Natural Language Processing

LLMs: Training

- Tomorrow, Friday, October 18, in BWW and virtual
- Highlights:
 - LLMs and Cognitive Systems
 - LLM agents
 - Creativity in humans and LLMs
 - Interpretability
 - Language in interaction

Agenda and link to RSVP: <u>https://docs.google.com/document/</u> <u>d/1-WJfTMfYnCwlyIsJxXoRzjRJNIJ1MyiFkcFLQNYPviE/</u>

- Language models assign a probability to a sequence of words
- We can decompose this probability using the chain rule
- We can autoregressively generate sequences from the language model by sampling from its tokenlevel probability
- We can condition on our language distribution on something else

$$p(\overline{y}) = \prod_{i=1}^{T} p(y_i | y_{0:i-1})$$

$$p(y_i|y_{0:i-1})$$

$$p(y_i|y_{0:i-1};\overline{x})$$

$$p(\overline{y})$$

- 1. Get some training data
- 2. Preprocess it (tokenize it)
- 3. Choose your architecture
- 4. Optimize a language modeling objective
- 5. Run inference!

Step 1: Get Training Data

- Transformer models are very data-hungry
- Solution: just scrape the web
- CommonCrawl: publicly available web scrape collected since 2007 containing 250B webpages, comprising 82% of tokens used to train GPT-3

Domain-specific webpages:

- Code and mathematics: Github, StackOverflow
- Academic and scientific work: arXiv, bioRxiv, PubMed
- Books: Project Gutenberg
- General knowlege: Wikipedia
- Domain-general sources:
 - Social media (reddit, Twitter)
 - News sites

10

Data Sources

The History of Large Language Models

- 1998 CPAT-Tree-Based Language Models with an Application for Text Verification in Chinese. ROCLing 1998. First use of LLM trigram I know of; 200M word corpus
- 2000 A Neural Probabilistic Language Model. Bengio, Ducharme & Vincent NIPS 2000 First neural language model built on 32 million token corpus, 31K vocab
- 2007 Large Language Models in Machine Translation. Brants, Popat, Xu, Och and **Dean**. EMNLP 2007. **2 trillion token corpus** n-gram model of up to 5-grams
- 2018 **GPT** (Radford, Narasimhan, Salimans & Sutskever) and **BERT** (Devlin, Chang, Lee & Toutanova). 3.3 billion token corpus
- 2020– 100+ billion parameter neural language models trained on > 1 trillion tokens: GPT-3, GPT-4, PaLM 2, Llama 3, Nemotron-4,

Chris Manning's COLM keynote, https://www.youtube.com/watch?v=c3N2H3Z5S3I

- 1. Seed webcrawler with initial URLs
- 2. Identify new URLs via outlinks
- 3. Download HTML representation of webpage
- 4. Scrape HTML for raw text
- 5. Postprocess texts

$$\mathcal{D} = \left\{ \overline{d}^{(i)} \right\}_{i=1}^{N} \qquad \overline{d} = \langle b_0, \dots, b_M \rangle$$

- Deduplication
- Remove junk / nonsense text that's very unlikely according to a simple n-gram language model
- Remove uninteresting pages with few inlinks
- Remove non-English data with external classifiers

Web Data is Unfiltered

- Personally identifiable information (PII) or other personal information
- Adult content
- Explicit hate speech, disinformation
- Copyrighted data
- Test data from NLP benchmarks...

Downstream Effects

Stable Diffusion produces copyright and trademarked images

Generated:

Codex generates code with non-permissive licenses

Stable Diffusion generates real individuals

Social Impacts of Webscraping

- Trained language models encode:
 - Biases explicitly or implicitly encod
 - Personal information about individ
 - Copyrighted data

Karla Ortiz

Sarah Andersen

Glaze, Shan et al. 2023, USENIX

- Personally identifiable personal information
- Adult content
- Explicit hate speech, disinformation

Phone numbers of public information (PII) or other ____ companies' customer service lines?

