
Natural Language Processing

Parsing (Syntax and Semantics)



Syntactic Parsing

She enjoys playing tennis.
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Span-Based Parsing
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Parsing as Span Classification
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Routing with LSTMs
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Routing with LSTMs

She .enjoys playing tennis

  

Pronoun to the left 
Verb at the start

Period to the right 
Noun and verbs to the left



Span Classification

She .enjoys playing tennis

Pronoun to the left 
Verb inside 
Period to the right
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Non-Constituents
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… But Will We Get a Tree Out?
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Reconciliation

She .enjoys playing tennis
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Truth-Conditional Semantics



Truth-Conditional Semantics

▪ Linguistic expressions: 
▪ “Bob sings” 

▪ Logical translations: 
▪ sings(bob) 
▪ Could be p_1218(e_397) 

▪ Denotation: 
▪ [[bob]] = some specific person (in some context) 
▪ [[sings(bob)]] = ??? 

▪ Types on translations: 
▪ bob : e   (for entity) 
▪ sings(bob) : t (for truth-value)
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Truth-Conditional Semantics
▪ Proper names: 

▪ Refer directly to some entity in the world 
▪ Bob : bob          [[bob]]W  ??? 

▪ Sentences: 
▪ Are either true or false (given 
 how the world actually is) 
▪ Bob sings : sings(bob) 

▪ So what about verbs (and verb phrases)? 
▪ sings must combine with bob to produce sings(bob) 
▪ The λ-calculus is a notation for functions whose arguments are not yet filled. 
▪ sings : λx.sings(x) 
▪ This is a predicate – a function which takes an entity (type e) and produces a truth value (type t).  

We can write its type as e→t. 
▪ Adjectives?
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Compositional Semantics
▪ So now we have meanings for the words 
▪ How do we know how to combine words? 
▪ Associate a combination rule with each grammar rule: 

▪ S : β(α) → NP : α   VP : β      (function application) 
▪ VP : λx . α(x) ∧ β(x) → VP : α    and : ∅   VP : β   (intersection) 

▪ Example:

S

NP VP

Bob VP and

sings

VP

dances
bob

λy.sings(y) λz.dances(z)

λx.sings(x) ∧ dances(x) 

[λx.sings(x) ∧ dances(x)](bob) 

sings(bob) ∧ dances(bob)



Denotation
▪ What do we do with logical translations? 
▪ Translation language (logical form) has fewer ambiguities 
▪ Can check truth value against a database 

▪ Denotation (“evaluation”) calculated using the database 
▪ Or the opposite: assert truth and modify a database, either explicitly or implicitly 

eg prove a consequence from asserted axioms 
▪ Questions: check whether a statement in a corpus entails the (question, answer) 

pair: 
▪ “Bob sings and dances” → “Who sings?” + “Bob” 

▪ Chain together facts and use them for comprehension



Other Cases

▪ Transitive verbs: 
▪ likes : λx.λy.likes(y,x) 
▪ Two-place predicates of type e→(e→t). 
▪ likes Amy : λy.likes(y,Amy) is just like a one-place predicate. 

▪ Quantifiers: 
▪ What does “Everyone” mean here? 
▪ Everyone : λf.∀x.f(x) 
▪ Mostly works, but some problems 

▪ Have to change our NP/VP rule. 
▪ Won’t work for “Amy likes everyone.” 

▪ “Everyone likes someone.” 
▪ This gets tricky quickly!

S

NP VP

Everyone VBP NP
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λx.λy.likes(y,x)

λy.likes(y,amy)

amy

λf.∀x.f(x)

[λf.∀x.f(x)](λy.likes(y,amy))

∀x.likes(x,amy)



Indefinites
▪ First try 
▪ “Bob ate a waffle” : ate(bob,waffle) 
▪ “Amy ate a waffle” : ate(amy,waffle) 

▪ Can’t be right! 
▪ ∃ x : waffle(x) ∧ ate(bob,x) 
▪ What does the translation 
 of “a” have to be? 
▪ What about “the”? 
▪ What about “every”?
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Grounding

▪ Grounding 
▪ So why does the translation likes : λx.λy.likes(y,x) have anything to do 

with actual liking? 
▪ It doesn’t (unless the denotation model says so) 
▪ Sometimes that’s enough: wire up bought to the appropriate entry in a 

database 

▪ Meaning postulates 
▪ Insist, e.g ∀x,y.likes(y,x) → knows(y,x) 
▪ This gets into lexical semantics issues 

▪ Statistical / neural version?



