Natural Language Processing

Berkeley

(N

N L P

Parsing (Syntax and Semantics)



Syntactic Parsing

She enjoys playing tennis.



Syntactic Parsing

S

/N

NP VP

N

She enjoys S

VP

N

playing NP

tennis



Span-Based Parsing

7
NP vP
/\
e i ?
VP
/\
playing NP
tenlnis
: S
NP | [ VP
[ S—VP /
_ NP

She enjoys  playing  tennis



Parsing as Span Classification

VP
A

[ She [enjoys playing tennis]




Routing with LSTMs

I | I I

1 1 1 1
[ She [enjoys playing tennis]

S e
!
-~




Routing with LSTMs

Pronoun to the left

|

1 |

[ She [enjoys playing tennis]




Routing with LSTMs

Verb at the start

|

| 1 I

[ She [enjoys playing tennis]




Routing with LSTMs

Pronoun to the left
Verb at the start

|

«— «— «—
—_—

1 | 1 I

[ She [enjoys playing tennis]




Routing with LSTMs

Pronoun to the left Period to the right
Verb at the start Noun and verbs to the left
A A

e

|

| 1 I

[ She

[enjoys playing tennis]




Span Classification

Pronoun to the left
Verb inside
Period to the right

1

. Q-

O

1 | 1 I

[ She [enjoys playing tennis]




Span Classification

O

1 | 1 I

[ She [enjoys playing tennis]




Span Classification

VP
|

-

.-
- S
| | ] | |
V=T 1= 1=T =71 }
! ! ! ! !

She enjoys  playing  tennis



Span Classification

1 1 1 1

She enjoys  playing  tennis

e
1



Span Classification

She

1 1 1

enjoys  playing  tennis

T



Non-Constituents

%,

1

[[She enjoys playing] tennis

VP
A

[ She [enjoys playing tennis]




... But Will We Get a Tree Out?

S
/7
NP VP R
/\
e i ?
VP
/\
playing NP
tenlnis
| S ]
NP | [ VP \
[ S-VP /
_ NP

She enjoys  playing  tennis



Reconciliation

She enjoys playing tennis
1 2 3 4



Truth-Conditional Semantics



Truth-Conditional Semantics

Linguistic expressions: S sings(bob)

= “Bob sings” —
NP VP
Logical translations: | |
= sings(bob) Bob sings
= Could bep 1218(e_397)

Denotation:

» [[bob]] = some specific person (in some context)
= [[sings(bob)]] = ???

Types on translations:
= bob:e (for entity)
= sings(bob) : t (for truth-value)



Truth-Conditional Semantics

= Proper names:
= Refer directly to some entity in the world

. Bob:bob  [[bob]]W > ?7? S_sings(bob)
/\
NP VP
= Sentences: | |
= Are either true or false (g.iven Bob sings
how the world actually is) bob Ay.sings(y)

= Bob sings : sings(bob)

= So what about verbs (and verb phrases)?
= Sings must combine with bob to produce sings(bob)
= The A-calculus is a notation for functions whose arguments are not yet filled.
s Sings : Ax.sings(x)

= This is a predicate — a function which takes an entity (type e) and produces a truth value (type t).
We can write its type as e—t.

= Adjectives?



Compositional Semantics

So now we have meanings for the words

How do we know how to combine words?

Associate a combination rule with each grammar rule:

s S:B(a) = NP:a VP:f

(function application)

s VP:Ax.a(x)APB(x) =VP:a and: I VP:[ (intersection)

Example:

sings(bob) A dances(bob)
S [Ax.sings(x) A dances(x)](bob)

/\
NP VP  AX.sings(x) A dances(x)
| /’\
Bob VP and VP
bob | |
sings dances

A\y.sings(y) \z.dances(z)



Denotation

= What do we do with logical translations?