> What might appear to be hateful or toxic speech is

> > context-dependent

Tradeoffs in Filtering

Banerjee and Rubungo, Princeton COS597G

Tradeoffs in Filtering

Banerjee and Rubungo, Princeton COS597G

Pretraining Corpora

Dataset	Origin	Model	Size (GB)	# Documents	# Tokens	max(# Tokens)	min(# Tokens)
OpenWebText	Gokaslan & Cohen (2019)	GPT-2*	41.2	8,005,939	7,767,705,349	95,139	128
C4	Raffel et al (2020)	T5	838.7	364,868,892	153,607,833,664	101,898	5
mC4-en	Chung et al. (2023)	umT5	14,694.0	3,928,733,374	2,703,077,876,916	181,949	1
OSCAR	Abadii et al (2021)	BLOOM*	3,327.3	431,584,362	475,992,028,559	1,048,409	1
The Pile	Gao et al (2020)	GPT-J/Neo & Pythia	1,369.0	210,607,728	285,794,281,816	28,121,329	0
RedPajama	Together Computer (2023)	LLaMA*	5,602.0	930,453,833	1,023,865,191,958	28,121,329	0
S2ORC	Lo et al (2020)	SciBERT*	692.7	11,241,499	59,863,121,791	376,681	1
peS2o	Soldaini & Lo (2023)	-	504.3	8,242,162	44,024,690,229	97,043	154
LAION-2B-en	Schuhmann et al (2021)	Stable Diffusion*	570.2	2,319,907,827	29,643,340,153	131,077	0
The Stack	Kocetkov et al (2023)	StarCoder*	7,830.8	544,750,672	1,525,618,728,620	26,298,134	0

Pretraining Corpora

Table 5: Extrapolated PII frequencies. Count is the extrapolated frequency in a corpus and *Prec.* is our identification precision, estimated by manual analysis.

	Email Ad	ldresses	Phone N	umbers	IP Addresses					
	Count	Prec.	Count	Prec.	Count	Prec.				
OpenWebText	364K	99	533K	87	70K	54				
OSCAR	62.8M	100	107M	<i>91</i>	3.2M	43				
C4	7.6M	99	19.7M	92	796K	56				
mC4-en	201M	<u>92</u>	4B	66	97.8M	44				
The Pile	19.8M	43	38M	65	4M	48				
RedPajama	35.2M	100	70.2M	94	1.1M	30				
S2ORC	630K	100	1.4M	100	0K	0				
peS2o	418K	97	227K	31	0K	0				
LAION-2B-en	636K	94	1 M	7	0K	0				
The Stack	4.3M	53	45.4M	9	4.4M	55				

WIMBD: What's in my big data? Elazar et al. 2024

Step 2: Tokenization

$$\mathcal{D} = \left\{ \overline{d}^{(i)} \right\}_{i=1}^{N}$$

$$\overline{d} = \langle b_0, \dots, b_M \rangle$$
$$\overline{d} = \langle x_0, \dots, x_{M'} \rangle$$
$$\forall x, \ x \in \mathcal{V}$$

"They currently play their home games at Acrisure Stadium."

"They" "currently" "play" "their" "home" "game" "#s" "at" "Acrisure" "Stadium" "."

 Maps from byte sequences to sequences of tokens, where each token is part of a set vocabulary

$$\overline{d} = \langle b_0, \dots, b_M \rangle$$
$$\overline{d} = \langle x_0, \dots, x_{M'} \rangle$$
$$\forall x, \ x \in \mathcal{V}$$

 Approach: simple heuristics (split on spaces, handle punctuation gracefully)

"They currently play their home games at Acrisure Stadium."

"They" "currently" "play" "their" "home" "games" "at" "Acrisure" "Stadium" "."

 $\overline{d} = \langle b_0, \dots, b_M \rangle$ $\overline{d} = \langle x_0, \dots, x_{M'} \rangle$ $\forall x, \ x \in \mathcal{V}$

Problem: requires defining heuristics, including for edge cases

Problem: heuristics are not generalizable to all languages

เราทุกคนเกิดมาอย่างอิสระ เราทุกคนมี ความคิดและความเข้าใจเป็นของเราเอง เรา ทุกคนควรได้รับการปฏิบัติในทางเดียวกัน.

