
Natural Language Processing

LLMs: Training



BAIR NLP Workshop

▪ Tomorrow, Friday, October 18, in BWW and virtual 

▪ Highlights: 

▪ LLMs and Cognitive Systems 

▪ LLM agents 

▪ Creativity in humans and LLMs 

▪ Interpretability 

▪ Language in interaction 

▪ Agenda and link to RSVP: https://docs.google.com/document/
d/1-WJfTMfYnCwlyIsJxXoRzjRJNlJ1MyiFkcFLQNYPviE/ 

https://docs.google.com/document/d/1-WJfTMfYnCwlyIsJxXoRzjRJNlJ1MyiFkcFLQNYPviE/
https://docs.google.com/document/d/1-WJfTMfYnCwlyIsJxXoRzjRJNlJ1MyiFkcFLQNYPviE/
https://docs.google.com/document/d/1-WJfTMfYnCwlyIsJxXoRzjRJNlJ1MyiFkcFLQNYPviE/


Recap: What is a language model?
▪ Language models assign a 

probability to a sequence of 
words 

▪ We can decompose this 
probability using the chain rule 

▪ We can autoregressively generate 
sequences from the language 
model by sampling from its token-
level probability 

▪ We can condition on our language 
distribution on something else



How to Train a Base LM
1. Get some training data 
2. Preprocess it (tokenize it) 
3. Choose your architecture 
4. Optimize a language modeling objective 
5. Run inference!



Step 1: Get Training Data



Training Data

▪ Transformer models are very data-hungry 

▪ Solution: just scrape the web 

▪ CommonCrawl: publicly available web scrape collected since 
2007 containing 250B webpages, comprising 82% of tokens 
used to train GPT-3



Data Sources

▪ Domain-specific webpages: 

▪ Code and mathematics: Github, StackOverflow 

▪ Academic and scientific work: arXiv, bioRxiv, PubMed 

▪ Books: Project Gutenberg 

▪ General knowlege: Wikipedia 

▪ Domain-general sources: 

▪ Social media (reddit, Twitter) 

▪ News sites



Data Sources

Chris Manning’s COLM keynote, https://www.youtube.com/watch?v=c3N2H3Z5S3I 

https://www.youtube.com/watch?v=c3N2H3Z5S3I


Web Scraping
1. Seed webcrawler with initial URLs 
2. Identify new URLs via outlinks 
3. Download HTML representation of webpage 
4. Scrape HTML for raw text 
5. Postprocess texts



Web Data is Noisy
• Deduplication 
• Remove junk / nonsense text that’s very unlikely according to a 

simple n-gram language model 
• Remove uninteresting pages with few inlinks 
• Remove non-English data with external classifiers



Web Data is Unfiltered
• Personally identifiable information (PII) or other personal 

information 
• Adult content 
• Explicit hate speech, disinformation 
• Copyrighted data 
• Test data from NLP benchmarks…



Downstream Effects



Social Impacts of Webscraping

▪ Trained language models encode:  

▪ Biases explicitly or implicitly encoded in their training data 

▪ Personal information about individuals present on the web 

▪ Copyrighted data

Karla Ortiz Sarah Andersen Glaze, Shan et al. 2023, USENIX



Tradeoffs in Filtering
• Personally identifiable 

information (PII) or other 
personal information 

• Adult content  
• Explicit hate speech, 

disinformation

Phone numbers of public 
companies’ customer service 
lines?

What might appear to be 
hateful or toxic speech is 
context-dependent

Very culturally dependent



Tradeoffs in Filtering

Banerjee and Rubungo, Princeton COS597G



Tradeoffs in Filtering

Banerjee and Rubungo, Princeton COS597G



Pretraining Corpora

WIMBD: What’s in my big data? Elazar et al. 2024



Pretraining Corpora

WIMBD: What’s in my big data? Elazar et al. 2024



Step 2: Tokenization



Tokenization

“They currently play their home 
games at Acrisure Stadium.”

“They” “currently” “play” “their” “home” 
“game” “#s” “at” “Acrisure” “Stadium” “.”



Tokenization

▪ Maps from byte sequences to 
sequences of tokens, where each token 
is part of a set vocabulary



Tokenization

▪ Approach: simple heuristics (split on 
spaces, handle punctuation gracefully)

“They currently play their home 
games at Acrisure Stadium.”