=« Translation language (logical form) has fewer ambiguities
= Can check truth value against a database
= Denotation (“evaluation”) calculated using the database

= Or the opposite: assert truth and modify a database, either explicitly or implicitly
eg prove a consequence from asserted axioms

= Questions: check whether a statement in a corpus entails the (question, answer)
pair:
= “Bob sings and dances” — “Who sings?” + “Bob”

= Chain together facts and use them for comprehension



Other Cases

s [ransitive verbs:

n likes : Ax.A\y.likes(y,x)

= Two-place predicates of type e—(e—t).

n likes Amy : Ay.likes(y,Amy) is just like a one-place predicate.

= Quantifiers:

What does “Everyone” mean here?
Everyone : Af.Vx.f(x)
Mostly works, but some problems

= Have to change our NP/VP rule.

= Won’t work for “Amy likes everyone.”

“Everyone likes someone.”
This gets tricky quickly!

Vx.likes(x,amy)
S [M.VX.f(X)](Ay.likes(y,amy))

/\
NP VP Ay.likes(y,amy)
| N
Everyone  VBP NP
MF.Vx.(X) | |
likes Amy

AX.Ay.likes(y,x) amy



Indefinites

= First try

= “Bob ate a waffle” : ate(bob,waffle)

= “Amy ate a waffle” : ate(amy,waffle)

= Can’t be right!

=« 1 x: waffle(x) A ate(bob,x)

= What does the translation

of “a” have to be?
= What about “the”?

= What about “every”?

S
/\
NP VP
| /\
Bob VBD NP
| N\

ate a waffle



Grounding

= Grounding

= So why does the translation likes : Ax.A\y.likes(y,x) have anything to do
with actual liking?

= It doesn’t (unless the denotation model says so)

= Sometimes that’s enough: wire up bought to the appropriate entry in a
database

= Meaning postulates
» Insist, e.g Vx,y.likes(y,x) = knows(y,x)
= This gets into lexical semantics issues

= Statistical / neural version?



Tense and Events

= In general, you don’t get far with verbs as predicates
= Better to have event variables e

= “Alice danced” : danced(alice)
= 1 e:dance(e) A agent(e,alice) A (time(e) < now)
= Event variables let you talk about non-trivial tense / aspect structures
= “Alice had been dancing when Bob sneezed”
« de, e’ : dance(e) A agent(e,alice) A
sneeze(e’) A agent(e’,bob) A
(start(e) < start(e’) A end(e) = end(e’)) A

(time(e’) < now)

= Minimal recursion semantics, cf “object oriented” thinking



Adverbs

= What about adverbs?

= “Bob sings terribly”

S
= terribly(sings(bob))? —
. _ NP VP
= (terribly(sings))(bob)? | P
Bob VBP  ADVP

= Jde present(e) A type(e, | |

singing) A agent(e,bob) sings terribly
A manner(e, terrible) ?

x Gets complex quickly...



Propositional Attitudes

“Bob thinks that | am a gummi bear”
= thinks(bob, gummi(me)) ?
= thinks(bob, “l am a gummi bear”) ?
= thinks(bob, "gummi(me)) ?

Usual solution involves intensions (*X) which are, roughly, the set of possible worlds
(or conditions) in which X is true

Hard to deal with computationally

= Modeling other agents’ models, etc
= Can come up in even simple dialog scenarios, e.g., if you want to talk about what your bill claims
you bought vs. what you actually bought



Trickier Stuff

Non-Intersective Adjectives

= green ball : Ax.[green(x) A ball(x)]

= fake diamond : Ax.[fake(x) A diamond(x)] ?
Generalized Quantifiers

= the : Af.[unique-member(f)]

s all : Af. Ag [Vx.f(x) = g(x)]

= most?

» Could do with more general second order predicates, too (why worse?)
= the(cat, meows), all(cat, meows)

Generics
= “Cats like naps”
“The players scored a goa

Pronouns (and bound anaphora)
“If you have a dime, put it in the meter.”

