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1990s-2010s: Statistical Machine Translation

 SMT was a huge research field
* The best systems were extremely complex
* Hundreds of important details we haven’t mentioned here

Systems had many separately-designed subcomponents

Lots of feature engineering
* Need to design features to capture particular language phenomena

* Require compiling and maintaining extra resources
+ Like tables of equivalent phrases

Lots of human effort to maintain
» Repeated effort for each language pair!



Neural Machine Translation



(dramatic reenactment)







What is Neural Machine Translation?

* Neural Machine Translation (NMT) is a way to do Machine
Translation with a single neural network

* The neural network architecture is called sequence-to-sequence
(aka seq2seq) and it involves two RNNs.
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Sequence-to-sequence is versatile!

* Sequence-to-sequence is useful for more than just MIT

 Many NLP tasks can be phrased as sequence-to-sequence:
* Summarization (long text - short text)
* Dialogue (previous utterances - next utterance)
» Parsing (input text & output parse as sequence)
* Code generation (natural language - Python code)



Neural Machine Translation (NMT)

* The sequence-to-sequence model is an example of a
Conditional Language Model.

» Language Model because the decoder is predicting the
next word of the target sentence y

» Conditional because its predictions are also conditioned on the source
sentence x

« NMT directly calculates P(y|z) :

P(y|z) = P(yi|x) P(y2|y1, x) P(ysly1,y2, ) ... P(yr|y1,- .., y7—1,T)

\ J
Y

Probability of next target word, given
target words so far and source sentence x

* Question: How to train a NMT system?

* Answer: Get a big parallel corpus...



Encoder RNN

Training a Neural Machine Translation system
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Seq2seq is optimized as a single system.
Backpropagation operates “end-to-end”.
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NMT Decoding



Greedy decoding

 We saw how to generate (or “decode”) the target sentence by
taking argmax on each step of the decoder

pie <END>

<START> he

* Thisis greedy decoding (take most probable word on each step)
* Problems with this method?



Problems with greedy decoding

* Greedy decoding has no way to undo decisions!
* Input: il a m’entarté (he hit me with a pie)
- >he
- > hehit
* > hehita (whoops! no going back now...)

* How to fix this?



Exhaustive search decoding

* Ideally we want to find a (length T) translation y that maximizes
P(y|z) = P(yi|z) P(y2ly1, =) P(ysly1, y2, ) - - -, P(yrlys, - - -, yr—1,7)

T
= [ Pwelyr,- - pe-1,2)
t=1

* We could try computing all possible sequences y

» This means that on each step t of the decoder, we’re tracking V* possible
partial translations, where Vis vocab size

» This O(VT) complexity is far too expensivel



Beam search decoding

Core idea: On each step of decoder, keep track of the kK most
probable partial translations (which we call hypotheses)
* kisthe beam size (in practice around 5 to 10)

A hypothesis ¥1,--.,Yt has a score which is its log probability:

t
score(ys, . .-, ) = log Pom(y1, - ., welz) = > log Pum(vilys, - - -, yi1, )
=1

» Scores are all negative, and higher score is better
» We search for high-scoring hypotheses, tracking top k on each step

Beam search is not guaranteed to find optimal solution

But much more efficient than exhaustive search!



Beam search decoding: example

Beam size = k = 2. Blue numbers = score(y, .- ..

<START>

Calculate prob
dist of next word

1yt) == Z]ogPLM(yi|yla' vie 7.%‘—1733)

=1



Beam search decoding: example

Beam size = k = 2. Blue numbers = score(y, .- ..

-0.7 = log P, (he| <START>)
he

<START>

-0.9 =log P (/| <START>)

/

Take top k words
and compute scores

ye) = log Pom(uilys, - -

=1
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Beam search decoding: example

Beam size =k = 2. Blue numbers = score(ys,...,y:) = Y log Prm(¥ilvn, - - -, yi-1, )

=1
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Of these k? hypotheses,
just keep k with highest scores




Beam search decoding: example

Beam size =k = 2. Blue numbers = score(ys,...,y:) = Y log Prm(¥ilvn, - - -, yi-1, )

=1
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top k next words and calculate scores




Beam search decoding: example

Beam size = k = 2. Blue numbers = score(ys,...,4:) = > _log Pum(uilys, - - -
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Beam search decoding: example
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Beam search decoding: example

Beam size = k = 2. Blue numbers = score(y, .- ..
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Beam search decoding: example
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Beam search decoding: example
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Beam search decoding: example

7yt) = ZlogPLM(yi|y1a s 7%—1733)
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This is the top-scoring hypothesis!