Turkish	English	it on
ev	(the) house	
evler	(the) houses	Case
evin	your (sing.) house	
eviniz	your (pl./formal) house	Nominativ
evim	my house	Accusative
evimde	at my house	Genitive
evlerinizin	of your houses	Dative
evlerinizden	from your houses	Locative
evlerinizdendi	(he/she/it) was from your houses	Ablative
evlerinizdenmiş	(he/she/it) was (apparently/said to be) from your houses	Instrumen
Evinizdeyim.	I am at your house.	
Evinizdeymişim.	I was (apparently) at your house.	
Evinizde mivim?	Am I at your house?	

$$\overline{d} = \langle b_0, \dots, b_M \rangle$$

Casa	Ending	Exam	ples	Mooning
Case	Enaing	<i>köy</i> "village"	ağaç "tree"	Meaning
Nominative	Ø (none)	köy	ağaç	(the) village/tree
Accusative	-i ⁴	köyü	ağa c ı	the village/tree
Genitive	-in ⁴	köyün	ağa c ın	the village's/tree's of the village/tree
Dative	-e ²	köye	ağa c a	to the village/tree
Locative	-de ²	köyde	ağaç t a	in/on/at the village/tree
Ablative	-den ²	köyden	ağaç t an	from the village/tree
Instrumental	-le ²	köyle	ağaçla	with the village/tree

Problem: many words never appear in the training data

Example from CMU LLMs course

 Approach: vocabulary is simply all possible Unicode characters that might appear

																	•						-													
			,			/						Α	В	Г	Δ	E	Ζ	н	Θ	1		ĸ	٨	Μ												
!	"	#	\$	%	&	'	()	*	+	,	013	01/	015	016	017	018	010	020	02	1 0	22	023	024	8192	8193	8194	8195	8196	8197	8198	8199	8200	8201	8202	8203
33	34	35	36	37	38	39	40	41	42	43	44	913	714	915	910	917	710	919	920	92	1 7	22	923	924					-	-	-	_	_	_	1	
-		1	0	1	2	3	4	5	6	7	8	Ν	Ξ	0	П	P	E0 58	Σ	T	Y	' C	⊅	X	Ψ	3204	8205	8206	8207	8208	8209	8210	8211	8212	8213	8214	= 8215
45	46	47	48	49	50	51	52	53	54	55	56	925	926	927	928	929	930	931	932	93	3 9	34	935	936	4	,		,	u	"			+	+		-
9	:	;	<	=	>	?	@	Α	в	С	D	~	ï	ÿ	4	1	.4	1	~	-		0		2	0.016	0.017	,	0.010	0000	0001	"	0000	1	+		0.007
57	58	59	60	61	62	63	64	65	66	67	68	Ω		Ŷ	α	3	η	ι	U	α	• 1	3	Y	0	6210	0217	0210	0219	8220	0221	0222	0223	0224	0225	0220	0227
Е	F	G	н	Ι	J	κ	L	м	Ν	0	Ρ	937	938	939	940	941	942	943	944	94	5 9	46	947	948	•			•								
69	70	71	72	73	74	75	76	77	78	79	80	۶	7	n	θ	1	к	λ		v		F	0	π	3228	8229	8230	8231	8232	8233	8234	8235	8236	8237	8238	8239
Q	R	s	т	υ	v	w	x	Y	z	[١		۲	"					м			<u>ר</u>			2	≪	· <u>′</u>			<i>.</i>		m	,	,	· 、	3 22
81	82	83	84	85	86	87	88	89	90	91	92	949	950	951	952	953	954	955	956	95	7 9	58	959	960	F	£	- I 1	ท่	₩	P	s	Rs	₩	¢	וח	đ
1	^		•	а	b	с	d	е	f	a	h	ρ	ς	σ	τ	U	φ	х	ψ	ω)				-	~					×	110				4
9 3	94	- 95	96	97	98	99	100	101	102	103	104	961	962	963	964	965	966	967	968	96	9				355	835	6 8	357	8358	83	59	8360	836	1 8	3362	8363
i	i	k	T	m	n	0	n	a	r	s	t					∽ _ D			SM	TEL	TM	<i></i>		B	۲.	9		₽	ሱ	I 4	Ł	2	ሰ		#	S
105	1 06	107	108	109	110	111	112	113	114	115	116	80	f 8473	W 8474	<i>R</i> ?	Қ Қ	7 8478	K 8479	8480	8481	8482	y 8483	1		Ър	~3		•	Ψ	, ,	۲.	C	Ψ		IL.	₩P
	v	w	v	v	7	ſ	1	ı	~		£	8472	z	0	75 8475	476 047	, ene	Å		~	0.02	0.00	83	66	8367	836	8 8	369	8370	83	71	8372	837	3 8	3374	8375
u 117	118	119	120	y 121	122	1 123	124	J 125	126	127	128	8484	5 8485	8486	0 ; 8487 a.	3 I	n 9 8490	A 8491	98	0	е 8494	e	4		b			~	ж	ť	5	20	20		20	20
		t			+	+	•	0/	č	,	ст.	Ŷ	or.	_		••• ה א	_		7	•493	a	FAX	1	1	P	m		f	<u> </u>	f	2	CO			CS	Ca
120	,]	"	•••	1	+	100	700	3	(Œ	6	3	ل 8498	M 85	500 850	1 8502	▲ 8503	8504	8505	8506	8507	83	78	8379	838	<u>م</u>		8382	83	83	8384	838	5 8	3386	8387
129	-130 →	131	132	133	134	135	130	137	138	139	~	0490	6477	Г	лчтт ПП Г	ร ก	-	1	Y	D	d	0	·			0.00	8	381								
	Z							•	-	-		8508	8509	8510	8511 8	Z 512 851	3 8514	8515	8516	8517	Ø	er 8510	Ę	0	20	20 CB		20	20 CA	Ē	0 B	20 CC	20 00		20 CE	20 CF
141	142	143	144	145	146	147	148	149	150	151	152			ъ	x	₽ ^⁄a					0010	3017						-			- I					
ΤM	Š	>	œ		Ž	Y		i	¢	£	¤	8520	J 8521	E 8522	8523 8	524 852	5 8526	8527					83	90	8391	839	2 8	393	8394	83	95	8396	839	7 8	3398	8399
153	154	155	156	157	158	159	160	161	162	163	164																									

