Neural Networks

Berkeley
N L P
Dan Klein, John DeNero
UC Berkeley

Slides adapted from Greg Durrett

Neural Net Basics

Neural Networks

- Linear classification: $\operatorname{argmax}_{y} w^{\top} f(x, y)$
- Want to learn intermediate conjunctive features of the input
the movie was not all that good
I[contains not \& contains good]
- How do we learn this if our feature vector is just the unigram indicators?

I[contains not], I[contains good]

Neural Networks

Linear classifier

Neural network

...possible because we transformed the space!

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Logistic Regression with NNs

$P(y \mid \mathbf{x})=\frac{\exp \left(w^{\top} f(\mathbf{x}, y)\right)}{\sum_{y^{\prime}} \exp \left(w^{\top} f\left(\mathbf{x}, y^{\prime}\right)\right)}$

- Single scalar probability
$P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}\left(\left[w^{\top} f(\mathbf{x}, y)\right]_{y \in \mathcal{Y})} \quad \begin{array}{l}\text { Compute scores for all possible } \\ \text { labels at once (returns vector) }\end{array}\right.$ $\operatorname{softmax}(p)_{i}=\frac{\exp \left(p_{i}\right)}{\sum_{i^{\prime}} \exp \left(p_{i^{\prime}}\right)}$
- softmax: exps and normalizes a given vector
$P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W f(\mathbf{x}))$
$P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))$
- Weight vector per class; W is [num classes x num feats]
- Now one hidden layer

Neural Networks for Classification

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W g(V f(\mathbf{x})))
$$

num_classes
d activations of "hidden" units probs

nonlinearity
matrix

Objective Function

$$
P(\mathbf{y} \mid \mathbf{x})=\operatorname{softmax}(W \mathbf{z}) \quad \mathbf{z}=g(V f(\mathbf{x}))
$$

- Maximize log likelihood of training data observations
$\mathcal{L}\left(\mathbf{x}, i^{*}\right)=\log P\left(y=i^{*} \mid \mathbf{x}\right)=\log \left(\operatorname{softmax}(W \mathbf{z}) \cdot e_{i^{*}}\right)$
- i^{*} : index of the gold label
- $e_{i}: 1$ in the i th row, zero elsewhere. This dot selects the i^{*} th index
$\mathcal{L}\left(\mathbf{x}, i^{*}\right)=W \mathbf{z} \cdot e_{i^{*}}-\log \sum_{j} \exp (W \mathbf{z}) \cdot e_{j}$

Training Procedure

- Initialize parameters
- For each epoch (one pass through all the training examples):
- Shuffle the examples
- Group them into mini-batches
- For each mini-batch (these days often just called a "batch"):
- Compute the loss over the mini-batch
- Compute the gradient of the loss w.r.t. the parameters
- Update parameters according to a gradient-based optimizer
- Evaluate the current network on a held-out validation set

Training Tips

Batching

- Batching data gives speedups due to more efficient matrix operations
- Need to process a batch at a time

```
# input is [batch_size, num_feats]
# gold_label is [batch_size, num_classes]
def make_update(input, gold_label)
probs = ffnn.forward(input) # [batch_size, num_classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))
```

- A batch size of 32 is typical, but the best choice is model $\&$ application dependent

Initialization

- Nonlinear model...how does this affect things?

- If cell activations are large in absolute value, gradients are small.
- ReLU: Zero gradient when activation is negative.

Initialization

1) Can't use zeroes for parameters to generate hidden layers: all values in that hidden layer are always 0 and have zero gradients.
2) Initialize too large and cells are saturated

- A common approach is random uniform/normal initialization with appropriate scale (small is typically good)
- Xavier Glorot (2010) $\left.U\left[-\sqrt{\frac{6}{\text { fan-in + fan-out }}},+\sqrt{\frac{6}{\text { fan-in }+ \text { fan-out }}}\right]=\right] ~$
- Want variance of inputs and gradients for each layer to be similar

Dropout

- Probabilistically zero out some activations during training to prevent overfitting, but use the whole network at test time
- Form of stochastic regularization
- Similar to benefits of ensembling: network needs to be robust to missing signals, so it has redundancy

(a) Standard Neural Net
- One line in Pytorch/Tensorflow
(b) After applying dropout.

Srivastava et al. (2014)

Optimizer

- Adam (Kingma and Ba, ICLR 2015): very widely used. Adaptive step size + momentum
- Wilson et al. NIPS 2017: adaptive methods can actually perform badly at test time (Adam is in pink, SGD in black)
- One more trick: gradient clipping (set a max value for your gradients)

(e) Generative Parsing (Training Set)

(f) Generative Parsing (Development Set)

Embeddings

Symbol Embeddings

- Words and characters are discrete symbols, but input to a neural network must be real-valued
- Different symbols in language do have common characteristics that correlate with their distributional properties
- An "embedding" for a symbol: a learned low-dimensional vector

absolute value of cosine between random vectors

Intuition: Low-rank approximation to a co-occurrence matrix