\x.[fake(diamond(x))

III

... the list goes on and on!



Scope Ambiguities

Quantifier scope
= “All majors take a data science class”
= “Someone took each of the electives”
= “Everyone didn’t hand in their exam”

Deciding between readings

= Multiple ways to work this out
= Make it syntactic (movement)
= Make it lexical (type-shifting)



Logical Form Translation



Supervision: Logical Forms

= Data: input sentences paired with annotated LFs

Show me flights to Prague
Ax.flight (x) Ato(x,PRG)

= Problem: no supervision on how to get from sentence to LF

= But we can assume our LF has been generated from some
formal grammar

s Combinatory Categorial Grammar (CCG)



CCG: Lexicon

Words Category
flights N : Ax.flight(x)

to (N\N) /NP : Ax.Af.\y.f(x) A to(y,x)
Prague NP : PRG

New York city NP : NYC




CCG: Combinators

Application
m X/Y . T
n Y : a

Composition

n X/Y
s Y \7Z

N
: £

Y/Z : g => X/7Z : Ax.f(g(x))
X\Y : g => X\Z : Ax.f(g(x))



CCG: Parsing

Show me flights to Prague
S/N N (N\N) /NP NP
ANE.E Ax.flight(x) Ay.Af.Ax.f(y)rto(x,y) PRG

N\N
AME.Ax.f(x)Ato(x,PRG)
N
Ax.flight (x) Ato(x,PRG)
S

Ax.flight (x) Ato(x,PRG)



Weighted CCG

= Lexicon A Words Category
= GEN: all possible parses y for flights | N : Ax.flight(x)
. . (N\N) /NP :

sentence x given the lexicon to Ax.ME.Ay.£(x) A to(y,x)

» Feature function Prague NP : PRG
New York .

f:XXY—)Rm city e e

» (Learned) weights
w € R™

a Best parse:

*=ar max w- f(x,
4 gyEGEN(ac,A) f( y)



Training (ZC05/07)

s Start with (X, z) sentence-LF pairs and a small seed lexicon
= |[terate T times:

= Propose new lexical entries from each example (x, z):

» Generate all possible lexical entries pairing words/phrases
in x with predicates in z

= Use GEN to get all possible parses of x given the existing
and new lexicon

s Find the best parse y among these and add its lexical
entries to the existing lexicon



GENLEX: Substrings X Categories

Input Training Example

Sentence: Show me flights to Prague.
Logic Form: Ax.flight (x)A to (x,PRG)

Output Lexicon

All possible substrings: Categories created by rules that
Show trigger on the logical form:
e NP : PRG
flights
X N : Ax.flight (x)
Show me (S\NP) /NP : Ax.Ay.to(y,x)

Show me flights

Show me flights to (N\N) /NP : Ay.Af.Ax. ..

[Zettlemoyer & Collins 2005]



Training (ZC05/07)

s Start with (X, z) sentence-LF pairs and a small seed lexicon
= lterate T times:
s Propose new lexical entries from each example (x, z)
= Update weights:
= Re-parse all examples using newest lexicon and GEN

= Sort parses into “good” and “bad” according to whether
they are valid or invalid

= Update weights to upweight “good” parses and
downweight “bad” parses



Training (ZC05/07)

s Start with (X, z) sentence-LF pairs and a small seed lexicon
= lterate T times:

s Propose new lexical entries from each example (x, z)

= Update weights
= Return full lexicon and weights



Supervision: Denotations Only

= Data: input sentences paired with denotations only (no LFs)

Show me flights to Prague
Flight #s: 123, 456, 78, 342

= Problem: no LF supervision at all!
= Even worse problem of spuriousness
= Complicates lexicon building

= Can still take advantage of knowing there’s a (latent) structured
representation



Learning from Denotations

. . Year City  Country Nations ¥ = Greece held its last
» Example applications: 1896 Athens Greece 14 -

1900 Paris France 24 Sur‘nmerOIymplcsm

s Grounded QA 1904 [stiows |UsA |12 which year?
y =2004

= Instruction following 2004 Athens Greece 201
2008 Beijing China 204

s Truth-conditional semantics 2012 london UK 204

WikiTableQuestions, Pasupat and Liang 2015, ACL

» Modification of ZC05/07 approach

= New validation function: does
proposed parse+LF yield expected

at the chair, move forward three steps past the sofa

Artzi and Zettlemoyer 2013, TACL

denotation?

