Neural Networks

Berkeley

N L P

Dan Klein, John DeNero
UC Berkeley

Slides adapted from Greg Durrett

Neural Net Basics

Neural Networks

. o fo . T
» Linear classification: argmax,w ' f(z,y)

» Want to learn intermediate conjunctive features of the input

the movie was not all that good

|[contains not & contains good]

» How do we learn this if our feature vector is just the unigram

indicators?
I[contains not], I[contains good]

Neural Networks

...possible because

Linear Neural
e we transformed
classifier network
N\ / \ /
\\ S ” 71 \\ L » 7
\ y4 \ /
\ \
\\\ /// \\\ //

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Logistic Regression with NNs

P(y|x) = exp(w’ f(x,y)) » Single scalar probability

>y expw! f(x,9))
» Compute scores for all possible
P(y|x) = softmax ([w' f(x,y)]ycy) labels at once (returns vector)

exp(p;) » softmax: exps and normalizes a
> exp(pir) given vector

softmax(p); =

P(y|x) = softmax (W f(x)) » Weight vector per class;
W is [num classes x hum feats]

P(y|x) = softmax(Wg(V f(x))) » Now one hidden layer

Neural Networks for Classification

P(y|x) = softmax(Wg(V f(x)))

num_classes

d activations of "hidden" units probs
% * %
I Vv /;/ | Z W softmax [—{ >
.
g
d X n matrix num_classes x d
nonlinearity matrix
n features

(tanh, reluy, ...)

Objective Function

P(y|x) = softmax(Wz) z=g9(Vf(x))

» Maximize log likelihood of training data observations
L(x,1") =log P(y = 1"|x) = log (softmax(Wz) - e;«)
» i*: index of the gold label

» ei: 1.1in the ith row, zero elsewhere. This dot selects the i*th index

L(x,1") =Wz e;x — logZexp(WZ) - €;

J

Training Procedure

e Initialize parameters
e For each epoch (one pass through all the training examples):
« Shuffle the examples
e Group them into mini-batches
e For each mini-batch (these days often just called a "batch”):
e Compute the loss over the mini-batch
o Compute the gradient of the loss w.r.t. the parameters
« Update parameters according to a gradient-based optimizer
 Evaluate the current network on a held-out validation set

Training Tips

Batching

» Batching data gives speedups due to more efficient matrix
operations

» Need to process a batch at a time

input is [batch size, num feats]
gold label is [batch size, num classes]
def make update(input, gold label)

probs = ffnn.forward(input) # [batch size, num classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold label))

» A batch size of 32 is typical, but the best choice is
model & application dependent

Initialization

» Nonlinear model...how does this affect things?

» If cell activations are large in absolute value, gradients are small.

» ReLU: Zero gradient when activation is negative.

Initialization
1) Can’t use zeroes for parameters to generate hidden layers: all
values in that hidden layer are always 0 and have zero gradients.

2) Initialize too large and cells are saturated

» A common approach is random uniform/normal initialization
with appropriate scale (small is typically good)

» Xavier Glorot (2010) ¢; _\/ 6 +\/ 6
uniform initializer: fan-in + fan-out’ fan-in + fan-out

» Want variance of inputs and gradients for each layer to be similar

Dropout

» Probabilistically zero out some activations during training to
prevent overfitting, but use the whole network at test time

» Form of stochastic

regularization

» Similar to benefits

of ensembling:

network needs to be
robust to missing
signals, so it has

redundancy

U\
[/

o
X
@F!

%

/,'/
\ [

/‘\
AL

D
A
\/
7
A

7
Y
K
X
N
PN

@
/A
C
C

<
L
X
“\§

7\
X
\/

L\
L

o
S
X%
;
" OI

(/
Zx
q7 7/
>

v

@
\

@

(U

(a) Standard Neural Net

» One line in Pytorch/Tensorflow

(b) After applying dropout.

Srivastava et al. (2014)

Optimizer

0.7

» Adam (Kingma and Ba, ICLR
2015): very widely used.
Adaptive step size + momentum

» Wilson et al. NIPS 2017:
adaptive methods can
actually perform badly at test

0.3

N

MNIST Logistic Regression

— AdaGrad
— SGDNesterov
— Adam

iterations over entire dataset

time (Adam is in pink, SGD in <

black) 2o
» One more trick: gradient

Trai

clipping (set a max value for *..

your gradients)

20

40 60 80 100
Epoch

(e) Generative Parsing (Training Set)

IMDB BoW feature Logistic Regression
- : : : .

0.50
"v “ — Adagrad+dropout
w‘l.‘ “ RMSProp+dropout
0.45 I JVLM SGDNesterov+dropout|]
B J
‘N UW\" Adam+dropout

0'200 20 40 60 80 100 120 140 160
iterations over entire dataset

v
™

w
)

v
IS

w
N

HB: 5.13+0.01

Development Perplexity

0 AdaGrad: 5.24+0.02 SGD: 5.0940.04
: 20 40 60 80
Epoch

1

(f) Generative Parsing (Development Set)

00

Embeddings

Symbol Embeddings

» Words and characters are discrete symbols,
but input to a neural network must be real-valued

» Different symbols in language do have common characteristics
that correlate with their distributional properties

» An "embedding” for a symbol: a learned low-dimensional vector

50000 dim=128 Intuition: Low-rank approximation
- T dim=2 to a co-occurrence matrix
oL
‘g 40000 d|m=32 \ P E .){\ .
o
~ 20000 ‘/ — N
- . m A ~ m X [Y }}k
% 0.0 0.2 0.4 0.6 0.8 1.0
absolute value of cosine between random vectors

