
Natural Language Processing

LLMs: Training

BAIR NLP Workshop

▪ Tomorrow, Friday, October 18, in BWW and virtual

▪ Highlights:

▪ LLMs and Cognitive Systems

▪ LLM agents

▪ Creativity in humans and LLMs

▪ Interpretability

▪ Language in interaction

▪ Agenda and link to RSVP: https://docs.google.com/document/
d/1-WJfTMfYnCwlyIsJxXoRzjRJNlJ1MyiFkcFLQNYPviE/

https://docs.google.com/document/d/1-WJfTMfYnCwlyIsJxXoRzjRJNlJ1MyiFkcFLQNYPviE/
https://docs.google.com/document/d/1-WJfTMfYnCwlyIsJxXoRzjRJNlJ1MyiFkcFLQNYPviE/
https://docs.google.com/document/d/1-WJfTMfYnCwlyIsJxXoRzjRJNlJ1MyiFkcFLQNYPviE/

Recap: What is a language model?
▪ Language models assign a

probability to a sequence of
words

▪ We can decompose this
probability using the chain rule

▪ We can autoregressively generate
sequences from the language
model by sampling from its token-
level probability

▪ We can condition on our language
distribution on something else

How to Train a Base LM
1. Get some training data
2. Preprocess it (tokenize it)
3. Choose your architecture
4. Optimize a language modeling objective
5. Run inference!

Step 1: Get Training Data

Training Data

▪ Transformer models are very data-hungry

▪ Solution: just scrape the web

▪ CommonCrawl: publicly available web scrape collected since
2007 containing 250B webpages, comprising 82% of tokens
used to train GPT-3

Data Sources

▪ Domain-specific webpages:

▪ Code and mathematics: Github, StackOverflow

▪ Academic and scientific work: arXiv, bioRxiv, PubMed

▪ Books: Project Gutenberg

▪ General knowlege: Wikipedia

▪ Domain-general sources:

▪ Social media (reddit, Twitter)

▪ News sites

Data Sources

Chris Manning’s COLM keynote, https://www.youtube.com/watch?v=c3N2H3Z5S3I

https://www.youtube.com/watch?v=c3N2H3Z5S3I

Web Scraping
1. Seed webcrawler with initial URLs
2. Identify new URLs via outlinks
3. Download HTML representation of webpage
4. Scrape HTML for raw text
5. Postprocess texts

Web Data is Noisy
• Deduplication
• Remove junk / nonsense text that’s very unlikely according to a

simple n-gram language model
• Remove uninteresting pages with few inlinks
• Remove non-English data with external classifiers

Web Data is Unfiltered
• Personally identifiable information (PII) or other personal

information
• Adult content
• Explicit hate speech, disinformation
• Copyrighted data
• Test data from NLP benchmarks…

Downstream Effects

Social Impacts of Webscraping

▪ Trained language models encode:

▪ Biases explicitly or implicitly encoded in their training data

▪ Personal information about individuals present on the web

▪ Copyrighted data

Karla Ortiz Sarah Andersen Glaze, Shan et al. 2023, USENIX

Tradeoffs in Filtering
• Personally identifiable

information (PII) or other
personal information

• Adult content
• Explicit hate speech,

disinformation

Phone numbers of public
companies’ customer service
lines?

What might appear to be
hateful or toxic speech is
context-dependent

Very culturally dependent

Tradeoffs in Filtering

Banerjee and Rubungo, Princeton COS597G

Tradeoffs in Filtering

Banerjee and Rubungo, Princeton COS597G

Pretraining Corpora

WIMBD: What’s in my big data? Elazar et al. 2024

Pretraining Corpora

WIMBD: What’s in my big data? Elazar et al. 2024

Step 2: Tokenization

Tokenization

“They currently play their home
games at Acrisure Stadium.”

“They” “currently” “play” “their” “home”
“game” “#s” “at” “Acrisure” “Stadium” “.”

Tokenization

▪ Maps from byte sequences to
sequences of tokens, where each token
is part of a set vocabulary

Tokenization

▪ Approach: simple heuristics (split on
spaces, handle punctuation gracefully)

“They currently play their home
games at Acrisure Stadium.”

“They” “currently” “play” “their” “home”
“games” “at” “Acrisure” “Stadium” “.”

