Natural Language Processing

Parsing (Syntax and Semantics)

Syntactic Parsing

She enjoys playing tennis.

Syntactic Parsing

Span-Based Parsing

Parsing as Span Classification

... But Will We Get a Tree Out?

Reconciliation

Truth-Conditional Semantics

Truth-Conditional Semantics

- Linguistic expressions:
 - "Bob sings"
- Logical translations:
 - sings(bob)
 - Could be p_1218(e_397)
- Denotation:
 - [[bob]] = some specific person (in some context)
 - [[sings(bob)]] = ???
- Types on translations:
 - bob : e (for entity)
 - sings(bob) : t (for truth-value)

Truth-Conditional Semantics

- Proper names:
 - Refer directly to some entity in the world
 - Bob : bob $[[bob]]^{W} \rightarrow ???$

Sentences:

- Are either true or false (given how the world actually is)
- Bob sings : sings(bob)

- sings must combine with bob to produce sings(bob)
- The λ -calculus is a notation for functions whose arguments are not yet filled.
- sings : λx.sings(x)
- This is a *predicate* a function which takes an entity (type e) and produces a truth value (type t).
 We can write its type as e→t.
- Adjectives?

Compositional Semantics

- So now we have meanings for the words
- How do we know how to combine words?
- Associate a combination rule with each grammar rule:
 - $S: \beta(\alpha) \rightarrow NP: \alpha \quad VP: \beta$ (function application)
 - $VP : \lambda x . \alpha(x) \land \beta(x) \rightarrow VP : \alpha$ and $: \emptyset \quad VP : \beta$ (intersection)
- Example:

Denotation

What do we do with logical translations?

- Translation language (logical form) has fewer ambiguities
- Can check truth value against a database
 - Denotation ("evaluation") calculated using the database
- Or the opposite: assert truth and modify a database, either explicitly or implicitly eg prove a consequence from asserted axioms
- Questions: check whether a statement in a corpus entails the (question, answer) pair:
 - "Bob sings and dances" → "Who sings?" + "Bob"
- Chain together facts and use them for comprehension

Other Cases

- Transitive verbs:
 - likes : λx.λy.likes(y,x)
 - Two-place predicates of type $e \rightarrow (e \rightarrow t)$.
 - likes Amy : λy.likes(y,Amy) is just like a one-place predicate.
- Quantifiers:
 - What does "Everyone" mean here?
 - Everyone : $\lambda f. \forall x. f(x)$
 - Mostly works, but some problems
 - Have to change our NP/VP rule.
 - Won't work for "Amy likes everyone."
 - "Everyone likes someone."
 - This gets tricky quickly!

Indefinites

First try

- "Bob ate a waffle" : ate(bob,waffle)
- "Amy ate a waffle" : ate(amy,waffle)
- Can't be right!
 - ∃ x : waffle(x) ∧ ate(bob,x)
 - What does the translation
 - of "a" have to be?
 - What about "the"?
 - What about "every"?

Grounding

Grounding

- So why does the translation likes : λx.λy.likes(y,x) have anything to do with actual liking?
- It doesn't (unless the denotation model says so)
- Sometimes that's enough: wire up bought to the appropriate entry in a database
- Meaning postulates
 - Insist, e.g $\forall x, y. likes(y, x) \rightarrow knows(y, x)$
 - This gets into lexical semantics issues
- Statistical / neural version?

- In general, you don't get far with verbs as predicates
- Better to have event variables e
 - "Alice danced" : danced(alice)
 - ∃ e : dance(e) ∧ agent(e,alice) ∧ (time(e) < now)</p>
- Event variables let you talk about non-trivial tense / aspect structures
 - "Alice had been dancing when Bob sneezed"
 - ∃ e, e' : dance(e) ∧ agent(e,alice) ∧

sneeze(e') \lapha agent(e',bob) \lapha
(start(e) < start(e') \lapha end(e) = end(e')) \lapha
(time(e') < now)</pre>

Minimal recursion semantics, cf "object oriented" thinking

Adverbs

- What about adverbs?
 - "Bob sings terribly"
 - terribly(sings(bob))?
 - (terribly(sings))(bob)?
 - ∃e present(e) ∧ type(e, singing) ∧ agent(e,bob)
 ∧ manner(e, terrible) ?
 - Gets complex quickly...

