
Natural Language Processing

Syntax and Parsing
Dan Klein – UC Berkeley

Syntax

Parse Trees

The move followed a round of similar increases by other lenders,
reflecting a continuing decline in that market

Phrase Structure Parsing
 Phrase structure parsing

organizes syntax into
constituents or brackets

 In general, this involves
nested trees

 Linguists can, and do,
argue about details

 Lots of ambiguity

 Not the only kind of
syntax…

new art critics write reviews with computers

PP

NP

NP

N’

NP

VP

S

Constituency Tests

 How do we know what nodes go in the tree?

 Classic constituency tests:
 Substitution by proform
 Question answers
 Semantic gounds

 Coherence
 Reference
 Idioms

 Dislocation
 Conjunction

 Cross-linguistic arguments, too

The children ate the cake with a spoon

Conflicting Tests
 Constituency isn’t always clear

 Units of transfer:
 think about ~ penser à
 talk about ~ hablar de

 Phonological/morphological reduction:
 I will go I’ll go
 I want to go I wanna go
 a le centre au centre

 Coordination
 He went to and came from the store.

La vélocité des ondes sismiques

Structure Depth

 Q: Do we model deep vs surface structure?

[Example: Johnson 02]

[Example: Johnson 02]

[Example: Cai et al 11]

Ambiguities

Parts-of-Speech (English)
 One basic kind of linguistic structure: syntactic word classes

Open class (lexical) words

Closed class (functional)

Nouns Verbs

Proper Common

Auxiliary

Main

Adjectives

Adverbs

Prepositions

Particles

Determiners

Conjunctions

Pronouns

… more

… more

IBM

Italy

cat / cats

snow
see

registered

can

had

yellow

slowly

to with

off up

the some

and or

he its

Numbers

122,312

one

Part-of-Speech Ambiguity

 Words can have multiple parts of speech

 Two basic sources of constraint:
 Grammatical environment
 Identity of the current word

 Many more possible features:
 Suffixes, capitalization, name databases (gazetteers), etc…

Fed raises interest rates 0.5 percent

NNP NNS NN NNS CD NN
VBN VBZ VBP VBZ
VBD VB

Why POS Tagging?
 Historically useful in and of itself (more than you’d think)

 Text-to-speech: record, lead
 Lemmatization: saw[v] see, saw[n] saw
 Quick-and-dirty NP-chunk detection: grep {JJ | NN}* {NN | NNS}

 Historically also useful as a pre-processing step for parsing
 Less tag ambiguity means fewer parses
 However, some tag choices are better decided by parsers

DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted …

DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments …

IN

VDN

Classical NLP: Parsing

 Write symbolic or logical rules:

 Use deduction systems to prove parses from words
 Minimal grammar on “Fed raises” sentence: 36 parses
 Simple 10-rule grammar: 592 parses
 Real-size grammar: many millions of parses

 This scaled very badly, didn’t yield broad-coverage tools

Grammar (CFG) Lexicon

ROOT S

S NP VP

NP DT NN

NP NN NNS

NN interest

NNS raises

VBP interest

VBZ raises

…

NP NP PP

VP VBP NP

VP VBP NP PP

PP IN NP

Ambiguities: PP Attachment

Attachments

 I cleaned the dishes from dinner

 I cleaned the dishes with detergent

 I cleaned the dishes in my pajamas

 I cleaned the dishes in the sink

Syntactic Ambiguities I

 Prepositional phrases:
They cooked the beans in the pot on the stove with handles.

 Particle vs. preposition:
The puppy tore up the staircase.

 Complement structures
The tourists objected to the guide that they couldn’t hear.
She knows you like the back of her hand.

 Gerund vs. participial adjective
Visiting relatives can be boring.
Changing schedules frequently confused passengers.

Syntactic Ambiguities II
 Modifier scope within NPs

impractical design requirements
plastic cup holder

 Multiple gap constructions
The chicken is ready to eat.
The contractors are rich enough to sue.

 Coordination scope:
Small rats and mice can squeeze into holes or cracks in the wall.