“They” “currently” “play” “their” “home” 
“games” “at” “Acrisure” “Stadium” “.”

Example from CMU LLMs course

Problem: requires defining 
heuristics, including for edge cases

Problem: heuristics are not 
generalizable to all languages



Tokenization

▪ Approach: simple heuristics (split on 
spaces, handle punctuation gracefully)

“They currently play their home 
games at Acrisure Stadium.”

“They” “currently” “play” “their” “home” 
“games” “at” “Acrisure” “Stadium” “.”

Example from CMU LLMs course

Problem: results in very large 
vocabularies

Problem: little we can learn about 
the rarest words

Problem: many words never appear 
in the training data



Character- / Byte-Level Models

▪ Approach: vocabulary is simply all 
possible Unicode characters that might 
appear

Problem: representations of each 
character are not meaningful

Problem: input sequences become 
very long

Problem: model also needs to learn 
how to compose words from 

characters



Tokenization

▪ Approach: subword tokenization, where 
frequent words are kept whole and 
infrequent words are broken into parts

“They currently play their home 
games at Acrisure Stadium.”

'▁They', '▁currently', '▁play', 
'▁their', '▁home', 
'▁games', '▁at', '▁A', 'cris', 
'ure', '▁Stadium', '.'

Example from CMU LLMs course



Byte Pair Encoding
▪ Gradually constructs vocabulary given a 

target size 

▪ Starts with a base vocabulary consisting of all 
characters in the training data 

▪ Iteratively constructs vocabulary: 

▪ Tokenizes all training documents given the 
current vocabulary 

▪ Adds the most common bigram to the 
vocabulary 

▪ Terminates when target vocabulary size is 
reached



Byte Pair Encoding

Example from HuggingFace

Documents + frequencies: (“hug”, 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5) 

("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5) 

("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5) 

(“hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5) 

(“h”, “u”, “g”, “p”, “n”, “b”, “s”) 

(“h”, “u”, “ug”, “p”, “n”, “b”, “s”) 

(“h”, “u”, “ug”, “p”, “un”, “b”, “s”) 

(“hug”, “p”, “ug”, “un”, “b”, “h”, “s”) 



Byte Pair Encoding

Example from HuggingFace

Documents + frequencies: (“hug”, 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5) 

("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5) 

("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5) 

(“hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5) 

(“h”, “u”, “g”, “p”, “n”, “b”, “s”) 

(“h”, “u”, “ug”, “p”, “n”, “b”, “s”) 

(“h”, “u”, “ug”, “p”, “un”, “b”, “s”) 

(“hug”, “p”, “ug”, “un”, “b”, “h”, “s”) 



("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5) 

("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5) 

("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5) 

(“hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5) 

Byte Pair Encoding

Example from HuggingFace

Documents + frequencies: (“hug”, 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

(“h”, “u”, “g”, “p”, “n”, “b”, “s”) 

(“h”, “u”, “g”, “p”, “n”, “b”, “s”, “ug”) 

(“h”, “u”, “ug”, “p”, “un”, “b”, “s”) 

(“hug”, “p”, “ug”, “un”, “b”, “h”, “s”) 



Byte Pair Encoding

Example from HuggingFace

Documents + frequencies: (“hug”, 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5) 

("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5) 

("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5) 

(“hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5) 

(“h”, “u”, “g”, “p”, “n”, “b”, “s”) 

(“h”, “u”, “g”, “p”, “n”, “b”, “s”, “ug”) 

(“h”, “u”, “g”, “p”, “n”, “b”, “s”, “ug”, “un”) 

(“hug”, “p”, “ug”, “un”, “b”, “h”, “s”) 



Byte Pair Encoding

Example from HuggingFace

Documents + frequencies: (“hug”, 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5) 

("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5) 

("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5) 

(“hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("hug" "s", 5) 

(“h”, “u”, “g”, “p”, “n”, “b”, “s”) 

(“h”, “u”, “g”, “p”, “n”, “b”, “s”, “ug”) 

(“h”, “u”, “g”, “p”, “n”, “b”, “s”, “ug”, “un”) 

(“h”, “u”, “g”, “p”, “n”, “b”, “s”, “ug”, “un”, “hug”) 



Byte Pair Encoding
Documents + frequencies: (“hug”, 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5) 