$$\overline{d} = \langle b_0, \dots, b_M \rangle$$
$$\overline{d} = \langle x_0, \dots, x_{M'} \rangle$$
$$\forall x, \ x \in \mathcal{V}$$

- **Problem:** representations of each character are not meaningful
- **Problem:** model also needs to learn how to compose words from characters

Problem: input sequences become very long

Example from CMU LLMs course

- Gradually constructs vocabulary given a target size
- Starts with a base vocabulary consisting of all characters in the training data
- Iteratively constructs vocabulary:
 - Tokenizes all training documents given the current vocabulary
 - Adds the most common bigram to the vocabulary
- Terminates when target vocabulary size is reached

$$\overline{d} = \langle b_0, \dots, b_M \rangle$$
$$\overline{d} = \langle x_0, \dots, x_{M'} \rangle$$
$$\forall x, \ x \in \mathcal{V}$$

Documents + frequencies: ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h", "u", "g", "p", "n", "b", "s")

Example from HuggingFace

Documents + frequencies: ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h", "u", "g", "p", "n", "b", "s") → ("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5)

Documents + frequencies: ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h", "u", "g", "p", "n", "b", "s") → ("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5) ("h", "u", "g", "p", "n", "b", "s", "ug") → ("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5)

Documents + frequencies: ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h", "u", "g", "p", "n", "b", "s") → ("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5) ("h", "u", "g", "p", "n", "b", "s", "ug") → ("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5) ("h", "u", "g", "p", "n", "b", "s", "ug", "un") → ("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5)