Tense and Events
▪ In general, you don’t get far with verbs as predicates 
▪ Better to have event variables e 

▪ “Alice danced” : danced(alice) 
▪ ∃ e : dance(e) ∧ agent(e,alice) ∧ (time(e) < now) 

▪ Event variables let you talk about non-trivial tense / aspect structures 
▪ “Alice had been dancing when Bob sneezed” 
▪ ∃ e, e’ :  dance(e) ∧ agent(e,alice) ∧ 
   sneeze(e’) ∧ agent(e’,bob) ∧ 
   (start(e) < start(e’) ∧ end(e) = end(e’)) ∧ 
   (time(e’) < now) 

▪ Minimal recursion semantics, cf “object oriented” thinking



Adverbs
▪ What about adverbs? 

▪ “Bob sings terribly” 

▪ terribly(sings(bob))? 

▪ (terribly(sings))(bob)? 

▪ ∃e present(e) ∧ type(e, 
singing) ∧ agent(e,bob) 
∧ manner(e, terrible) ? 

▪ Gets complex quickly…
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Propositional Attitudes
▪ “Bob thinks that I am a gummi bear” 

▪ thinks(bob, gummi(me)) ? 
▪ thinks(bob, “I am a gummi bear”) ? 
▪ thinks(bob, ^gummi(me)) ? 

▪ Usual solution involves intensions (^X) which are, roughly, the set of possible worlds 
(or conditions) in which X is true 

▪ Hard to deal with computationally 
▪ Modeling other agents’ models, etc 
▪ Can come up in even simple dialog scenarios, e.g., if you want to talk about what your bill claims 

you bought vs. what you actually bought



Trickier Stuff

▪ Non-Intersective Adjectives 
▪ green ball : λx.[green(x) ∧ ball(x)] 
▪ fake diamond : λx.[fake(x) ∧ diamond(x)] ? 

▪ Generalized Quantifiers 
▪ the : λf.[unique-member(f)] 
▪ all : λf. λg [∀x.f(x) → g(x)] 
▪ most? 
▪ Could do with more general second order predicates, too (why worse?) 

▪ the(cat, meows), all(cat, meows) 
▪ Generics 

▪ “Cats like naps” 
▪ “The players scored a goal” 

▪ Pronouns (and bound anaphora) 
▪ “If you have a dime, put it in the meter.” 

▪ … the list goes on and on!

λx.[fake(diamond(x))



Scope Ambiguities
▪ Quantifier scope 
▪ “All majors take a data science class” 
▪ “Someone took each of the electives” 
▪ “Everyone didn’t hand in their exam”  

▪ Deciding between readings 
▪ Multiple ways to work this out 

▪ Make it syntactic (movement) 
▪ Make it lexical (type-shifting)



Logical Form Translation



Supervision: Logical Forms

▪ Data: input sentences paired with annotated LFs 
 
 

▪ Problem: no supervision on how to get from sentence to LF 

▪ But we can assume our LF has been generated from some 
formal grammar 

▪ Combinatory Categorial Grammar (CCG)

Show me flights to Prague

λx.flight(x)∧to(x,PRG)



CCG: Lexicon

Words Category

flights N : λx.flight(x)

to (N\N)/NP : λx.λf.λy.f(x) ∧ to(y,x)

Prague NP : PRG

New York city NP : NYC

… …



CCG: Combinators

Application 

▪ X/Y : f      Y : a  =>   X : f(a) 

▪   Y : a    X\Y : f  =>   X : f(a) 

Composition 

▪ X/Y : f   Y/Z : g   =>  X/Z : λx.f(g(x)) 

▪ Y\Z : f   X\Y : g   =>  X\Z : λx.f(g(x)) 



CCG: Parsing

to Pragueflights

N\N 
λf.λx.f(x)∧to(x,PRG)

N 
λx.flight(x)∧to(x,PRG)

Show me

N 
λx.flight(x)

(N\N)/NP 
λy.λf.λx.f(y)∧to(x,y)

NP 
PRG

S/N 
λf.f

S 
λx.flight(x)∧to(x,PRG)



Weighted CCG

▪ Lexicon Λ

▪ GEN: all possible parses y for 
sentence x given the lexicon 

▪ Feature function 

▪ (Learned) weights 

▪ Best parse:

Words Category
flights N : λx.flight(x)

to (N\N)/NP : 
λx.λf.λy.f(x) ∧ to(y,x)

Prague NP : PRG

New York 
city

NP : NYC

… …



Training (ZC05/07)

▪ Start with (x, z) sentence-LF pairs and a small seed lexicon 

▪ Iterate T times: 

▪ Propose new lexical entries from each example (x, z): 

▪ Generate all possible lexical entries pairing words/phrases 
in x with predicates in z 

▪ Use GEN to get all possible parses of x given the existing 
and new lexicon 

▪ Find the best parse y among these and add its lexical 
entries to the existing lexicon