Propositional Attitudes

- "Bob thinks that I am a gummi bear"
 - thinks(bob, gummi(me)) ?
 - thinks(bob, "I am a gummi bear") ?
 - thinks(bob, ^gummi(me)) ?
- Usual solution involves intensions (^X) which are, roughly, the set of possible worlds (or conditions) in which X is true
- Hard to deal with computationally
 - Modeling other agents' models, etc
 - Can come up in even simple dialog scenarios, e.g., if you want to talk about what your bill claims you bought vs. what you actually bought

Trickier Stuff

- Non-Intersective Adjectives
 - green ball : $\lambda x.[green(x) \land ball(x)]$
 - fake diamond : λx .[fake(x) \wedge diamond(x)] ?
- Generalized Quantifiers
 - the : λf.[*unique-member*(f)]
 - all : $\lambda f. \lambda g [\forall x.f(x) \rightarrow g(x)]$
 - most?
 - Could do with more general second order predicates, too (why worse?)
 - the(cat, meows), all(cat, meows)
- Generics
 - "Cats like naps"
 - "The players scored a goal"
- Pronouns (and bound anaphora)
 - "If you have a dime, put it in the meter."
- ... the list goes on and on!

 $\longrightarrow \lambda x.[fake(diamond(x))]$

Scope Ambiguities

Quantifier scope

- "All majors take a data science class"
- "Someone took each of the electives"
- "Everyone didn't hand in their exam"

Deciding between readings

- Multiple ways to work this out
 - Make it syntactic (movement)
 - Make it lexical (type-shifting)

Logical Form Translation

Data: input sentences paired with annotated LFs

Show me flights to Prague

 $\lambda x.flight(x) \land to(x, PRG)$

- Problem: no supervision on how to get from sentence to LF
- But we can assume our LF has been generated from some formal grammar
- Combinatory Categorial Grammar (CCG)

Words	Category		
flights	N : λx.flight(x)		
to	(N\N)/NP : $\lambda x . \lambda f . \lambda y . f(x) \wedge to(y, x)$		
Prague	NP : PRG		
New York city	NP : NYC		
•••	•••		

CCG: Combinators

Application

- X/Y : f Y : a => X : f(a)
- Y: a $X \setminus Y$: f => X: f(a)

Composition

- X/Y : f Y/Z : g => X/Z : $\lambda x.f(g(x))$
- $Y \setminus Z$: f $X \setminus Y$: g => $X \setminus Z$: $\lambda x \cdot f(g(x))$

CCG: Parsing

	Show me	flights	to	Prague
-	S/N	N	(N\N) /NP	NP
	λ f.f	$\lambda {m x}$.flight(${m x}$)	$\lambda y. \lambda f. \lambda x. f(y) \land to(x, y)$	PRG
			N\N	
			$\lambda f. \lambda x. f(x) \wedge to(x)$	PRG)
			N	
			$\lambda x.flight(x) \land to(x, PRG)$	
			S	
		$\lambda x.fl$	$ight(x) \land to(x, PRG)$	

Weighted CCG

• Lexicon Λ

- GEN: all possible parses y for sentence x given the lexicon
- Feature function
- $f \ : \ X \times Y \to \mathbb{R}^m$ ${}_{\bullet}$ (Learned) weights

 $w \in \mathbb{R}^m$ Best parse:

$$y^* = \arg \max_{y \in GEN(x,\Lambda)} w \cdot f(x,y)$$

Words	Category
flights	N : $\lambda x.flight(x)$
to	$(N \ N) / NP :$ $\lambda x. \lambda f. \lambda y. f(x) \land to(y, x)$
Prague	NP : PRG
New York city	NP : NYC
•••	•••

Training (ZC05/07)

- Start with (x, z) sentence-LF pairs and a small seed lexicon
 Iterate *T* times:
 - Propose new lexical entries from each example (x, z):
 - Generate all possible lexical entries pairing words/phrases in x with predicates in z
 - Use GEN to get all possible parses of x given the existing and new lexicon
 - Find the best parse y among these and add its lexical entries to the existing lexicon

Input Training Example

Sentence: Logic Form:	Show me for $\lambda x.flight$	lights to Prague. (x)∧ to(x,PRG)	
	Output	Lexicon	
All possible substrings:		Categories created by rules that	
Show		trigger on the logical form:	
me flights	•	NP : PRG	
Show me Show me flig Show me flig	Thts Thts to	$N : \lambda x.flight(x)$ $(S \ NP) / NP : \lambda x.\lambda y.to(y,x)$ $(N \ N) / NP : \lambda y.\lambda f.\lambda x$	
		• • •	

...