Inaccessible Ambiguities

 Inaccessible ambiguities: most analyses are shockingly bad
(meaning, they don’t have an interpretation you can get
your mind around)

 Unknown words and new usages
 Solution: We need mechanisms to focus attention on the

best ones, probabilistic techniques do this

This analysis corresponds to
the correct parse of

“This will panic buyers ! ”

PCFGs

Probabilistic Context-Free Grammars

 A context-free grammar is a tuple <N, T, S, R>
 N : the set of non-terminals

 Phrasal categories: S, NP, VP, ADJP, etc.
 Parts-of-speech (pre-terminals): NN, JJ, DT, VB

 T : the set of terminals (the words)
 S : the start symbol

 Often written as ROOT or TOP
 Not usually the sentence non-terminal S

 R : the set of rules
 Of the form X Y1 Y2 … Yk, with X, Yi N
 Examples: S NP VP, VP VP CC VP
 Also called rewrites, productions, or local trees

 A PCFG adds:
 A top-down production probability per rule P(Y1 Y2 … Yk | X)

Treebank Sentences

Treebank Grammars

 Need a PCFG for broad coverage parsing.
 Can take a grammar right off the trees (doesn’t work well):

 Better results by enriching the grammar (e.g., lexicalization).
 Can also get state-of-the-art parsers without lexicalization.

ROOT S 1

S NP VP . 1

NP PRP 1

VP VBD ADJP 1

…..

PLURAL NOUN

NOUNDET
DET

ADJ

NOUN

NP NP

CONJ

NP PP

Treebank Grammar Scale

 Treebank grammars can be enormous
 As FSAs, the raw grammar has ~10K states, excluding the lexicon
 Better parsers usually make the grammars larger, not smaller

NP

Chomsky Normal Form

 Chomsky normal form:
 All rules of the form X Y Z or X w
 In principle, this is no limitation on the space of (P)CFGs

 N-ary rules introduce new non-terminals

 Unaries / empties are “promoted”
 In practice it’s kind of a pain:

 Reconstructing n-aries is easy
 Reconstructing unaries is trickier
 The straightforward transformations don’t preserve tree scores

 Makes parsing algorithms simpler!

VP

[VP VBD NP]

VBD NP PP PP

[VP VBD NP PP]

VBD NP PP PP

VP

CKY Parsing

A Recursive Parser

 Will this parser work?
 Why or why not?
 Memory requirements?

bestScore(X,i,j)

if (j = i+1)

return tagScore(X,s[i])

else

return max score(X->YZ) *

bestScore(Y,i,k) *

bestScore(Z,k,j)

A Memoized Parser

 One small change:

bestScore(X,i,j)

if (scores[X][i][j] == null)

if (j = i+1)

score = tagScore(X,s[i])

else

score = max score(X->YZ) *

bestScore(Y,i,k) *

bestScore(Z,k,j)

scores[X][i][j] = score

return scores[X][i][j]

 Can also organize things bottom-up

A Bottom-Up Parser (CKY)

bestScore(s)

for (i : [0,n-1])

for (X : tags[s[i]])

score[X][i][i+1] =

tagScore(X,s[i])

for (diff : [2,n])

for (i : [0,n-diff])

j = i + diff

for (X->YZ : rule)

for (k : [i+1, j-1])

score[X][i][j] = max score[X][i][j],

score(X->YZ) *

score[Y][i][k] *

score[Z][k][j]

Y Z

X

i k j

Unary Rules

 Unary rules?

bestScore(X,i,j,s)

if (j = i+1)

return tagScore(X,s[i])

else

return max max score(X->YZ) *

bestScore(Y,i,k) *

bestScore(Z,k,j)

max score(X->Y) *

bestScore(Y,i,j)

CNF + Unary Closure

 We need unaries to be non-cyclic
 Can address by pre-calculating the unary closure
 Rather than having zero or more unaries, always have

exactly one

 Alternate unary and binary layers
 Reconstruct unary chains afterwards

NP

DT NN

VP

VBD
NP

DT NN

VP

VBD NP

VP

S

SBAR

VP

SBAR

Alternating Layers

bestScoreU(X,i,j,s)

if (j = i+1)

return tagScore(X,s[i])

else

return max max score(X->Y) *

bestScoreB(Y,i,j)

bestScoreB(X,i,j,s)

return max max score(X->YZ) *

bestScoreU(Y,i,k) *

bestScoreU(Z,k,j)

Learning PCFGs

Treebank PCFGs
 Use PCFGs for broad coverage parsing
 Can take a grammar right off the trees (doesn’t work well):

ROOT S 1

S NP VP . 1

NP PRP 1

VP VBD ADJP 1

…..

F1Model

72.0Baseline

[Charniak 96]

Conditional Independence?