Documents + frequencies: ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h", "u", "g", "p", "n", "b", "s") → ("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5) ("h", "u", "g", "p", "n", "b", "s", "ug") → ("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5) ("h", "u", "g", "p", "n", "b", "s", "ug", "un") → ("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5) ("h", "u", "g", "p", "n", "b", "s", "ug", "un", "hug") → ("hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("hug" "s", 5)

Documents + frequencies: ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h", "u", "g", "p", "n", "b", "s") → ("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5) ("h", "u", "g", "p", "n", "b", "s", "ug") → ("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5) ("h", "u", "g", "p", "n", "b", "s", "ug", "un") → ("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5) ("h", "u", "g", "p", "n", "b", "s", "ug", "un") → ("hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5)

New word: "puns" "p" "u" "n" "s" → "p" "un" "s"

- Subword tokenization is used for all modern pretrained models (though people are still experimenting with character-based models)
- Vocabularies contain ~50-250k wordpieces
- Pretrained word embeddings (e.g. GloVe) aren't necessary

Modern Tokenization and Vocabularies

...

Matthew Watkins @SoC trilogy

I've just found out that several of the anomalous GPT tokens ("TheNitromeFan", " SolidGoldMagikarp", " davidjl", "Smartstocks", "RandomRedditorWithNo",) are handles of people who are (competitively? collaboratively?) counting to infinity on a Reddit forum. I kid you not.

Rank	User	Counts
1	/u/davidjl123	163477
2	/u/Smartstocks	113829
3	/u/atomicimploder	103178
4	/u/TheNitromeFan	84581
5	/u/SolidGoldMagikarp	65753
6	/u/RandomRedditorWithNo	63434
7	/u/rideride	59024
8	/u/Mooraell	57785
9	/u/Removedpixel	55080
10	/u/Adinida	48415
11	/u/rschaosid	47132

Step 3: Architecture

Recap: Feedfoward Networks

- Tokenize
- Embed
- Concatenate
- Linear layer
- Softmax
- Fixed window?
- Word averaging?

output distribution $\hat{m{y}} = ext{softmax}(m{U}m{h} + m{b}_2) \in \mathbb{R}^{|V|}$

hidden layer $\boldsymbol{h} = f(\boldsymbol{W}\boldsymbol{e} + \boldsymbol{b}_1)$

concatenated word embeddings $oldsymbol{e} = [oldsymbol{e}^{(1)}; oldsymbol{e}^{(2)}; oldsymbol{e}^{(3)}; oldsymbol{e}^{(4)}]$

words / one-hot vectors $oldsymbol{x}^{(1)}, oldsymbol{x}^{(2)}, oldsymbol{x}^{(3)}, oldsymbol{x}^{(4)}$

Recap: Recurrence

Recap: Recurrence

Recap: Recurrence

Recap: Attention

Decoder RNN

Generic dot-product attention:

$$\boldsymbol{e}_{ij} = \boldsymbol{q}_i^{\mathsf{T}} \boldsymbol{k}_j \qquad \boldsymbol{\alpha}_{ij} = \frac{\exp(\boldsymbol{e}_{ij})}{\sum_{j'} \exp(\boldsymbol{e}_{ij'})} \qquad \boldsymbol{o}_i = \sum_j \boldsymbol{\alpha}_{ij} \, \boldsymbol{v}_i$$

Self-attention: queries, keys, and values are all different transformations of the same item-level representation of some sequence:

$$q_i = Q x_i$$
 (queries) $k_i = K x_i$

$$\boldsymbol{k}_i = K \boldsymbol{x}_i$$
 (keys)

$$\boldsymbol{v}_i = V \boldsymbol{x}_i$$
 (values)

Slide from Stanford CS224 and CMU LLMs course

Multi-Head Attention

 $q_i = Q x_i$ (queries) $k_i = K x_i$ (keys) $v_i = V x_i$ (values)

head₁ = Attention($\mathbf{Q}\mathbf{W}_{1}^{Q}, \mathbf{K}\mathbf{W}_{1}^{K}, \mathbf{V}\mathbf{W}_{1}^{V}$) : head_H = Attention($\mathbf{Q}\mathbf{W}_{H}^{Q}, \mathbf{K}\mathbf{W}_{H}^{K}, \mathbf{V}\mathbf{W}_{H}^{V}$)