» New method for generating lexical
entries: place constraints (e.g., type e A
COnStraintS) on pOSSible new entries There is exactly one black tnangle not touching any edge

NLVR Suhr et al. 2017, ACL



Neural Approaches



Sequence-to-Sequence Models

= Same methods from NMT! Encode input with an RNN, decode LF
token-by-token

= Training: maximize log likelihood of gold LF conditioned on input
utterance

= Can apply techniques like attention, beam search, etc.

s Problems:

» Out-of-vocabulary terms, e.g., proper names (also a problem in MT)

= No longer a clear divide between lexical and compositional
semantics

= No guarantee of syntactic validity or executability



Attending, Pointing, and Copying

Encoder RNN

Encoding of the
source sentence.

Target sentence (output)
A

~
-

flight

—

|

%

\ 4
—P 0000

]

flights to new york

\

J

Y
Source sentence (input)

|

x —>0000|—> —

—>{0000}——
%{_J
NNY 48pode(

A 4
—30000|—> >
\ 4
>~ ——0000|— %
x —>0000—— .
—0000}——
~—30000—> «

fli

4
=
=
vV
«Q
o
—

Slides from John DeNero / Philip Koehn



Attending, Pointing, and Copying

Attention

Attention

Encoder

distribution

scores

N

—
r---

RN

72

Attention NYC Queries <h0 L. h5>
output 3 T Kevs
T h — %Z $Xi—> 9, Y <X0 ce X3>
{ / H <SO o 83> i=0 T Values <XO . x3>
R ¢
A 73

Generating “NYC” from the vocabulary:
p(y = NYC) o< exp(f(h’,h_1)Wyyc + byyc)

vt

. Learn a bias and
B el I embedding
T‘ T T T specifically for NYC
Y

Source sentence (input) Slides from John DeNero / Philip Koehn

A 4
Q000
—~
=
@)
=
ot
~—
000
0000 |—

— s[eco0e

A

flights to new york
\\

— —{0000

J




Attending, Pointing, and Copying

output

Attention

Encoder Attention

E Attention Queries <h0 o h5>
0]

T Keys <X0 .« s X3>

Ty
........
g
.

distribution
—
1.
1
u..
—
S
Va)
o
Vs
w
~~—F7"

scores

1 3
h, = — SiXj y
3 ; T Values <x0 .o .X3>

{ o) [il - fE fEtho . ) §J3
FYTT TT77]

flights to new york
\\

AND to ( X
J

Y

72 Source sentence (input)

Slides from John DeNero / Philip Koehn



Attending, Pointing, and Copying

Attention
distribution

Attention

Encoder

scores

RNN

72

NYC
—CHP-NAMES- UBries , h5>
T Keys <X0 . X3>

Q .

o Attention
®| output
4 p

3
1
= — E $iXi—> Y,
3 4
1=0

T Values <x0 L

Generating “CITY_NAMEOQ” from the vocabulary:
p(y = CNO) X exp(f(h', h WCNO + bCNO

Anoni |za\$n
CITY 0 =NYC

Learn a bias and

——{o000

flights to CITY_NAMEO
\ J

Y
Source sentence (input)

O
O
O
o
)