 Not every NP expansion can fill every NP slot
 A grammar with symbols like “NP” won’t be context-free
 Statistically, conditional independence too strong

Non-Independence
 Independence assumptions are often too strong.

 Example: the expansion of an NP is highly dependent on the
parent of the NP (i.e., subjects vs. objects).

 Also: the subject and object expansions are correlated!

11%
9%

6%

NP PP DT NN PRP

9% 9%

21%

NP PP DT NN PRP

7%
4%

23%

NP PP DT NN PRP

All NPs NPs under S NPs under VP

Grammar Refinement

 Example: PP attachment

Grammar Refinement

 Structure Annotation [Johnson ’98, Klein&Manning ’03]
 Lexicalization [Collins ’99, Charniak ’00]
 Latent Variables [Matsuzaki et al. 05, Petrov et al. ’06]

Structural Annotation

The Game of Designing a Grammar

 Annotation refines base treebank symbols to
improve statistical fit of the grammar
 Structural annotation

Lexicalization

 Annotation refines base treebank symbols to improve
statistical fit of the grammar
 Structural annotation [Johnson ’98, Klein and Manning 03]

 Head lexicalization [Collins ’99, Charniak ’00]

The Game of Designing a Grammar

Problems with PCFGs

 If we do no annotation, these trees differ only in one rule:
 VP VP PP
 NP NP PP

 Parse will go one way or the other, regardless of words
 We addressed this in one way with unlexicalized grammars (how?)
 Lexicalization allows us to be sensitive to specific words

Problems with PCFGs

 What’s different between basic PCFG scores here?
 What (lexical) correlations need to be scored?

Lexicalized Trees

 Add “head words” to
each phrasal node
 Syntactic vs. semantic

heads
 Headship not in (most)

treebanks
 Usually use head rules,

e.g.:
 NP:

 Take leftmost NP
 Take rightmost N*
 Take rightmost JJ
 Take right child

 VP:
 Take leftmost VB*
 Take leftmost VP
 Take left child

Lexicalized PCFGs?
 Problem: we now have to estimate probabilities like

 Never going to get these atomically off of a treebank

 Solution: break up derivation into smaller steps

Lexical Derivation Steps
 A derivation of a local tree [Collins 99]

Choose a head tag and word

Choose a complement bag

Generate children (incl. adjuncts)

Recursively derive children

Lexicalized CKY

bestScore(X,i,j,h)

if (j = i+1)

return tagScore(X,s[i])

else

return

max max score(X[h]->Y[h] Z[h’]) *

bestScore(Y,i,k,h) *

bestScore(Z,k,j,h’)

max score(X[h]->Y[h’] Z[h]) *

bestScore(Y,i,k,h’) *

bestScore(Z,k,j,h)

Y[h] Z[h’]

X[h]

i h k h’ j

k,h’,X->YZ

(VP->VBD)[saw] NP[her]

(VP->VBD...NP)[saw]

k,h’,X->YZ

Results

 Some results
 Collins 99 – 88.6 F1 (generative lexical)
 Charniak and Johnson 05 – 89.7 / 91.3 F1 (generative

lexical / reranked)
 Petrov et al 06 – 90.7 F1 (generative unlexical)
 McClosky et al 06 – 92.1 F1 (gen + rerank + self-train)

 However
 Bilexical counts rarely make a difference (why?)
 Gildea 01 – Removing bilexical counts costs < 0.5 F1

Latent Variable PCFGs

 Annotation refines base treebank symbols to improve
statistical fit of the grammar
 Parent annotation [Johnson ’98]
 Head lexicalization [Collins ’99, Charniak ’00]
 Automatic clustering?

The Game of Designing a Grammar

Latent Variable Grammars

Parse Tree
Sentence Parameters

...

Derivations

Forward

Learning Latent Annotations

EM algorithm:

X1

X2
X7X4

X5 X6X3

He was right

.