 $MultiHeadAtt(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = Concat(head_1, ..., head_H)$

Inputs and outputs of each layer are the same dimensions: $\mathbf{Q} \in \mathbb{R}^{T \times d_{\text{model}}}$ $\mathbf{K} \in \mathbb{R}^{T \times d_{\text{model}}}$ $\mathbf{V} \in \mathbb{R}^{T \times d_{\text{model}}}$ MultiHeadAtt($\mathbf{Q}, \mathbf{K}, \mathbf{V}$) $\in \mathbb{R}^{T \times d_{\text{model}}}$

Slide from Stanford CS224 and CMU LLMs course

Transformer

Decoder

Encoder Input

Vaswani et al. 2017, slide from CMU LLMs course and Stanford CS 224

Decoder Input

Attention

Decoder

N×

Positional

Encoding

Output Probabilities

slide from HuggingFace Transformers course: <u>https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s</u>

- Encode input sequence
- Attention over input token representations and <start>

slide from HuggingFace Transformers course: <u>https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s</u>

- Encode input sequence
- Attention over input token
 representations and <start>
- Self-attention

slide from HuggingFace Transformers course: https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s

- Encode input sequence
- Attention over
 input token
 representations
 and <start>
- Self-attention

slide from HuggingFace Transformers course: https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s

Encoder, Decoder, Encoder-Decoder

BART, Lewis et al. 2019

- Fixed context lengths "solved" with position embeddings
 Self-attention has quadratic cost O(n²d)
- Plug: Annotated Transformer (Sasha Rush): <u>http://nlp.seas.harvard.edu/annotated-transformer/</u>

Step 4: Optimization

 Assume we have training dataset including documents comprising sequences of bytes

$$\mathcal{D} = \left\{ \overline{d}^{(i)} \right\}_{i=1}^{N} \qquad \overline{d} = \langle b_0, \dots, b_M \rangle$$

 Our objective is to find the LM parameters that maximize the probability of this dataset

$$\theta^* = \arg\max_{\theta} \prod_{\overline{d} \in \mathcal{D}} p\left(\overline{d}; \theta\right)$$

 We assume documents are *tokenized* into sequences that the LM models autoregressively:

$$\overline{d} = \langle x_0, \dots, x_{M'} \rangle \quad p(\overline{d}; \theta) = \prod_{j=1}^{M'} p(x_j \mid \langle x_0, \dots, x_{j-1}; \theta)$$

Loss for step *i* is cross-entropy between true distribution *p**
 (i.e., one-hot) and predicted distribution:

$$\mathcal{L}(\theta) = -\sum_{x \in \mathcal{V}} p^*(x_i = x \mid \langle x_0 \dots x_{i-1} \rangle) \log p(x_i = x \mid \langle x_0 \dots x_{i-1} \rangle; \theta)$$

$$\mathcal{L}(\theta) = -\log p(x_i \mid \langle x_0 \dots x_{i-1} \rangle; \theta)$$

Next token prediction

- Our goal: learn a distribution over text sequences
- Our assumption so far: this distribution is only backwardslooking (conditioned on prefix of the sequence)
- What if we remove this assumption?

Brempong et al. 2022, CVPR

Masking / Infilling Objectives

Randomly mask out ~15% of tokens in the input, and try to predict them from past and future context

[CLS] John visited [MASK] yesterday and really [MASK] it [SEP]

BERT, Devlin et al. 2019 (slide from UT Austin CS 388)

Masking / Infilling Objectives

- Randomly mask out ~15% of tokens in the input, and try to predict them from past and future context
- Or mask out spans of text

SpanBERT, Joshi et al. 2020 (TACL)

BART, Lewis et al. 2019

Step 5: Inference

- Language models assign a probability to a sequence of words
- We can decompose this probability using the chain rule
- We can autoregressively generate sequences from the language model by sampling from its tokenlevel probability
- We can condition on our language distribution on something else

$$p(\overline{y}) = \prod_{i=1}^{T} p(y_i | y_{0:i-1})$$

$$p(y_i|y_{0:i-1})$$

$$p(y_i|y_{0:i-1};\overline{x})$$

$$p(\overline{y})$$

What can we do with language models?