Example from CMU LLMs course

Problem: requires defining
heuristics, including for edge cases

Problem: heuristics are not
generalizable to all languages

Tokenization

▪ Approach: simple heuristics (split on
spaces, handle punctuation gracefully)

“They currently play their home
games at Acrisure Stadium.”

“They” “currently” “play” “their” “home”
“games” “at” “Acrisure” “Stadium” “.”

Example from CMU LLMs course

Problem: results in very large
vocabularies

Problem: little we can learn about
the rarest words

Problem: many words never appear
in the training data

Character- / Byte-Level Models

▪ Approach: vocabulary is simply all
possible Unicode characters that might
appear

Problem: representations of each
character are not meaningful

Problem: input sequences become
very long

Problem: model also needs to learn
how to compose words from

characters

Tokenization

▪ Approach: subword tokenization, where
frequent words are kept whole and
infrequent words are broken into parts

“They currently play their home
games at Acrisure Stadium.”

'▁They', '▁currently', '▁play',
'▁their', '▁home',
'▁games', '▁at', '▁A', 'cris',
'ure', '▁Stadium', '.'

Example from CMU LLMs course

Byte Pair Encoding
▪ Gradually constructs vocabulary given a

target size

▪ Starts with a base vocabulary consisting of all
characters in the training data

▪ Iteratively constructs vocabulary:

▪ Tokenizes all training documents given the
current vocabulary

▪ Adds the most common bigram to the
vocabulary

▪ Terminates when target vocabulary size is
reached

Byte Pair Encoding

Example from HuggingFace

Documents + frequencies: (“hug”, 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5)

("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5)

("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5)

(“hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5)

(“h”, “u”, “g”, “p”, “n”, “b”, “s”)

(“h”, “u”, “ug”, “p”, “n”, “b”, “s”)

(“h”, “u”, “ug”, “p”, “un”, “b”, “s”)

(“hug”, “p”, “ug”, “un”, “b”, “h”, “s”)

Byte Pair Encoding

Example from HuggingFace

Documents + frequencies: (“hug”, 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5)

("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5)

("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5)

(“hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5)

(“h”, “u”, “g”, “p”, “n”, “b”, “s”)

(“h”, “u”, “ug”, “p”, “n”, “b”, “s”)

(“h”, “u”, “ug”, “p”, “un”, “b”, “s”)

(“hug”, “p”, “ug”, “un”, “b”, “h”, “s”)

("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5)

("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5)

("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5)

(“hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5)

Byte Pair Encoding

Example from HuggingFace

Documents + frequencies: (“hug”, 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

(“h”, “u”, “g”, “p”, “n”, “b”, “s”)

(“h”, “u”, “g”, “p”, “n”, “b”, “s”, “ug”)

(“h”, “u”, “ug”, “p”, “un”, “b”, “s”)

(“hug”, “p”, “ug”, “un”, “b”, “h”, “s”)

Byte Pair Encoding

Example from HuggingFace

Documents + frequencies: (“hug”, 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5)

("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5)

("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5)

(“hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5)

(“h”, “u”, “g”, “p”, “n”, “b”, “s”)

(“h”, “u”, “g”, “p”, “n”, “b”, “s”, “ug”)

(“h”, “u”, “g”, “p”, “n”, “b”, “s”, “ug”, “un”)

(“hug”, “p”, “ug”, “un”, “b”, “h”, “s”)

Byte Pair Encoding

Example from HuggingFace

Documents + frequencies: (“hug”, 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5)

("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5)

("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5)

(“hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("hug" "s", 5)

(“h”, “u”, “g”, “p”, “n”, “b”, “s”)

(“h”, “u”, “g”, “p”, “n”, “b”, “s”, “ug”)

(“h”, “u”, “g”, “p”, “n”, “b”, “s”, “ug”, “un”)

(“h”, “u”, “g”, “p”, “n”, “b”, “s”, “ug”, “un”, “hug”)

Byte Pair Encoding
Documents + frequencies: (“hug”, 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5)

("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5)

("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5)

(“hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("hug" "s", 5)

(“h”, “u”, “g”, “p”, “n”, “b”, “s”)

(“h”, “u”, “g”, “p”, “n”, “b”, “s”, “ug”)

(“h”, “u”, “g”, “p”, “n”, “b”, “s”, “ug”, “un”)

(“h”, “u”, “g”, “p”, “n”, “b”, “s”, “ug”, “un”, “hug”)

New word: “puns”

“p” “u” “n” “s” “p” “un” “s”

Modern Tokenization and Vocabularies

▪ Subword tokenization is used for all modern pretrained models
(though people are still experimenting with character-based
models)

▪ Vocabularies contain ~50-250k wordpieces

▪ Pretrained word embeddings (e.g. GloVe) aren’t necessary

Modern Tokenization and Vocabularies

Example from UT Austin CS 388

Step 3: Architecture

Recap: Feedfoward Networks

▪ Tokenize

▪ Embed

▪ Concatenate

▪ Linear layer

▪ Softmax

▪ Fixed window?

