
Natural Language Processing

Parsing (Syntax and Semantics)

Syntactic Parsing

She enjoys playing tennis.

Syntactic Parsing

S

VP

SShe enjoys

NPplaying

tennis

NP VP .

Span-Based Parsing

She .enjoys playing tennis

NP

S–VP

VPNP

S

enjoys

NPplaying

tennis

VP

SShe

NP VP .

S

Parsing as Span Classification

She .enjoys playing tennis

VP

Routing with LSTMs

She .enjoys playing tennis

Routing with LSTMs

She .enjoys playing tennis

Pronoun to the left

Routing with LSTMs

She .enjoys playing tennis

Verb at the start

Routing with LSTMs

She .enjoys playing tennis

Pronoun to the left
Verb at the start

Routing with LSTMs

She .enjoys playing tennis

Pronoun to the left
Verb at the start

Period to the right
Noun and verbs to the left

Span Classification

She .enjoys playing tennis

Pronoun to the left
Verb inside
Period to the right

Span Classification

She .enjoys playing tennis

VP

Span Classification

She .enjoys playing tennis

VP

Span Classification

She .enjoys playing tennis

VP

Span Classification

She .enjoys playing tennis

VP

∅

S

Non-Constituents

She .enjoys playing tennis

VP

She .enjoys playing tennis

∅

… But Will We Get a Tree Out?

She .enjoys playing tennis

NP

S–VP

VPNP

S

enjoys

NPplaying

tennis

VP

SShe

NP VP .

S

Reconciliation

She .enjoys playing tennis

Y

X

1 2 30 4 5

Truth-Conditional Semantics

Truth-Conditional Semantics

▪ Linguistic expressions:
▪ “Bob sings”

▪ Logical translations:
▪ sings(bob)
▪ Could be p_1218(e_397)

▪ Denotation:
▪ [[bob]] = some specific person (in some context)
▪ [[sings(bob)]] = ???

▪ Types on translations:
▪ bob : e 	 	 (for entity)
▪ sings(bob) : t	 (for truth-value)

S

NP

Bob

VP

sings

sings(bob)

Truth-Conditional Semantics
▪ Proper names:

▪ Refer directly to some entity in the world
▪ Bob : bob [[bob]]W  ???

▪ Sentences:
▪ Are either true or false (given
	 how the world actually is)
▪ Bob sings : sings(bob)

▪ So what about verbs (and verb phrases)?
▪ sings must combine with bob to produce sings(bob)
▪ The λ-calculus is a notation for functions whose arguments are not yet filled.
▪ sings : λx.sings(x)
▪ This is a predicate – a function which takes an entity (type e) and produces a truth value (type t).

We can write its type as e→t.
▪ Adjectives?

S

NP

Bob
bob

VP

sings
λy.sings(y)

sings(bob)

Compositional Semantics
▪ So now we have meanings for the words
▪ How do we know how to combine words?
▪ Associate a combination rule with each grammar rule:

▪ S : β(α) → NP : α VP : β (function application)
▪ VP : λx . α(x) ∧ β(x) → VP : α and : ∅ VP : β (intersection)

▪ Example:

S

NP VP

Bob VP and

sings

VP

dances
bob

λy.sings(y) λz.dances(z)

λx.sings(x) ∧ dances(x)

[λx.sings(x) ∧ dances(x)](bob)

sings(bob) ∧ dances(bob)

Denotation
▪ What do we do with logical translations?
▪ Translation language (logical form) has fewer ambiguities
▪ Can check truth value against a database

▪ Denotation (“evaluation”) calculated using the database
▪ Or the opposite: assert truth and modify a database, either explicitly or implicitly

eg prove a consequence from asserted axioms
▪ Questions: check whether a statement in a corpus entails the (question, answer)

pair:
▪ “Bob sings and dances” → “Who sings?” + “Bob”

▪ Chain together facts and use them for comprehension

Other Cases

▪ Transitive verbs:
▪ likes : λx.λy.likes(y,x)
▪ Two-place predicates of type e→(e→t).
▪ likes Amy : λy.likes(y,Amy) is just like a one-place predicate.

