = softmax(Wz) = g(V f(x))
» Maximize log likelihood of training data observations
L(x,i") =log P(y = i"|x) = log (softmax(Wz) - ;)
» i*: index of the gold label

» ei: 1in the ith row, zero elsewhere. This dot selects the i*th index

L(x,i*) =Wz e — logZeXp(Wz) - €

J

Training Procedure

« Initialize parameters
« For each epoch (one pass through all the training examples):
« Shuffle the examples
» Group them into mini-batches
« For each mini-batch (these days often just called a "batch"):
» Compute the loss over the mini-batch
« Compute the gradient of the loss w.r.t. the parameters
» Update parameters according to a gradient-based optimizer
« Evaluate the current network on a held-out validation set

Training Tips

Batching

» Batching data gives speedups due to more efficient matrix
operations

» Need to process a batch at a time

input is [batch_size, num_feats]
gold_label is [batch_size, num classes]
def make_ update(input, gold_label)

probs = ffnn.forward(input) # [batch _size, num classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold label))

» A batch size of 32 is typical, but the best choice is
model & application dependent

Initialization

» Nonlinear model...how does this affect things?

...........

1

» If cell activations are large in absolute value, gradients are small.

» ReLU: Zero gradient when activation is negative.

Initialization

1) Can’t use zeroes for parameters to generate hidden layers: all
values in that hidden layer are always 0 and have zero gradients.

2) Initialize too large and cells are saturated

» A common approach is random uniform/normal initialization
with appropriate scale (small is typically good)

» Xavier Glorot (2010) ;| \/ 6 N \/ 6
uniform initializer: fan-in + fan-out’ fan-in + fan-out

» Want variance of inputs and gradients for each layer to be similar

Dropout

» Probabilistically zero out some activations during training to
prevent overfitting, but use the whole network at test time

» Form of stochastic
regularization

» Similar to benefits
of ensembling:
network needs to be
robust to missing
signals, so it has
redundancy

£

(a) Standard Neur:

Net

» One line in Pytorch/Tensorflow Srivastava et al. (2014)

Optimizer

MNIST Logistic Regression IMDB BoW feature

» Adam (Kingma and Ba, ICLR TN
2015): very widely used. "
Adaptive step size + momentum

» Wilson et al. NIPS 2017: \
adaptive methods can T e

35 40 60 80 100 120 140 160

iterations over entire dataset

actually perform badly at test

time (is in pink, SGD in ‘ 6
blaCk) 259 ;i” Adam (Default): 5.47+0.02

» One more trick: gradient
clipping (set a max value for *.
your gradients) B B s e e

(e) Cenerative Parsing (Training Set) (f) Generative Parsing (Development Set)

0

Embeddings

Symbol Embeddings

» Words and characters are discrete symbols,
but input to a neural network must be real-valued

» Different symbols in language do have common characteristics
that correlate with their distributional properties

» An "embedding” for a symbol: a learned low-dimensional vector

80000 dim=128 ; . Intuition: Low-rank approximation
£ o000 =T dim=2 to a co-occurrence matrix
2 40000 dim=32 \ | n k
3 n
“ 20000 / A —_——
— md| A | =md X[v]k

b
0.0 0.2 0.4 0.6 0.8 10
absolute value of cosine between random vectors

[