=

ot

~—

000
0000 |—

embedding
specifically for the
Oth city name

Slides from John DeNero / Philip Koehn



Attending, Pointing, and Copying

Attention
distribution

Attention

Encoder

scores

RNN

72

E Attention  Copying “CITY_NAMEO”  CITY_NAMEO ueries <h0 . h5>
0]
0]

output from the input: T
o — p(y = z2) o exp(s2) ,  Keys (X0 ...X3)
6

Anonymization:
——r : CITY_NAMEO = NYC
( o O 0 o ) —
:(Xo...X3>.: >8 >8<h0h5>8—>8
TTYT 117710
) AND to ( X

flights to CITY_NAMEO
\ J

Y
Source sentence (input) Slides from John DeNero / Philip Koehn



Intrinsic Structure



Constraints

= With token-by-token decoding, we lose the benefit of
generating from a grammar

s Our network now needs to (implicitly) learn the grammar
from data

= No guarantees that it will generate executable code
= Syntax
= Semantics

= How can we take advantage of this underlying structure?



Rejection Sampling

Generate a number of candidate(s) (e.g., via beam search)

Execute candidates, ensuring it compiles and runs without an
error

Return the highest-probability candidate that executes

Could be very inefficient, especially because it requires running
code at inference time



Intermediate Logical Forms

= Design an intermediate representation that implicitly captures
structural dependencies in the code
= Generation in this output space reduces the need for the network to

learn particular dependencies

SQL: SELECT people.name FROM people JOIN films ON people.id = film.person_id

WHERE films.id = 5
SQLY: SELECT people.name UF WHERE films.id = 5
peop

= However:
= Cannot capture full expressivity of target language

= Requires manual engineering of intermediate language, and

deterministic mapping to / from the target language
E.g., Guo et al. 2019, ACL



Constrained Decoding

= Generate actions that construct the AST that underlies the
target code rather than the code itself

= Output space includes two types of actions:

= ApplyRule r — apply production rule r to the current derivation tree

= GenerateToken t — generate a variable terminal t

s Tokens t in sequence comprise the surface form of the code

s The current derivation tree constrains the set of rules r that can
be applied and tokens t that can be generated

s At decoding time, simply mask out rules and tokens that cannot
be generated E.g., Yin and Neubig 2017, ACL



Constrained Decoding

Generated AST Production Rule Actions

root — Expr

Expr +— expr{value]

t3 | expr+— Call

S LT TS . v
t4 ts | expr = Name (—"th— expr¥ — expr 14| keyword* — keyword
: A 4 .
ts 5 l 6 | Name +— str fip| expr— Name
grmnmmnbonanas : ______ y — Action Flow
 Totg | Str(sorted) i 117 GenToken[sorted] | ,-{f11| Namew—str | » Parent Feeding
SRIPRINS l . | A
hitizhs str(my_list); *® I3 | GenToken[</n>] |! :f12. GenToken[my_list] pply Rule
L J l t; : Generate Token
>3} GenToken[</n>] 4 GenToken with Copy
T J ]
(a) (b)
Input: sort my_list in descending order Code: sorted(my_list, reverse=True)

From Yin and Neubig 2017, ACL



Abstract Syntax Networks

s Generate AST, but learn and use custom decoders (“modules”)
for different parts of the grammar

3

/ () ClassDef\
stmt Q 1f expr
@ ror (If test H
@ vwhile If body stmt*
@ Assign
@ Return orelse

\ ® ... / stmt*

(a) A composite type module choosing a constructor for
the corresponding type. (b) A constructor module computing updated vertical

LSTM states.
/identifier @ init \
stmt* @ create minion
O stmt O add buff add_buff
@ change attack
—@ @ damage
| \ o J
(c) A constructor field module (sequential cardinal-
ity) generating children to populate the field. At each (d) A primitive type module choosing a value from a
step, the module decides whether to generate a child and closed list R . .
' abinovich et al. 2017, ACL

continue (white circle) or stop (black circle).