GENLEX: Substrings X Categories

All possible substrings: 
 Show  

 me 
 flights  
   Show me 
 Show me flights  
 Show me flights to 

 …

Categories created by rules that 
trigger on the logical form: 
  NP : PRG 

    N : λx.flight(x) 
 (S\NP)/NP : λx.λy.to(y,x) 
  (N\N)/NP : λy.λf.λx. … 

    …

X

Input Training Example

Sentence:   Show me flights to Prague.   
Logic Form:  λx.flight(x)∧ to(x,PRG)

Output Lexicon

[Zettlemoyer & Collins 2005]



Training (ZC05/07)

▪ Start with (x, z) sentence-LF pairs and a small seed lexicon 

▪ Iterate T times: 

▪ Propose new lexical entries from each example (x, z) 

▪ Update weights: 

▪ Re-parse all examples using newest lexicon and GEN 

▪ Sort parses into “good” and “bad” according to whether 
they are valid or invalid 

▪ Update weights to upweight “good” parses and 
downweight “bad” parses



Training (ZC05/07)

▪ Start with (x, z) sentence-LF pairs and a small seed lexicon 

▪ Iterate T times: 

▪ Propose new lexical entries from each example (x, z) 

▪ Update weights 

▪ Return full lexicon and weights



Supervision: Denotations Only

▪ Data: input sentences paired with denotations only (no LFs) 
 
 

▪ Problem: no LF supervision at all! 

▪ Even worse problem of spuriousness 

▪ Complicates lexicon building 

▪ Can still take advantage of knowing there’s a (latent) structured 
representation

Show me flights to Prague

Flight #s: 123, 456, 78, 342



Learning from Denotations
▪ Example applications: 

▪ Grounded QA 

▪ Instruction following 

▪ Truth-conditional semantics 

▪ Modification of ZC05/07 approach 

▪ New validation function: does 
proposed parse+LF yield expected 
denotation? 

▪ New method for generating lexical 
entries: place constraints (e.g., type 
constraints) on possible new entries

WikiTableQuestions, Pasupat and Liang 2015, ACL

Artzi and Zettlemoyer 2013, TACL

NLVR, Suhr et al. 2017, ACL



Neural Approaches



Sequence-to-Sequence Models
▪ Same methods from NMT! Encode input with an RNN, decode LF 

token-by-token 

▪ Training: maximize log likelihood of gold LF conditioned on input 
utterance 

▪ Can apply techniques like attention, beam search, etc. 

▪ Problems: 

▪ Out-of-vocabulary terms, e.g., proper names (also a problem in MT) 

▪ No longer a clear divide between lexical and compositional 
semantics 

▪ No guarantee of syntactic validity or executability



Attending, Pointing, and Copying

Slides from John DeNero / Philip Koehn

flights  to     new   york λ         x         .     flight      (        x   … 

λ         x         .     flight      (        x       )    … 



Attending, Pointing, and Copying

Slides from John DeNero / Philip Koehn

flights  to     new   york           )        AND       to          (           x           , 

…

Queries
Keys
Values

 NYC 

Generating “NYC” from the vocabulary:

Learn a bias and 
embedding 
specifically for NYC



Attending, Pointing, and Copying

Slides from John DeNero / Philip Koehn
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Attending, Pointing, and Copying

Slides from John DeNero / Philip Koehn

          )        AND       to          (           x           , 

…

Queries
Keys
Values

flights  to     CITY_NAME0 

 CITY_NAME0 

Generating “CITY_NAME0” from the vocabulary:

Anonymization: 
CITY_NAME0 = NYC

NYC

Learn a bias and 
embedding 
specifically for the 
0th city name



Attending, Pointing, and Copying

Slides from John DeNero / Philip Koehn

flights  to     CITY_NAME0           )        AND       to          (           x           , 

…

Copying “CITY_NAME0” 
from the input:

Queries
Keys
Values

Anonymization: 
CITY_NAME0 = NYC

 CITY_NAME0 



Intrinsic Structure



Constraints

▪ With token-by-token decoding, we lose the benefit of 
generating from a grammar 

▪ Our network now needs to (implicitly) learn the grammar 
from data 

▪ No guarantees that it will generate executable code 

▪ Syntax 

▪ Semantics 

▪ How can we take advantage of this underlying structure? 