("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5) 

("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5) 

(“hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("hug" "s", 5) 

(“h”, “u”, “g”, “p”, “n”, “b”, “s”) 

(“h”, “u”, “g”, “p”, “n”, “b”, “s”, “ug”) 

(“h”, “u”, “g”, “p”, “n”, “b”, “s”, “ug”, “un”) 

(“h”, “u”, “g”, “p”, “n”, “b”, “s”, “ug”, “un”, “hug”) 

New word: “puns”

“p” “u” “n” “s” “p” “un” “s”



Modern Tokenization and Vocabularies

▪ Subword tokenization is used for all modern pretrained models 
(though people are still experimenting with character-based 
models) 

▪ Vocabularies contain ~50-250k wordpieces 

▪ Pretrained word embeddings (e.g. GloVe) aren’t necessary



Modern Tokenization and Vocabularies

Example from UT Austin CS 388



Step 3: Architecture



Recap: Feedfoward Networks

▪ Tokenize 

▪ Embed 

▪ Concatenate 

▪ Linear layer 

▪ Softmax 

▪ Fixed window? 

▪ Word averaging?

Slide from Stanford CS224



Recap: Recurrence

Slide from Stanford CS224



Recap: Recurrence

Slide from Stanford CS224



Recap: Recurrence

Slide from Stanford CS224



Recap: Attention

Slide from Stanford CS224



Recap: Attention

▪ Generic dot-product attention: 
 

▪ Self-attention: queries, keys, and values 
are all different transformations of the 
same item-level representation of 
some sequence:

Slide from Stanford CS224 and CMU LLMs course



Multi-Head Attention

Slide from Stanford CS224 and CMU LLMs course



Transformer

Vaswani et al. 2017, slide from CMU LLMs course



Encoder

Vaswani et al. 2017, slide from CMU LLMs course



Decoder

Vaswani et al. 2017, slide from CMU LLMs course



Encoder Input

Vaswani et al. 2017, slide from CMU LLMs course and Stanford CS 224



Decoder Input

Vaswani et al. 2017, slide from CMU LLMs course



Attention

Encoder-decoder attention

Self-attention

Masked  
self-attention

Vaswani et al. 2017, slide from CMU LLMs course



Encoder

Vaswani et al. 2017, slide from CMU LLMs course



Encoder

Residual 
connection

Vaswani et al. 2017, slide from CMU LLMs course



Encoder

Layer  
normalization

Vaswani et al. 2017, slide from CMU LLMs course



Encoder

Vaswani et al. 2017, slide from CMU LLMs course



Encoder

Vaswani et al. 2017, slide from CMU LLMs course



Encoder

Vaswani et al. 2017, slide from CMU LLMs course



Decoder

Vaswani et al. 2017, slide from CMU LLMs course



Decoder

Vaswani et al. 2017, slide from CMU LLMs course



Decoder

Vaswani et al. 2017, slide from CMU LLMs course



Decoder

Vaswani et al. 2017, slide from CMU LLMs course



Decoder

Vaswani et al. 2017, slide from CMU LLMs course



Decoder

Vaswani et al. 2017, slide from CMU LLMs course



Decoder

dec

Vaswani et al. 2017, slide from CMU LLMs course



Output Probabilities

Vaswani et al. 2017, slide from CMU LLMs course



Encoder-Decoder Inference

▪ Encode input 
sequence

slide from HuggingFace Transformers course: https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s 

https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s


Encoder-Decoder Inference

▪ Encode input 
sequence 

▪ Attention over 
input token 
representations 
and <start>

slide from HuggingFace Transformers course: https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s 

https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s


Encoder-Decoder Inference

▪ Encode input 
sequence 

▪ Attention over 
input token 
representations 
and <start> 

▪ Self-attention

slide from HuggingFace Transformers course: https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s 

https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s


Encoder-Decoder Inference

▪ Encode input 
sequence 

▪ Attention over 
input token 
representations 
and <start> 

▪ Self-attention

slide from HuggingFace Transformers course: https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s 

https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s


Encoder, Decoder, Encoder-Decoder

BART, Lewis et al. 2019



▪ Fixed context lengths “solved” with position embeddings 

▪ Self-attention has quadratic cost 

▪ Plug: Annotated Transformer (Sasha Rush):  
http://nlp.seas.harvard.edu/annotated-transformer/   