Beam search decoding: example

Beam size = k = 2. Blue numbers = score(y, .- ..
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Backtrack to obtain the full hypothesis




Beam search decoding: stopping criterion

In greedy decoding, usually we decode until the model produces
a <END> token

* For example: <START> he hit me with a pie <END>

In beam search decoding, different hypotheses may produce
<END> tokens on different timesteps

* When a hypothesis produces <END>, that hypothesis is complete.

e Place it aside and continue exploring other hypotheses via beam search.

Usually we continue beam search until:
» We reach timestep T (where T is some pre-defined cutoff), or
» We have at least n completed hypotheses (where n is pre-defined cutoff)



Beam search decoding: finishing up

We have our list of completed hypotheses.

How to select top one with highest score?

Each hypothesis Y1, ---,Yt on our list has a score

t
score(y1,...,¥yt) = log PLm(y1, ..., ye|x) = ZlogPLM(yz-Iyl, o105 Wi—1y85)

=1

Problem with this: longer hypotheses have lower scores

Fix: Normalize by length. Use this to select top one instead:

¢
1
7 ZIOgPLM(yi’yla s Yim1,T)

=1
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Attention



Encoder RNN

Sequence-to-sequence: the bottleneck problem

Encoding of the
source sentence.

Target sentence {output)

A
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he hit me with a pie <END>

il a m’  entarté <START> he hit me with a pie

\ J
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Source sentence (input)

Problems with this architecture?
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Encoder RNN

Sequence-to-sequence: the bottleneck problem

Encoding of the
source sentence.
This needs to capture all Target sentence {output)
information about the p A \
source sentence.

Information bottleneck! ae s e  With @ pie. <END>

~

il a m’  entarté <START> he hit me with a pie
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Y

Source sentence (input)
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Attention

* Attention provides a solution to the bottleneck problem.

* Core idea: on each step of the decoder, use direct connection to
the encoder to focus on a particular part of the source sequence

/\M )

* First we will show via diagram (no equations), then we will show
with equations



Attention

Encoder

Sequence-to-sequence with attention

dot product

scores

il a m’  entarté <START>

Source sentence {input)
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Attention
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Attention

Encoder

Sequence-to-sequence with attention

scores

dot product
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Source sentence {input)
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Attention

Encoder

Sequence-to-sequence with attention

dot product

scores

il a m’  entarté <START>
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Source sentence {input)
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Attention
distribution

Attention

Encoder

Sequence-to-sequence with attention

scores

RNN

mostly focusing on the first
{ / encoder hidden state (“he”)

On this decoder timestep, we're

Take softmax to turn the scores
into a probability distribution

il a m’  entarté <START>
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Source sentence {input)
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Attention

Attention

Encoder

Sequence-to-sequence with attention

Attention Use the attention distribution to take a
output weighted sum of the encoder hidden
< states.
= { H P The attention output mostly contains
g = T T information from the hidden states that
received high attention.

scores

RNN

il a m’  entarté <START>
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Source sentence {input)
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Attention

Attention

Encoder

Sequence-to-sequence with attention

distribution

scores

RNN

Attention
output

il a m’  entarté

J

Source sentence {input)

Concatenate attention output
with decoder hidden state, then
use to compute y; as before

<START>
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Sequence-to-sequence with attention
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Attention
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Sequence-to-sequence with attention
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Attention: in equations

« We have encoder hidden states h,...,hy € R?
« Ontimestep t, we have decoder hidden state s; € R"
We get the attention scores e’ for this step:

e! =[s{hy,...,si hy] € RY

» We take softmax to get the attention distribution ol for this step (thisis a
probability distribution and sums to 1)

o' = softmax(e’) € RY
. Weuse o totake a weighted sum of the encoder hidden states to get the
attention output a; N
a; = Zaghi c R"
i=1

» Finally we concatenate the attention output a; with the decoder hidden
state s+ and proceed as in the non-attention seq2seq model

lay; s¢] € R2h



Impact of Attention on Long Sequence Generation

BLEU score
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(Badhanau et al., 2015) Neural Machine Translation by Jointly Learning to Align and Translate



Attention is great

* Attention significantly improves NMT performance
* It’s very useful to allow decoder to focus on certain parts of the source

e Attention solves the bottleneck problem
 Attention allows decoder to look directly at source; bypass bottleneck

* Attention helps with vanishing gradient problem
* Provides shortcut to faraway states

« Attention provides some interpretability
» By inspecting attention distribution, we can see

hit
me
with

pie

what the decoder was focusing on i

m

« We get (soft) alignment for free! a

 This is cool because we never explicitly trained m’
an alignment system entarté

» The network just learned alignment by itself




Attention vs Alignment

Attention activations above 0.1
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Attention is a general Deep Learning technique

* We've seen that attention is a great way to improve the
sequence-to-sequence model for Machine Translation.

