
Neural Networks

Dan Klein, John DeNero
UC Berkeley

Slides adapted from Greg Durrett

Neural Net Basics

Neural Networks

‣ Want to learn intermediate conjunctive features of the input

argmaxyw
>f(x, y)‣ Linear classification:

the movie was not all that good

I[contains not & contains good]

‣ How do we learn this if our feature vector is just the unigram
indicators?

I[contains not], I[contains good]

Neural Networks

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear
classifier

Neural
network

…possible because
we transformed
the space!

Logistic Regression with NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single scalar probability

P (y|x) = softmax
�
[w>f(x, y)]y2Y

� ‣ Compute scores for all possible  
labels at once (returns vector)

softmax(p)i =
exp(pi)P
i0 exp(pi0)

‣ softmax: exps and normalizes a
given vector

P (y|x) = softmax(Wf(x)) ‣Weight vector per class; 
W is [num classes x num feats]

P (y|x) = softmax(Wg(V f(x))) ‣ Now one hidden layer

Neural Networks for Classification

V

n features

d activations of "hidden" units

d x n matrix num_classes x d
matrix

softmaxWf
(x
)

z

nonlinearity  
(tanh, relu, …)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))
num_classes

probs

Objective Function

‣Maximize log likelihood of training data observations

‣ i*: index of the gold label

‣ ei: 1 in the ith row, zero elsewhere. This dot selects the i*th index

z = g(V f(x))P (y|x) = softmax(Wz)

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)

Training Procedure

• Initialize parameters

•For each epoch (one pass through all the training examples):
• Shuffle the examples
•Group them into mini-batches

•For each mini-batch (these days often just called a "batch"):
• Compute the loss over the mini-batch
• Compute the gradient of the loss w.r.t. the parameters

• Update parameters according to a gradient-based optimizer
•Evaluate the current network on a held-out validation set

Training Tips

Batching

‣ Batching data gives speedups due to more efficient matrix
operations
‣ Need to process a batch at a time

probs = ffnn.forward(input) # [batch_size, num_classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))

...

‣ A batch size of 32 is typical, but the best choice is  
model & application dependent

def make_update(input, gold_label)

input is [batch_size, num_feats]  
gold_label is [batch_size, num_classes]

...

‣ Nonlinear model…how does this affect things?

‣ If cell activations are large in absolute value, gradients are small.

‣ ReLU: Zero gradient when activation is negative.

Initialization Initialization

1) Can’t use zeroes for parameters to generate hidden layers: all
values in that hidden layer are always 0 and have zero gradients.

‣ A common approach is random uniform/normal initialization
with appropriate scale (small is typically good)

U

"
�
r

6

fan-in + fan-out
,+

r
6

fan-in + fan-out

#
‣ Xavier Glorot (2010) 

uniform initializer:

‣ Want variance of inputs and gradients for each layer to be similar

2) Initialize too large and cells are saturated

Dropout
‣ Probabilistically zero out some activations during training to

prevent overfitting, but use the whole network at test time

Srivastava et al. (2014)

‣ Similar to benefits
of ensembling:
network needs to be
robust to missing
signals, so it has
redundancy

‣ Form of stochastic
regularization

‣ One line in Pytorch/Tensorflow

Optimizer
‣ Adam (Kingma and Ba, ICLR

2015): very widely used.
Adaptive step size + momentum

‣ Wilson et al. NIPS 2017:
adaptive methods can
actually perform badly at test
time (Adam is in pink, SGD in
black)

‣One more trick: gradient
clipping (set a max value for
your gradients)

Embeddings

Symbol Embeddings
‣Words and characters are discrete symbols,  

but input to a neural network must be real-valued
‣ Different symbols in language do have common characteristics

that correlate with their distributional properties
‣ An "embedding" for a symbol: a learned low-dimensional vector

dim=128

dim=32

dim=2
Intuition: Low-rank approximation

to a co-occurrence matrix