▪ Quantifiers:
▪ What does “Everyone” mean here?
▪ Everyone : λf.∀x.f(x)
▪ Mostly works, but some problems

▪ Have to change our NP/VP rule.
▪ Won’t work for “Amy likes everyone.”

▪ “Everyone likes someone.”
▪ This gets tricky quickly!

S

NP VP

Everyone VBP NP

Amylikes
λx.λy.likes(y,x)

λy.likes(y,amy)

amy

λf.∀x.f(x)

[λf.∀x.f(x)](λy.likes(y,amy))

∀x.likes(x,amy)

Indefinites
▪ First try
▪ “Bob ate a waffle” : ate(bob,waffle)
▪ “Amy ate a waffle” : ate(amy,waffle)

▪ Can’t be right!
▪ ∃ x : waffle(x) ∧ ate(bob,x)
▪ What does the translation
	 of “a” have to be?
▪ What about “the”?
▪ What about “every”?

S

NP VP

Bob VBD NP

a waffleate

Grounding

▪ Grounding
▪ So why does the translation likes : λx.λy.likes(y,x) have anything to do

with actual liking?
▪ It doesn’t (unless the denotation model says so)
▪ Sometimes that’s enough: wire up bought to the appropriate entry in a

database

▪ Meaning postulates
▪ Insist, e.g ∀x,y.likes(y,x) → knows(y,x)
▪ This gets into lexical semantics issues

▪ Statistical / neural version?

Tense and Events
▪ In general, you don’t get far with verbs as predicates
▪ Better to have event variables e

▪ “Alice danced” : danced(alice)
▪ ∃ e : dance(e) ∧ agent(e,alice) ∧ (time(e) < now)

▪ Event variables let you talk about non-trivial tense / aspect structures
▪ “Alice had been dancing when Bob sneezed”
▪ ∃ e, e’ : 	 dance(e) ∧ agent(e,alice) ∧
	 	 	 sneeze(e’) ∧ agent(e’,bob) ∧
	 	 	 (start(e) < start(e’) ∧ end(e) = end(e’)) ∧
	 	 	 (time(e’) < now)

▪ Minimal recursion semantics, cf “object oriented” thinking

Adverbs
▪ What about adverbs?

▪ “Bob sings terribly”

▪ terribly(sings(bob))?

▪ (terribly(sings))(bob)?

▪ ∃e present(e) ∧ type(e,
singing) ∧ agent(e,bob)
∧ manner(e, terrible) ?

▪ Gets complex quickly…

S

NP VP

Bob VBP ADVP

terriblysings

Propositional Attitudes
▪ “Bob thinks that I am a gummi bear”

▪ thinks(bob, gummi(me)) ?
▪ thinks(bob, “I am a gummi bear”) ?
▪ thinks(bob, ^gummi(me)) ?

▪ Usual solution involves intensions (^X) which are, roughly, the set of possible worlds
(or conditions) in which X is true

▪ Hard to deal with computationally
▪ Modeling other agents’ models, etc
▪ Can come up in even simple dialog scenarios, e.g., if you want to talk about what your bill claims

you bought vs. what you actually bought

Trickier Stuff

▪ Non-Intersective Adjectives
▪ green ball : λx.[green(x) ∧ ball(x)]
▪ fake diamond : λx.[fake(x) ∧ diamond(x)] ?

▪ Generalized Quantifiers
▪ the : λf.[unique-member(f)]
▪ all : λf. λg [∀x.f(x) → g(x)]
▪ most?
▪ Could do with more general second order predicates, too (why worse?)

▪ the(cat, meows), all(cat, meows)
▪ Generics

▪ “Cats like naps”
▪ “The players scored a goal”

▪ Pronouns (and bound anaphora)
▪ “If you have a dime, put it in the meter.”

▪ … the list goes on and on!