Computing probabilities of a sequence

Autoregressive sequence generation

Decoding strategies

Argmax (greedy decoding)

$$y_T = \arg\max_{y \in \mathcal{V}} p(y \mid y_{0:t-1})$$

Argmax (greedy decoding)
Sampling from language model directly

$$y_T = \arg \max_{y \in \mathcal{V}} p(y \mid y_{0:t-1})$$
$$y_T \sim p(\cdot \mid y_{0:t-1})$$

- Argmax (greedy decoding)
- Sampling from language model directly
- Adjusting temperature of distribution

$$y_T = \arg \max_{y \in \mathcal{V}} p(y \mid y_{0:t-1})$$
$$y_T \sim p(\cdot \mid y_{0:t-1})$$

- Argmax (greedy decoding)
- Sampling from language model directly
- Adjusting temperature of distribution

$$y_T = \arg \max_{y \in \mathcal{V}} p(y \mid y_{0:t-1})$$
$$y_T \sim p(\cdot \mid y_{0:t-1})$$

Slide from Daphne Ippolito / Chenyan Xiong, CMU LLMs course http://cmu-llms.org/

Top-k sampling: reassign probability mass from all but the top k tokens to the top k tokens

Slide from Daphne Ippolito / Chenyan Xiong, CMU LLMs course http://cmu-llms.org/

Decoding strategies

 Nucleus sampling: reassign probability mass to the most probable tokens whose cumulative probability is at least p

Figure 5: The probability mass assigned to partial human sentences. Flat distributions lead to many moderately probable tokens, while peaked distributions concentrate most probability mass into just a few tokens. The presence of flat distributions makes the use of a small k in top-k sampling problematic, while the presence of peaked distributions makes large k's problematic.

Holtzman et al. 2020, ICLR

Beam search

- It's intractable to find the most probable sequence according to a language model
- Greedy search doesn't yield the most probably sequence
- Instead: beam search
 - Approximate the search by keeping around candidate continuations
 - At the end, choose the highest probability sequence in the beam

$$\overline{y}^* = \arg\max_{\overline{y}\in\mathcal{V}^*} p(\overline{y})$$

$$y_t = \arg\max_{y \in \mathcal{V}} p(y \mid y_{0:t-1})$$

Beam search

- But do we even want to find the highest-probability sequence according to a LM?
- Human language is noisy and surprising
- Optimizing for LM probability leads to repetitive and uninteresting text

Holtzman et al. 2020, ICLR

Beam Search Text is Less Surprising

Beam Search

...to provide an overview of the current state-of-the-art in the field of computer vision and machine learning, and to provide an overview of the current state-of-the-art in the field of computer vision and machine learning, and to provide an overview of the current state-of-the-art in the field of computer vision and machine learning, and to provide an overview of the current state-of-the-art in the field of computer vision and machine learning, and...

Human

...which grant increased life span and three years warranty. The Antec HCG series consists of five models with capacities spanning from 400W to 900W. Here we should note that we have already tested the HCG-620 in a previous review and were quite satisfied With its performance. In today's review we will rigorously test the Antec HCG-520, which as its model number implies, has 520W capacity and contrary to Antec's strong beliefs in multi-rail PSUs is equipped...

Beam search

- But do we even want to find the highest-probability sequence according to a LM?
- Human language is noisy and surprising
- Optimizing for LM probability leads to repetitive and uninteresting text

Figure 2. We identify and exploit the tendency of machinegenerated passages $x \sim p_{\theta}(\cdot)$ (left) to lie in negative curvature regions of $\log p(x)$, where nearby samples have lower model log probability on average. In contrast, human-written text $x \sim p_{real}(\cdot)$ (right) tends not to occupy regions with clear negative log probability curvature; nearby samples may have higher or lower log probability.