 However: You can use attention in many architectures
(not just seq2seq) and many tasks (not just MT)

* More general definition of attention:

* Given a set of vector volues, and a vector query, attention is a
technigue to compute a weighted sum of the values,
dependent on the query.

* We sometimes say that the query attends to the values.

* For example, in the seg2seq + attention model, each decoder
hidden state (query) attends to all the encoder hidden states
(values).




Attention is a general Deep Learning technique

More general definition of attention:

Given a set of vector values, and a vector query, attention is a
technique to compute a weighted sum of the values, dependent on
the query.

Intuition:

* The weighted sum is a selective summary of the information
contained in the values, where the query determines which
values to focus on.

* Attention is a way to obtain a fixed-size representation of an
arbitrary set of representations (the values), dependent on
some other representation (the query).




There are several attention variants

« We have some values hq,...,hy € R* and a guery s € R%
e Attention always involves: There are
1. Computing the attention scores e € RY - multiple ways
to do this

2. Taking softmax to get attention distribution o:

o = softmax(e) € RY

3. Using attention distribution to take weighted sum of values:

N
a= Zaihi € R%

=1
thus obtaining the attention output a (sometimes called the
context vector)



You'll think about the relative

Atte ntion vad ria nts advantages/disadvantages of these in Assignment 4!

There are several ways you can compute e € RY fromh,...,hy € R®
and s € R% :

» Basic dot-product attention: e; = sThi eR

* Note: this assumes d; = d-
« This is the version we saw earlier

« Multiplicative attention: e; = s’ Wh; € R
« Where W € R%*% s a weight matrix

« Additive attention: e; = v tanh(Wih; + Wis) € R

« Where W; € R4>d1_ W, ¢ R¥*d2 gre weight matrices and v € R%
is a weight vector.

* d, (the attention dimensionality) is a hyperparameter

More information:
“Deep Learning for NLP Best Practices”, Ruder, 2017. | {//ruder.io/deep-learning-n i
“"Massive Exploration of Neural I\/Iachlne Translation Archltectures Brltz et aI 2017




Transformers



Input Thinking Machines
Transformer

Embedding i L LT [ ] x. [T
In lieu of an RNN, use ONLY
attention! Queries q1 D:Ij qz2 I:I:'j
Keys
High throughput &
expressivity: compute queries, Values vi [ [] v. [

keys and values as (different)

linear transformations of the

. Score qi e ki= qr e ko =
input.

Divide by 8 ( Vdx )
Attention weights are queries
* keys; outputs are sums of Softmax
weighted values.

Softmax
X v [
Value
Attention(Q, K, V) =
OKT Sum z: [T zz [T
softmax( 1%

\/ dk (Vaswani et al., 2017) Attention is All You Need

Figure: http://jalammar.github.io/illustrated-transformer/




Qutput
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Transformer Architecture
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Some Transformer Concerns

Problem: Bag-of-words representation of the input.
Remedy: Position embeddings are added to the word embeddings.

Problem: During generation, can't attend to future words.
Remedy: Masked training that zeroes attention to future words.

Problem: Deep networks needed to integrated lots of context.
Remedies: Residual connections and multi-head attention.

Problem: Optimization is hard.
Remedies: Large mini-batch sizes and layer normalization.



Training Data



Bitexts

Where do bitexts come from?

= Careful, low level / literal translations:
organizational translation processes (eg
parliamentary proceedings), multilingual
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Back Translations

Synthesize an en-de parallel corpus by using a de-en system to translate monolingual de sentences.
e Better generating systems don't seem to matter much.

e Can help even if the de sentences are already in an existing en-de parallel corpus!

system EN—DE DE—EN
dev test | dev test
baseline 224 268 | 264 28.5

+synthetic 258 316 | 299 36.2
+ensemble 275 33.1 | 315 375
+12l reranking | 28.1 34.2 | 32.1 38.6

Table 2: English<»German translation results
(BLEU) on dev (newstest2015) and test (new-
stest2016). Submitted system in bold.

(Sennrich et al., 2015) Improving Neural Machine Translation Models with Monolingual Data
(Sennrich et al., 2016) Edinburgh Neural Machine Translation Systems for WMT 16



Subwords

The sequence of symbols that are embedded should be common enough that an embedding
can be estimated robustly for each, and all symbols have been observed during training.