λx.[fake(diamond(x))

Scope Ambiguities
▪ Quantifier scope
▪ “All majors take a data science class”
▪ “Someone took each of the electives”
▪ “Everyone didn’t hand in their exam”

▪ Deciding between readings
▪ Multiple ways to work this out

▪ Make it syntactic (movement)
▪ Make it lexical (type-shifting)

Logical Form Translation

Supervision: Logical Forms

▪ Data: input sentences paired with annotated LFs

▪ Problem: no supervision on how to get from sentence to LF

▪ But we can assume our LF has been generated from some
formal grammar

▪ Combinatory Categorial Grammar (CCG)

Show me flights to Prague

λx.flight(x)∧to(x,PRG)

CCG: Lexicon

Words Category

flights N : λx.flight(x)

to (N\N)/NP : λx.λf.λy.f(x) ∧ to(y,x)

Prague NP : PRG

New York city NP : NYC

… …

CCG: Combinators

Application

▪ X/Y : f Y : a => X : f(a)

▪ Y : a X\Y : f => X : f(a)

Composition

▪ X/Y : f Y/Z : g => X/Z : λx.f(g(x))

▪ Y\Z : f X\Y : g => X\Z : λx.f(g(x))

CCG: Parsing

to Pragueflights

N\N
λf.λx.f(x)∧to(x,PRG)

N
λx.flight(x)∧to(x,PRG)

Show me

N
λx.flight(x)

(N\N)/NP
λy.λf.λx.f(y)∧to(x,y)

NP
PRG

S/N
λf.f

S
λx.flight(x)∧to(x,PRG)

Weighted CCG

▪ Lexicon Λ

▪ GEN: all possible parses y for
sentence x given the lexicon

▪ Feature function

▪ (Learned) weights

▪ Best parse:

Words Category
flights N : λx.flight(x)

to (N\N)/NP :
λx.λf.λy.f(x) ∧ to(y,x)

Prague NP : PRG

New York
city

NP : NYC

… …

Training (ZC05/07)

▪ Start with (x, z) sentence-LF pairs and a small seed lexicon

▪ Iterate T times:

▪ Propose new lexical entries from each example (x, z):

▪ Generate all possible lexical entries pairing words/phrases
in x with predicates in z

▪ Use GEN to get all possible parses of x given the existing
and new lexicon

▪ Find the best parse y among these and add its lexical
entries to the existing lexicon

GENLEX: Substrings X Categories

All possible substrings:
 Show

 me
 flights
 Show me
 Show me flights
 Show me flights to

 …

Categories created by rules that
trigger on the logical form:
	 NP : PRG

 	 N : λx.flight(x)
 (S\NP)/NP : λx.λy.to(y,x)
 (N\N)/NP : λy.λf.λx. …

 …

X

Input Training Example

Sentence: 	 Show me flights to Prague. 	
Logic Form:	 λx.flight(x)∧ to(x,PRG)

Output Lexicon

[Zettlemoyer & Collins 2005]

Training (ZC05/07)

▪ Start with (x, z) sentence-LF pairs and a small seed lexicon

▪ Iterate T times:

▪ Propose new lexical entries from each example (x, z)

▪ Update weights:

▪ Re-parse all examples using newest lexicon and GEN

▪ Sort parses into “good” and “bad” according to whether
they are valid or invalid

▪ Update weights to upweight “good” parses and
downweight “bad” parses

Training (ZC05/07)

▪ Start with (x, z) sentence-LF pairs and a small seed lexicon

▪ Iterate T times:

▪ Propose new lexical entries from each example (x, z)

▪ Update weights

▪ Return full lexicon and weights

Supervision: Denotations Only

▪ Data: input sentences paired with denotations only (no LFs)

▪ Problem: no LF supervision at all!

▪ Even worse problem of spuriousness

▪ Complicates lexicon building

▪ Can still take advantage of knowing there’s a (latent) structured
representation

Show me flights to Prague

Flight #s: 123, 456, 78, 342

Learning from Denotations
▪ Example applications:

▪ Grounded QA

▪ Instruction following

▪ Truth-conditional semantics

▪ Modification of ZC05/07 approach

▪ New validation function: does
proposed parse+LF yield expected
denotation?