Training at Scale

= With enough training data, modern neural architectures can capture
underlying code structure without requiring injection of inductive
niases

= It’s also easy to generate arbitrary amounts of code for training

= However, provides no guarantees
= Without explicit copying mechanismes:
= Possible for the model to learn biases in its vocabulary
= No guarantees it will properly use new variables and functions

= Ability to generalize to completely new programming languages
and new structures?



General-Purpose
Code Generation



Code Generation

s Before: tasks with clear
denotations

= What about general-purpose
code generation?

Year Cit Count Nations .
y v x = Greece held its last

Summer Olympics in
which year?

y = 2004

1896 Athens Greece 14
1900 Paris France 24
1904 St.Louis USA 12

2004 Athens Greece 201
2008 Beijing China 204
2012 London UK 204

WikiTableQuestions, Pasupat and Liang 2015, ACL

at the chair, move forward three steps past the sofa

Artzi and Zettlemoyer 2013, TACL

I

There is exactly one black tnangle not touching any edge

NLVR Suhr et al. 2017, ACL



Code Generation

s Before: tasks with clear
denotations

= What about general-purpose
code generation?

"""Compute dates for today
and 1 month ago."""
import datetime

today =
datetime.date.today()
one_month_ago = today -
datetime.timedelta(days=30

)

print(today)
orint(one_month_ago)

OpenAl Codex, 2021




Code Generation

s Before: tasks with clear
denotations

= What about general-purpose
code generation?

= Denotation: program output?

"""Compute dates for today
and 1 month ago."""
import datetime

today =
datetime.date.today()
one_month_ago = today -
datetime.timedelta(days=30

)

print(today)
orint(one_month_ago)

OpenAl Codex, 2021




Code Generation

s Before: tasks with clear
denotations

= What about general-purpose
code generation?

= Denotation: program output?

= Less alighment between NL
and LF

"""Compute dates for today

and 1T month ago."""

datetime.date.today
one_month_ago = today -
datetime.timedelta(days=30

)

print(today)
orint(one_month_ago)

OpenAl Codex, 2021




Code Generation

s Before: tasks with clear
denotations

= What about general-purpose
code generation?

/* Increment the score by 1
point, every 500ms. */
var scorelncrement =

= Denotation: program output?

setInterval(function() {
= Less alignment between NL score++;
scoreDisplay.innerHTML =
and LF 'Score: ' + score;
}, 500);

= What is a “denotation” isn’t

always clear OpenAl Codex, 2021



Evaluation

= Code doesn’t always produce a single, evaluable output
= Instead: write test cases, report pass@k

= Labor-intensive: requires programming expertise for annotation
(HumanEval only contains 164 problems)

def solution(lst):
"""Given a non-empty list of integers, return the sum of all of the odd elements
that are in even positions.

Examples

solution([5, 8, 7, 1]) ==>12
solution([3, 3, 3, 3, 3]) ==9
solution([30, 13, 24, 321]) ==>0

return sum(lst[i] for i in range(9,len(lst)) if i % 2 == 0 and 1st[i] % 2 == 1)
HumanEval, Chen et al. 2021



Evaluation

= Any automated benchmark has to focus on a subset of

problems

Here is a sample dataframe:

df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
I'd like to add inverses of each existing column to the dataframe and name
them based on existing column names with a prefix, e.g. inv_A is an inverse of
column A and so on.