Rejection Sampling

▪ Generate a number of candidate(s) (e.g., via beam search) 

▪ Execute candidates, ensuring it compiles and runs without an 
error 

▪ Return the highest-probability candidate that executes 

▪ Could be very inefficient, especially because it requires running 
code at inference time



Intermediate Logical Forms

▪ Design an intermediate representation that implicitly captures 
structural dependencies in the code 

▪ Generation in this output space reduces the need for the network to 
learn particular dependencies 
 

▪ However: 

▪ Cannot capture full expressivity of target language 

▪ Requires manual engineering of intermediate language, and 
deterministic mapping to / from the target language

E.g., Guo et al. 2019, ACL 



Constrained Decoding

▪ Generate actions that construct the AST that underlies the 
target code rather than the code itself 

▪ Output space includes two types of actions: 
▪ ApplyRule r — apply production rule r to the current derivation tree 

▪ GenerateToken t — generate a variable terminal t 

▪ Tokens t in sequence comprise the surface form of the code 

▪ The current derivation tree constrains the set of rules r that can 
be applied and tokens t that can be generated 

▪ At decoding time, simply mask out rules and tokens that cannot 
be generated E.g., Yin and Neubig 2017, ACL



Constrained Decoding

From Yin and Neubig 2017, ACL

Generated AST Production Rule Actions



Abstract Syntax Networks

▪ Generate AST, but learn and use custom decoders (“modules”) 
for different parts of the grammar

Rabinovich et al. 2017, ACL



Training at Scale

▪ With enough training data, modern neural architectures can capture 
underlying code structure without requiring injection of inductive 
biases 

▪ It’s also easy to generate arbitrary amounts of code for training 

▪ However, provides no guarantees 

▪ Without explicit copying mechanisms: 

▪ Possible for the model to learn biases in its vocabulary 

▪ No guarantees it will properly use new variables and functions  

▪ Ability to generalize to completely new programming languages 
and new structures?



General-Purpose  
Code Generation



Code Generation

▪ Before: tasks with clear 
denotations 

▪ What about general-purpose 
code generation?

WikiTableQuestions, Pasupat and Liang 2015, ACL

Artzi and Zettlemoyer 2013, TACL

NLVR, Suhr et al. 2017, ACL
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Code Generation

▪ Before: tasks with clear 
denotations 

▪ What about general-purpose 
code generation? 

▪ Denotation: program output? 

▪ Less alignment between NL 
and LF 

▪ What is a “denotation” isn’t 
always clear… OpenAI Codex, 2021



Evaluation

▪ Code doesn’t always produce a single, evaluable output 

▪ Instead: write test cases, report pass@k 

▪ Labor-intensive: requires programming expertise for annotation 
(HumanEval only contains 164 problems)

HumanEval, Chen et al. 2021



Evaluation

▪ Any automated benchmark has to focus on a subset of 
problems 

▪ Going beyond solving programming puzzles DS-1000, Lai et al. 2022 

▪ Sample real problems 
from StackOverflow 

▪ Collect reference 
solutions and setting up 
environment for testing 

▪ Expert-written test cases 

▪ Evaluate adherence to 
surface form constraints 
(e.g., that a library must 
be used)



Approaches

CodeT5, Wang et al. 2021

▪ Multi-task learning: masking, tagging, generation 

▪ Train on a large amount of code, some annotated with natural 
language



Automated Software Development?

MetaGPT, Hong et al. 2023



Modularity



Neural Module Networks

Andreas et al. 2015

▪ Task: visual question answering 

▪ Cast it as a semantic parsing task 

▪ What is a denotation? 

▪ Tie predicates in LF to composable neural modules

“Is there a red shape 
above a circle?”



Neural Module Networks

Andreas et al. 2015, Hu et al. 2017

▪ Determine layout from sentence 
▪ Option 1: deterministic layouts — requires gold annotation 
▪ Get dependency parse for input question 
▪ Construct layout of modules given this parse 

▪ Option 2: latent layouts — requires RL 
▪ Compose modules and run inference / training (end-to-end)



Neural Module Networks

Andreas et al. 2015, Hu et al. 2017

▪ Benefits: interpretability and controllability 

▪ You know what modules are being used 

▪ You know how they are composed 

▪ You know the intermediate outputs of each module 

▪ Problems 

▪ Requires formalizing the set of modules 

▪ Doesn’t work very well, empirically



Code as a Reasoning Bottleneck

▪ Taking advantage of general-purpose code models 

▪ Formal representation is given to us! 

▪ Need very little paired data (use in-context learning) 

▪ Still interpretable and controllable 

▪ Some drawbacks: 

▪ Still requires choosing a few modules 

▪ Particular choice of in-context examples and modules can 
limit reasoning



Code as a Reasoning Bottleneck

VisProg, Gupta and Kembhavi 2023, CVPR 
Subramanian et al. 2023, ACL 

ViperGPT, Surís et al. 2023
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Code as a Reasoning Bottleneck

VisProg, Gupta and Kembhavi 2023, CVPR 
Subramanian et al. 2023, ACL 

ViperGPT, Surís et al. 2023