▪ New method for generating lexical
entries: place constraints (e.g., type
constraints) on possible new entries

WikiTableQuestions, Pasupat and Liang 2015, ACL

Artzi and Zettlemoyer 2013, TACL

NLVR, Suhr et al. 2017, ACL

Neural Approaches

Sequence-to-Sequence Models
▪ Same methods from NMT! Encode input with an RNN, decode LF

token-by-token

▪ Training: maximize log likelihood of gold LF conditioned on input
utterance

▪ Can apply techniques like attention, beam search, etc.

▪ Problems:

▪ Out-of-vocabulary terms, e.g., proper names (also a problem in MT)

▪ No longer a clear divide between lexical and compositional
semantics

▪ No guarantee of syntactic validity or executability

Attending, Pointing, and Copying

Slides from John DeNero / Philip Koehn

flights to new york λ x . flight (x …

λ x . flight (x) …

Attending, Pointing, and Copying

Slides from John DeNero / Philip Koehn

flights to new york) AND to (x ,

…

Queries
Keys
Values

 NYC

Generating “NYC” from the vocabulary:

Learn a bias and
embedding
specifically for NYC

Attending, Pointing, and Copying

Slides from John DeNero / Philip Koehn

flights to new york) AND to (x ,

…

Queries
Keys
Values

Attending, Pointing, and Copying

Slides from John DeNero / Philip Koehn

) AND to (x ,

…

Queries
Keys
Values

flights to CITY_NAME0

 CITY_NAME0

Generating “CITY_NAME0” from the vocabulary:

Anonymization:
CITY_NAME0 = NYC

NYC

Learn a bias and
embedding
specifically for the
0th city name

Attending, Pointing, and Copying

Slides from John DeNero / Philip Koehn

flights to CITY_NAME0) AND to (x ,

…

Copying “CITY_NAME0”
from the input:

Queries
Keys
Values

Anonymization:
CITY_NAME0 = NYC

 CITY_NAME0

Intrinsic Structure

Constraints

▪ With token-by-token decoding, we lose the benefit of
generating from a grammar

▪ Our network now needs to (implicitly) learn the grammar
from data

▪ No guarantees that it will generate executable code

▪ Syntax

▪ Semantics

▪ How can we take advantage of this underlying structure?

Rejection Sampling

▪ Generate a number of candidate(s) (e.g., via beam search)

▪ Execute candidates, ensuring it compiles and runs without an
error

▪ Return the highest-probability candidate that executes

▪ Could be very inefficient, especially because it requires running
code at inference time

Intermediate Logical Forms

▪ Design an intermediate representation that implicitly captures
structural dependencies in the code

▪ Generation in this output space reduces the need for the network to
learn particular dependencies

▪ However:

▪ Cannot capture full expressivity of target language

▪ Requires manual engineering of intermediate language, and
deterministic mapping to / from the target language

E.g., Guo et al. 2019, ACL

Constrained Decoding

▪ Generate actions that construct the AST that underlies the
target code rather than the code itself

▪ Output space includes two types of actions:
▪ ApplyRule r — apply production rule r to the current derivation tree

▪ GenerateToken t — generate a variable terminal t

▪ Tokens t in sequence comprise the surface form of the code

▪ The current derivation tree constrains the set of rules r that can
be applied and tokens t that can be generated

▪ At decoding time, simply mask out rules and tokens that cannot
be generated E.g., Yin and Neubig 2017, ACL

Constrained Decoding

From Yin and Neubig 2017, ACL

Generated AST Production Rule Actions

Abstract Syntax Networks

▪ Generate AST, but learn and use custom decoders (“modules”)
for different parts of the grammar

Rabinovich et al. 2017, ACL

Training at Scale

▪ With enough training data, modern neural architectures can capture
underlying code structure without requiring injection of inductive
biases

▪ It’s also easy to generate arbitrary amounts of code for training

▪ However, provides no guarantees

▪ Without explicit copying mechanisms:

▪ Possible for the model to learn biases in its vocabulary

▪ No guarantees it will properly use new variables and functions

▪ Ability to generalize to completely new programming languages
and new structures?