[Zettlemoyer & Collins 2005]

Training (ZC05/07)

- Start with (x, z) sentence-LF pairs and a small seed lexicon
 Iterate *T* times:
 - Propose new lexical entries from each example (x, z)
 - Update weights:
 - Re-parse all examples using newest lexicon and GEN
 - Sort parses into "good" and "bad" according to whether they are valid or invalid
 - Update weights to upweight "good" parses and downweight "bad" parses

Training (ZC05/07)

- Start with (x, z) sentence-LF pairs and a small seed lexicon
- Iterate T times:
 - Propose new lexical entries from each example (x, z)
 - Update weights
- Return full lexicon and weights

Data: input sentences paired with denotations only (no LFs)

Show me flights to Prague Flight #s: 123, 456, 78, 342

- Problem: no LF supervision at all!
 - Even worse problem of spuriousness
 - Complicates lexicon building
- Can still take advantage of knowing there's a (latent) structured representation

Learning from Denotations

- Example applications:
 - Grounded QA
 - Instruction following
 - Truth-conditional semantics
- Modification of ZC05/07 approach
 - New validation function: does proposed parse+LF yield expected denotation?
 - New method for generating lexical entries: place constraints (e.g., type constraints) on possible new entries

Year	City	Country	Nations
1896	Athens	Greece	14
1900	Paris	France	24
1904	St. Louis	USA	12
2004	Athens	Greece	201
2008	Beijing	China	204
2012	London	UK	204

WikiTableQuestions, Pasupat and Liang 2015, ACL

Artzi and Zettlemoyer 2013, TACL

Neural Approaches

- Same methods from NMT! Encode input with an RNN, decode LF token-by-token
- Training: maximize log likelihood of gold LF conditioned on input utterance
- Can apply techniques like attention, beam search, etc.
- Problems:
 - Out-of-vocabulary terms, e.g., proper names (also a problem in MT)
 - No longer a clear divide between lexical and compositional semantics
 - No guarantee of syntactic validity or executability

Slides from John DeNero / Philip Koehn

 $\langle \mathbf{h}_0 \dots \mathbf{h}_5
angle$

 $egin{array}{l} \langle \mathbf{x}_0 \dots \mathbf{x}_3
angle \ \langle \mathbf{x}_0 \dots \mathbf{x}_3
angle \end{array}$

Intrinsic Structure

Constraints

- With token-by-token decoding, we lose the benefit of generating from a grammar
 - Our network now needs to (implicitly) learn the grammar from data
 - No guarantees that it will generate executable code
 - Syntax
 - Semantics

How can we take advantage of this underlying structure?

- Generate a number of candidate(s) (e.g., via beam search)
- Execute candidates, ensuring it compiles and runs without an error
- Return the highest-probability candidate that executes
- Could be very inefficient, especially because it requires running code at inference time

- Design an intermediate representation that implicitly captures structural dependencies in the code
- Generation in this output space reduces the need for the network to learn particular dependencies
- SQL: SELECT people.name FROM people JOIN films ON people.id = film.person_id WHERE films.id = 5
- SQL^{UF}: SELECT people.name **UF** WHERE films.id = 5

However:

- Cannot capture full expressivity of target language
- Requires manual engineering of intermediate language, and deterministic mapping to / from the target language

E.g., Guo et al. 2019, ACL

- Generate actions that construct the AST that underlies the target code rather than the code itself
- Output space includes two types of actions:
 - ApplyRule *r* apply production rule *r* to the current derivation tree
 - GenerateToken *t* generate a variable terminal *t*
- Tokens t in sequence comprise the surface form of the code
- The current derivation tree constrains the set of rules r that can be applied and tokens t that can be generated
- At decoding time, simply mask out rules and tokens that cannot be generated
 E.g., Yin and Neubig 2017, ACL

Constrained Decoding

From Yin and Neubig 2017, ACL

 Generate AST, but learn and use custom decoders ("modules") for different parts of the grammar

(c) A constructor field module (sequential cardinality) generating children to populate the field. At each step, the module decides whether to generate a child and continue (white circle) or stop (black circle).

(d) A primitive type module choosing a value from a closed list.

Rabinovich et al. 2017, ACL

Training at Scale

- With enough training data, modern neural architectures can capture underlying code structure without requiring injection of inductive biases
- It's also easy to generate arbitrary amounts of code for training
- However, provides no guarantees
 - Without explicit copying mechanisms:
 - Possible for the model to learn biases in its vocabulary
 - No guarantees it will properly use new variables and functions
 - Ability to generalize to completely new programming languages and new structures?