The resulting dataframe should look like so:

result = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "inv_A": [1/1,
1/2, 1/3], “inv_B": [1/4, 1/5, 1/6]})

Obviously there are redundant methods like doing this in a loop, but there
should exist much more pythonic ways of doing it ... [omitted for brevity]

Problem

A:

<code> Code Context
import pandas as pd

df = pd.DataFrame({"A": [1, 2, 3],"B": [4, 5, 6]})
</code>

BEGIN SOLUTION

<code>

[insert]

</code>

END SOLUTION

<code>

print(result)

\:/code>

~

J

Reference Solution

result = df.join(df.apply(lambda x: 1/x).add_prefix(“inv_"))

Prompt Language Models (GPT-3 Codex)
—_—

¥

Predict

Replace [insert] in the code context with
following predicted code snippets

result = df.div(1).add_prefix("inv_")

lExecute to evaluate

Multi-criteria Execution-based Evaluation
Test case 1

ans = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6],
"inv_A": [1/1, 1/2, 1/3],
“inv_B": [1/4, 1/5, 1/6]})
Test case 2
df,ans = ...[omit for brevity]

pd.testing.assert_frame_equal(result, ans)

Surface-form constraints
\ for and while should not appear in Syntax Tree

df = pd.DatafFrame({"A": [1, 2, 3], "B": [4, 5, 6]})

DS-1000, Lai et al. 2022

4

v

Correct/wrong?

Sample real problems
from StackOverflow

Collect reference
solutions and setting up
environment for testing

Expert-written test cases

Evaluate adherence to
surface form constraints
(e.g., that a library must
be used)



Approaches

= Multi-task learning: masking, tagging, generation
= Train on a large amount of code, some annotated with natural
language

PLs | W/NL  W/oNL Identifier
< ( Ruby 49,009 110,551 32.08%
E JavaScript | 125,166 1,717,933 19.82%
Masked Input Masked Input §< Go 319,132 379,103 19.32%
# recursive # recursive binary search & | Python 453,772 657,030  30.02%
binarySearch (arr, left, right, x): 2| Java 457,381  1,070271  25.76%
= e O pHP 525357 398,058  23.44%
5 C IM - 24.94%
O{ CSharp 228,496 856,375 27.85%
Output Qutput Total 3,158,313 5,189,321 8,347,634
binary search right ) // binarySearch arr
[ mid ] left right x mid
(a) Masked Span Prediction (c) Masked Identifier Prediction
A

-
h A

# recursive binary search

Bimodal Input
# recursive binary search
binarySearch (arr, left, right, x):
mid = (left + right) //
arr [mid] == x:
mid

/
i
I

§t010100100

binarySearch(arr, left, right, x):
mid = (left + right) //
arr[mid] == x:
mid

(b) Identifier Tagging (d) Bimodal Dual Generation CodeT5 Wa ng et al. 2021




Automated Software Development?

MetaGPT Agents Collaboration with Developing SOP

Human interaction

Planning
Product Manager

‘ @ Requirement document

=11
System design =
Requirement Analysis . e y g ‘s
£
Architect 1 ;:.‘n
Architectural Design o
— o
©- E
%)
System Design Project Manager =
%

., :
2 L
% s :

0 \
z, . :
/?o ‘. ' :
%o& . Testing = U :
(@) * .
“ ‘4 Acceptance Check QA Engineer ¥

~

1/5 One-line requirement
Define Write a classic and
simple Flappy Bird
. game.
2/5 g
Design
Boss makes acceptance
check and payment
— Pretty good ! I can
3/5 || directly use the
Plan&Code interface and
keyboard to play
~h Flappy Bird.
4/5 @,
Check -

N

MetaGPT, Hong et al. 2023



Modularity



Neural Module Networks

= Task: visual question answering
= Cast it as a semantic parsing task
= What is a denotation?

= Tie predicates in LF to composable neural modules

“Is there a red shape
above a circle?”

Andreas et al. 2015



Neural Module Networks

=« Determine layout from sentence
s Option 1: deterministic layouts — requires gold annotation
s Get dependency parse for input question
s Construct layout of modules given this parse

= Option 2: latent layouts — requires RL

how many different lights
in various different shapes
and sizes?