Solution 1: Symbols are words with rare words replaced by UNK.
* Replacing UNK in the output is a new problem (like alignment).

e UNK in the input loses all information that might have been relevant from the rare input word
(e.g., tense, length, POS).

Solution 2: Symbols are subwords.
e Byte-Pair Encoding is the most common approach.

e Other techniques that find common subwords aren't reliably better (but are somewhat more
complicated).

e Training on many sampled subword decompositions
improves out-of-domain translations.

(Sennrich et al., 2016) Neural Machine Translation of Rare Words with Subword Units
(Kudo, 2018) Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates



vocab = {'l ow </w>' : 5, 'lower</w>':2,
'newest</w>:6, 'widest</w>':3}
def get stats(vocab):
palirs = collections.defaultdict(int)
for word, freq in vocab.items():
symbols = word.split()
for i in range(len(symbols)-1):
pairs[symbols[i],symbols[i+1]] += freq
return pairs

def merge vocab(pair, v_in):
v_out = {}
bigram = re.escape(' '.Jjolin(pair))
p = re.compile(r'(?<!\S)' + bigram + r'(2!\S)")
for word in v_in:
w out = p.sub(''.join(pair), word)

v out[w out] = v in[word]  for i in range(num merges):
- - - pairs = get_stats(vocab)
return V_Out best = max(pairs, key=pairs.get)

vocab = merge vocab(best, vocab)

(Sennrich et al., 2016) Neural Machine Translation of Rare Words with Subword Units



BPE Example

system sentence

source health research institutes
reference Gesundheitsforschungsinstitute
word-level (with back-off) | Forschungsinstiiuie

character bigrams Fo|rs|ch|un|gs|in|st|it|ut|io|ne|n
BPE Gesundheits|forsch|ungsin|stitute

Example from Rico Sennrich



Advantages of NMT

Compared to SMT, NMT has many advantages:

* Better performance
* More fluent
* Better use of context
* Better use of phrase similarities

* Asingle neural network to be optimized end-to-end
* No subcomponents to be individually optimized

* Requires much less human engineering effort
* No feature engineering
* Same method for all language pairs



Disadvantages of NMT?

Compared to SMT:

« NMTis less interpretable
* Hard to debug

« NMTis difficult to control

* For example, can’t easily specify rules or guidelines for
translation

 Safety concerns!



NMT: the biggest success story of NLP Deep Learning

Neural Machine Translation went from a fringe research activity in
2014 to the leading standard method in 2016

« 2014: First seq2seq paper published

e 2016: Google Translate switches from SMT to NMT

* This is amazing!
* SMT systems, built by hundreds of engineers over many
years, outperformed by NMT systems trained by a handful of
engineers in a few months



So is Machine Translation solved?

* Nope!
* Many difficulties remain:
* Qut-of-vocabulary words
* Domain mismatch between train and test data
* Maintaining context over longer text
* Low-resource language pairs

Further reading: “Has Al surpassed humans at translation? Not even close!”
https://www.skynettoday.com/editorials/state _of nmt




So is Machine Translation solved?

* Nope!
* Using common sense is still hard

English~ \!J ‘D s Spanish~ I_D ‘D

paper jam Mermelada de papel

Open in Google Translate Feedback




So is Machine Translation solved?

* Nope!
* NMT picks up biases in training data

Malay - detected ~ b & English~ I_El o)
Dia bekerja sebagai jururawat. She works as a nurse.
Dia bekerja sebagai pengaturcara. - He works as a programmer.

&S

Didn’t specify gender

Source: https://hackernoon.com/bias-sexist-or-this-is-the-way-it-should-be-ce1f7c¢8c683c




So is Machine Translation solved?

* Nope!
* Uninterpretable systems do strange things

Somali ~ - English ~ ff] o)
Translate from Irish

ag ag ag ag ag ag ag ag ag ag ag ag As the name of the LORD was written
ag ag ag ag ag ag ag ag ag ag ag ag in the Hebrew language, it was written
ag in the language of the Hebrew Nation
Open in Google Translate Feedback

Picture source: https://www.vice.com/en uk/article/{5npeg/why-is-google-translate-spitting-out-sinister-religious-prophecies
Explanation: https://www.skynettoday.com/briefs/google-nmt-prophecies




Summary

We learned some history of Machine Translation (MT)

* Since 2014, Neural MT rapidly
replaced intricate Statistical MT

* Seguence-to-sequence is the
architecture for NMT (uses 2 RNNs)

« Attention is a way to focus on )

particular parts of the input / 4
* Improves sequence-to-sequence a lot!