Problems with the Transformer?

http://nlp.seas.harvard.edu/annotated-transformer/


Step 4: Optimization



Recap: Language Modeling Objective

▪ Assume we have training dataset including documents 
comprising sequences of bytes 
 

▪ Our objective is to find the LM parameters that maximize the 
probability of this dataset 

▪ We assume documents are tokenized into sequences that the 
LM models autoregressively:



Recap: Language Modeling Objective

▪ Loss for step i is cross-entropy between true distribution  
(i.e., one-hot) and predicted distribution: 

p*



Next token prediction

Slide from Stanford CS224



Next token prediction in Transformers

Slide from Greg Durrett, UT Austin CS 388



Next token prediction in Transformers

Slide from Greg Durrett, UT Austin CS 388



Next token prediction in Transformers

Slide from Greg Durrett, UT Austin CS 388



Next token prediction in Transformers

Slide from Greg Durrett, UT Austin CS 388



Next token prediction in Transformers

Slide from Greg Durrett, UT Austin CS 388



Next token prediction in Transformers

Slide from Greg Durrett, UT Austin CS 388



Denoising Objectives

▪ Our goal: learn a distribution over text sequences 

▪ Our assumption so far: this distribution is only backwards-
looking (conditioned on prefix of the sequence) 

▪ What if we remove this assumption?

Brempong et al. 2022, CVPR



Masking / Infilling Objectives

▪ Randomly mask out ~15% of tokens in the input, and try to 
predict them from past and future context

BERT, Devlin et al. 2019 (slide from UT Austin CS 388)



Masking / Infilling Objectives

▪ Randomly mask out ~15% of tokens in the input, and try to 
predict them from past and future context 

▪ Or mask out spans of text

SpanBERT, Joshi et al. 2020 (TACL)



Auxiliary Objectives

BART, Lewis et al. 2019



Step 5: Inference



Recap: What is a language model?
▪ Language models assign a 

probability to a sequence of 
words 

▪ We can decompose this 
probability using the chain rule 

▪ We can autoregressively generate 
sequences from the language 
model by sampling from its token-
level probability 

▪ We can condition on our language 
distribution on something else



What can we do with language models?

▪ Computing probabilities of a sequence 
 
 

▪ Autoregressive sequence generation



Decoding strategies

▪ Argmax (greedy decoding)

newspaper book telephone room



Decoding strategies

▪ Argmax (greedy decoding) 

▪ Sampling from language model 
directly

newspaper book telephone room



Decoding strategies

▪ Argmax (greedy decoding) 

▪ Sampling from language model 
directly 

▪ Adjusting temperature of 
distribution

newspaper book telephone room



Decoding strategies

▪ Argmax (greedy decoding) 

▪ Sampling from language model 
directly 

▪ Adjusting temperature of 
distribution

Slide from Daphne Ippolito / Chenyan Xiong, CMU LLMs course http://cmu-llms.org/ 

http://cmu-llms.org/


Decoding strategies

▪ Top-k sampling: reassign probability mass from all but the top k 
tokens to the top k tokens

Slide from Daphne Ippolito / Chenyan Xiong, CMU LLMs course http://cmu-llms.org/ 

http://cmu-llms.org/


Decoding strategies

▪ Nucleus sampling: reassign probability mass to the most 
probable tokens whose cumulative probability is at least p

Holtzman et al. 2020, ICLR



Beam search
▪ It’s intractable to find the most 

probable sequence according to a 
language model 

▪ Greedy search doesn’t yield the 
most probably sequence 

▪ Instead: beam search 

▪ Approximate the search by 
keeping around candidate 
continuations 

▪ At the end, choose the highest 
probability sequence in the beam



Beam search

▪ But do we even want to find 
the highest-probability 
sequence according to a LM? 

▪ Human language is noisy and 
surprising 

▪ Optimizing for LM probability 
leads to repetitive and 
uninteresting text

Holtzman et al. 2020, ICLR



Beam search

▪ But do we even want to find 
the highest-probability 
sequence according to a LM? 

▪ Human language is noisy and 
surprising 

▪ Optimizing for LM probability 
leads to repetitive and 
uninteresting text

DetectGPT, Mitchell et al. 2023, ICML