« Compose modules and run inference / training (end-to-end)

Attention Measurement Classification

attend : Image — Attention measure : Attention — Label classify : Image x Attention — Label

measure[count](
attend[light])

attend[dog] classify[where]

FC RelLU FC Softmax

Re-attention Combination

re-attend : Attention — Attention combine : Attention x Attention — Attention

four (four)

re-attend[above] combine[except]
-—v = — I = H = H —
@) Andreas et al. 2015, Hu et al. 2017



Neural Module Networks

= Benefits: interpretability and controllability
= You know what modules are being used

= You know how they are composed

= You know the intermediate outputs of each module
= Problems
= Requires formalizing the set of modules

= Doesn’t work very well, empirically

Andreas et al. 2015, Hu et al. 2017



Code as a Reasoning Bottleneck

= Taking advantage of general-purpose code models
= Formal representation is given to us!
= Need very little paired data (use in-context learning)
= Still interpretable and controllable
= Some drawbacks:
= Still requires choosing a few modules

= Particular choice of in-context examples and modules can
limit reasoning



Code as a Reasoning Bottleneck

Question:

Codex
(Few—Shot Prompting)

Code Generation

/s the carriage to the
right of a horse?

—

In-Context Examples

# Image 1: On which side of

the picture is the rug?

img = open_image("Imagel.jpg")

rug_pos_x, rug_pos_y =

get_pos(img, "rug")

if rug_pos_x < (LEFT+RIGHT)/2:
answer = "left"

else:

answer = "right”

horse_exists = "Is there
a horse?")

answer = "no”

query(img,

if horse_exists == "yes":
carriage_pos_x,carriage_pos_y =
get_pos(img, "carriage”)
horse_pos_x, horse_pos_y =
get_pos(img, "horse")

if carriage_pos_x > horse_pos_x:

answer = "yes’’

!
Execute Code

query(img, “Is there a horse?”)

- Captions:

1. a po/ice horse pulled by a fire policeman in a

f wegon '

2. 'man riding a horse drawn carriage pulling horse

: next to a offcer 1 Answer:
""""""""""""""" Fetirns wyags T No

get_ pos(lmg,“carrlage”) get_ pos(lmg,‘horse”)

returns 5, 11 returns 12, 11

N\

carriage_pos_x < horse_pos_x

VisProg, Gupta and Kembhavi 2023, CVPR
Subramanian et al. 2023, ACL
ViperGPT, Suris et al. 2023



Code as a Reasoning Bottleneck

IMAGE: Prediction: IMAGE®

Instruction: Replace desert with lush green grass

Program:

OBJO@=Seg(image=IMAGE)

OBJ1=Select(image=IMAGE, object=0BJ@, query=‘desert’, category=None)
IMAGE@=Replace(image=IMAGE, object=0BJ1, prompt=‘lush green grass’)
RESULT=IMAGE®

VisProg, Gupta and Kembhavi 2023, CVPR
Subramanian et al. 2023, ACL
ViperGPT, Suris et al. 2023



Code as a Reasoning Bottleneck

Query: Return the two kids that are furthest from the woman right before she hugs the girl

def execute_command(video):
video_segment = VideoSegment(video)
hug_detected = False
for i, frame in enumerate(video_segment.frame_iterator()):
if frame.exists('"woman") and frame.exists("girl") and \

» hug_detected=True
» frame=

» kid patches—

frame.simple_query("Is the woman hugging the girl?") == "yes":
hug_detected = True
break sort(...distance..

if hug_detected: » kid_ atches-

index_frame = i - 1
frame_of_interest = ImagePatch(video_segment, index_frame)
woman_patches = frame_of_interest.find("woman")
woman_patch = woman_patches[@]
kid_patches = frame_of_interest.find("kid")
kid_patches.sort(key=lambda kid: distance(kid, woman_patch))
kid_patch_1 = kid_patches[-1]
kid_patch_2 = kid_patches[-2]
return [kid_patch_1, kid_patch_2]

VisProg, Gupta and Kembhavi 2023, CVPR
Subramanian et al. 2023, ACL
ViperGPT, Suris et al. 2023