 Brackets are known
 Base categories are known
 Only induce subcategories

Just like Forward-Backward for HMMs.
Backward

Refinement of the DT tag

DT

DT-1 DT-2 DT-3 DT-4

Hierarchical refinement

Hierarchical Estimation Results

74

76

78

80

82

84

86

88

90

100 300 500 700 900 1100 1300 1500 1700

Total Number of grammar symbols

P
a

rs
in

g
ac

cu
ra

cy
 (F

1
)

F1Model

87.3Flat Training

88.4Hierarchical Training

Refinement of the , tag
 Splitting all categories equally is wasteful:

Adaptive Splitting

 Want to split complex categories more

 Idea: split everything, roll back splits which
were least useful

Adaptive Splitting Results

F1Model

88.4Previous

89.5With 50% Merging

0

5

10

15

20

25

30

35

40

N
P

V
P P
P

A
D

V
P S

A
D

JP

S
B

A
R Q
P

W
H

N
P

P
R

N

N
X

S
IN

V

P
R

T

W
H

P
P

S
Q

C
O

N
JP

F
R

A
G

N
A

C

U
C

P

W
H

A
D

V
P

IN
T

J

S
B

A
R

Q

R
R

C

W
H

A
D

JP X

R
O

O
T

LS
T

Number of Phrasal Subcategories

Number of Lexical Subcategories

0

10

20

30

40

50

60

70

N
N

P JJ
N

N
S

N
N

V
B

N
R

B
V

B
G

V
B

V
B

D
C

D IN
V

B
Z

V
B

P D
T

N
N

P
S

C
C

JJ
R

JJ
S :

P
R

P
P

R
P

$
M

D
R

B
R

W
P

P
O

S
P

D
T

W
R

B
-L

R
B

- .
E

X
W

P
$

W
D

T
-R

R
B

- ''
F

W
R

B
S

T
O $

U
H , `̀

S
Y

M R
P LS
#

Learned Splits

 Proper Nouns (NNP):

 Personal pronouns (PRP):

Sept.Nov.Oct.NNP-14

JamesRobertJohnNNP-12

L.E.J.NNP-2

PetersNoriegaBushNNP-1

WallSanNewNNP-15

StreetFranciscoYorkNNP-3

IHeItPRP-0

theyheitPRP-1

himthemitPRP-2

 Relative adverbs (RBR):

 Cardinal Numbers (CD):

higherlowerfurtherRBR-0

MorelessmoreRBR-1

laterEarlierearlierRBR-2

ThreetwooneCD-7

198819901989CD-4

trillionbillionmillionCD-11

100501CD-0

31301CD-3

345878CD-9

Learned Splits

Latent Variable Grammars

Parse Tree
Sentence Parameters

...

Derivations

Coarse-to-Fine Inference
 Example: PP attachment

?????????

Hierarchical Pruning

…VPNPQP…coarse:

split in two: …VP2VP1NP2NP1QP2QP1…

…VP4VP3VP2VP1NP4NP3NP2NP1QP4QP3QP1QP1…split in four:

split in eight: ……………………………………………

Bracket Posteriors

Parse Reranking

 Assume the number of parses is very small
 We can represent each parse T as a feature vector (T)

 Typically, all local rules are features
 Also non-local features, like how right-branching the overall tree is
 [Charniak and Johnson 05] gives a rich set of features

Natural Language Processing

Syntax and Parsing
Dan Klein – UC Berkeley

Other Syntactic Models

Shift-Reduce Parsers

 Another way to derive a tree:

 Parsing
 No useful dynamic programming search
 Can still use beam search [Ratnaparkhi 97]

Other Transformations
 Example: Left-Corner Transforms, Tetra-Tags

K-Best Parsing

[Huang and Chiang 05, Pauls, Klein, Quirk 10]

Dependency Parsing

 Lexicalized parsers can be seen as producing dependency trees

 Each local binary tree corresponds to an attachment in the dependency
graph

questioned

lawyer witness

the the

Dependency Parsing

 Pure dependency parsing is only cubic [Eisner 99]

 Some work on non-projective dependencies
 Common in, e.g. Czech parsing
 Can do with MST algorithms [McDonald and Pereira 05]

Y[h] Z[h’]

X[h]

i h k h’ j

h h’

h

h k h’

Data-oriented parsing:

 Rewrite large (possibly lexicalized) subtrees in a single step

 Formally, a tree-insertion grammar
 Derivational ambiguity whether subtrees were generated atomically

or compositionally
 Most probable parse is NP-complete

TIG: Insertion

Tree-adjoining grammars

 Start with local trees
 Can insert structure

with adjunction
operators

 Mildly context-
sensitive

 Models long-distance
dependencies
naturally

 … as well as other
weird stuff that CFGs
don’t capture well
(e.g. cross-serial
dependencies)

TAG: Long Distance

CCG Parsing

 Combinatory
Categorial Grammar
 Fully (mono-)

lexicalized grammar
 Categories encode

argument sequences
 Very closely related

to the lambda
calculus (more later)

 Can have spurious
ambiguities (why?)