General-Purpose
Code Generation

Code Generation

▪ Before: tasks with clear
denotations

▪ What about general-purpose
code generation?

WikiTableQuestions, Pasupat and Liang 2015, ACL

Artzi and Zettlemoyer 2013, TACL

NLVR, Suhr et al. 2017, ACL

Code Generation

▪ Before: tasks with clear
denotations

▪ What about general-purpose
code generation?

OpenAI Codex, 2021

Code Generation

▪ Before: tasks with clear
denotations

▪ What about general-purpose
code generation?

▪ Denotation: program output?

OpenAI Codex, 2021

Code Generation

▪ Before: tasks with clear
denotations

▪ What about general-purpose
code generation?

▪ Denotation: program output?

▪ Less alignment between NL
and LF

OpenAI Codex, 2021

Code Generation

▪ Before: tasks with clear
denotations

▪ What about general-purpose
code generation?

▪ Denotation: program output?

▪ Less alignment between NL
and LF

▪ What is a “denotation” isn’t
always clear… OpenAI Codex, 2021

Evaluation

▪ Code doesn’t always produce a single, evaluable output

▪ Instead: write test cases, report pass@k

▪ Labor-intensive: requires programming expertise for annotation
(HumanEval only contains 164 problems)

HumanEval, Chen et al. 2021

Evaluation

▪ Any automated benchmark has to focus on a subset of
problems

▪ Going beyond solving programming puzzles DS-1000, Lai et al. 2022

▪ Sample real problems
from StackOverflow

▪ Collect reference
solutions and setting up
environment for testing

▪ Expert-written test cases

▪ Evaluate adherence to
surface form constraints
(e.g., that a library must
be used)

Approaches

CodeT5, Wang et al. 2021

▪ Multi-task learning: masking, tagging, generation

▪ Train on a large amount of code, some annotated with natural
language

Automated Software Development?

MetaGPT, Hong et al. 2023

Modularity

Neural Module Networks

Andreas et al. 2015

▪ Task: visual question answering

▪ Cast it as a semantic parsing task

▪ What is a denotation?

▪ Tie predicates in LF to composable neural modules

“Is there a red shape
above a circle?”

Neural Module Networks

Andreas et al. 2015, Hu et al. 2017

▪ Determine layout from sentence
▪ Option 1: deterministic layouts — requires gold annotation
▪ Get dependency parse for input question
▪ Construct layout of modules given this parse

▪ Option 2: latent layouts — requires RL
▪ Compose modules and run inference / training (end-to-end)

Neural Module Networks

Andreas et al. 2015, Hu et al. 2017

▪ Benefits: interpretability and controllability

▪ You know what modules are being used

▪ You know how they are composed

▪ You know the intermediate outputs of each module

▪ Problems

▪ Requires formalizing the set of modules

▪ Doesn’t work very well, empirically

Code as a Reasoning Bottleneck

▪ Taking advantage of general-purpose code models

▪ Formal representation is given to us!

▪ Need very little paired data (use in-context learning)

▪ Still interpretable and controllable

▪ Some drawbacks:

▪ Still requires choosing a few modules

▪ Particular choice of in-context examples and modules can
limit reasoning

Code as a Reasoning Bottleneck

VisProg, Gupta and Kembhavi 2023, CVPR
Subramanian et al. 2023, ACL

ViperGPT, Surís et al. 2023

Code as a Reasoning Bottleneck

VisProg, Gupta and Kembhavi 2023, CVPR
Subramanian et al. 2023, ACL

ViperGPT, Surís et al. 2023

Code as a Reasoning Bottleneck

VisProg, Gupta and Kembhavi 2023, CVPR
Subramanian et al. 2023, ACL

ViperGPT, Surís et al. 2023