General-Purpose Code Generation

Code Generation

- Before: tasks with clear denotations
- What about general-purpose code generation?

Year	City	Country	Nations
1896	Athens	Greece	14
1900	Paris	France	24
1904	St. Louis	USA	12
2004	Athens	Greece	201
2008	Beijing	China	204
2012	London	UK	204

WikiTableQuestions, Pasupat and Liang 2015, ACL

Artzi and Zettlemoyer 2013, TACL

- Before: tasks with clear denotations
- What about general-purpose code generation?

```
"""Compute dates for today
and 1 month ago."""
import datetime
today =
datetime.date.today()
one_month_ago = today -
datetime.timedelta(days=30
print(today)
print(one_month_ago)
```


- Before: tasks with clear denotations
- What about general-purpose code generation?
 - Denotation: program output?

"""Compute dates for today and 1 month ago.""" import datetime

today =
datetime.date.today()
one_month_ago = today datetime.timedelta(days=30

print(today)
print(one_month_ago)

- Before: tasks with clear denotations
- What about general-purpose code generation?
 - Denotation: program output?
 - Less alignment between NL and LF

Code Generation

- Before: tasks with clear denotations
- What about general-purpose code generation?
 - Denotation: program output?
 - Less alignment between NL and LF
- What is a "denotation" isn't always clear...

```
/* Increment the score by 1
point, every 500ms. */
var scoreIncrement =
setInterval(function() {
   score++;
   scoreDisplay.innerHTML =
'Score: ' + score;
}, 500);
```

Evaluation

- Code doesn't always produce a single, evaluable output
- Instead: write test cases, report pass@k
- Labor-intensive: requires programming expertise for annotation (HumanEval only contains 164 problems)

```
def solution(lst):
    """Given a non-empty list of integers, return the sum of all of the odd elements
    that are in even positions.
    Examples
    solution([5, 8, 7, 1]) ==>12
    solution([3, 3, 3, 3, 3]) ==>9
    solution([30, 13, 24, 321]) ==>0
    """
    return sum(lst[i] for i in range(0,len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)
    HumanEval, Chen et al. 2021
```

Evaluation

Any automated benchmark has to focus on a subset of problems

DS-1000, Lai et al. 2022

- Sample real problems from StackOverflow
- Collect reference solutions and setting up environment for testing
 Expert-written test cases
- Evaluate adherence to surface form constraints (e.g., that a library must be used)

▼ Correct/wrong?

result = df.join(df.apply(lambda x: 1/x).add_prefix("inv_"))

Approaches

Multi-task learning: masking, tagging, generation
 Train on a large amount of code, some annotated with natural language

Automated Software Development?

MetaGPT, Hong et al. 2023

Modularity

- Task: visual question answering
 - Cast it as a semantic parsing task
 - What is a denotation?
- Tie predicates in LF to composable neural modules

"Is there a red shape above a circle?"

Neural Module Networks

- Determine layout from sentence
 - Option 1: deterministic layouts requires gold annotation
 - Get dependency parse for input question
 - Construct layout of modules given this parse
 - Option 2: latent layouts requires RL
- Compose modules and run inference / training (end-to-end)

how many different lights in various different shapes and sizes?

measure[count](
 attend[light])

four (four)

Andreas et al. 2015, Hu et al. 2017

Benefits: interpretability and controllability

- You know what modules are being used
- You know how they are composed
- You know the intermediate outputs of each module
- Problems
 - Requires formalizing the set of modules
 - Doesn't work very well, empirically

- Taking advantage of general-purpose code models
- Formal representation is given to us!
- Need very little paired data (use in-context learning)
- Still interpretable and controllable
- Some drawbacks:
 - Still requires choosing a few modules
 - Particular choice of in-context examples and modules can limit reasoning

Code as a Reasoning Bottleneck

VisProg, Gupta and Kembhavi 2023, CVPR Subramanian et al. 2023, ACL ViperGPT, Surís et al. 2023

Code as a Reasoning Bottleneck

VisProg, Gupta and Kembhavi 2023, CVPR

Subramanian et al. 2023, ACL ViperGPT, Surís et al. 2023

Code as a Reasoning Bottleneck

VisProg, Gupta and Kembhavi 2023, CVPR Subramanian et al. 2023, ACL ViperGPT, Surís et al. 2023