▪ Word averaging?

Slide from Stanford CS224

Recap: Recurrence

Slide from Stanford CS224

Recap: Recurrence

Slide from Stanford CS224

Recap: Recurrence

Slide from Stanford CS224

Recap: Attention

Slide from Stanford CS224

Recap: Attention

▪ Generic dot-product attention:

▪ Self-attention: queries, keys, and values
are all different transformations of the
same item-level representation of
some sequence:

Slide from Stanford CS224 and CMU LLMs course

Multi-Head Attention

Slide from Stanford CS224 and CMU LLMs course

Transformer

Vaswani et al. 2017, slide from CMU LLMs course

Encoder

Vaswani et al. 2017, slide from CMU LLMs course

Decoder

Vaswani et al. 2017, slide from CMU LLMs course

Encoder Input

Vaswani et al. 2017, slide from CMU LLMs course and Stanford CS 224

Decoder Input

Vaswani et al. 2017, slide from CMU LLMs course

Attention

Encoder-decoder attention

Self-attention

Masked
self-attention

Vaswani et al. 2017, slide from CMU LLMs course

Encoder

Vaswani et al. 2017, slide from CMU LLMs course

Encoder

Residual
connection

Vaswani et al. 2017, slide from CMU LLMs course

Encoder

Layer
normalization

Vaswani et al. 2017, slide from CMU LLMs course

Encoder

Vaswani et al. 2017, slide from CMU LLMs course

Encoder

Vaswani et al. 2017, slide from CMU LLMs course

Encoder

Vaswani et al. 2017, slide from CMU LLMs course

Decoder

Vaswani et al. 2017, slide from CMU LLMs course

Decoder

Vaswani et al. 2017, slide from CMU LLMs course

Decoder

Vaswani et al. 2017, slide from CMU LLMs course

Decoder

Vaswani et al. 2017, slide from CMU LLMs course

Decoder

Vaswani et al. 2017, slide from CMU LLMs course

Decoder

Vaswani et al. 2017, slide from CMU LLMs course

Decoder

dec

Vaswani et al. 2017, slide from CMU LLMs course

Output Probabilities

Vaswani et al. 2017, slide from CMU LLMs course

Encoder-Decoder Inference

▪ Encode input
sequence

slide from HuggingFace Transformers course: https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s

https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s

Encoder-Decoder Inference

▪ Encode input
sequence

▪ Attention over
input token
representations
and <start>

slide from HuggingFace Transformers course: https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s

https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s

Encoder-Decoder Inference

▪ Encode input
sequence

▪ Attention over
input token
representations
and <start>

▪ Self-attention

slide from HuggingFace Transformers course: https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s

https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s

Encoder-Decoder Inference

▪ Encode input
sequence

▪ Attention over
input token
representations
and <start>

▪ Self-attention

slide from HuggingFace Transformers course: https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s

https://www.youtube.com/watch?v=0_4KEb08xrE&t=204s

Encoder, Decoder, Encoder-Decoder

BART, Lewis et al. 2019

▪ Fixed context lengths “solved” with position embeddings

▪ Self-attention has quadratic cost

▪ Plug: Annotated Transformer (Sasha Rush):
http://nlp.seas.harvard.edu/annotated-transformer/

Problems with the Transformer?

http://nlp.seas.harvard.edu/annotated-transformer/

Step 4: Optimization

Recap: Language Modeling Objective

▪ Assume we have training dataset including documents
comprising sequences of bytes

▪ Our objective is to find the LM parameters that maximize the
probability of this dataset

▪ We assume documents are tokenized into sequences that the
LM models autoregressively:

Recap: Language Modeling Objective

▪ Loss for step i is cross-entropy between true distribution
(i.e., one-hot) and predicted distribution:

p*

Next token prediction

Slide from Stanford CS224

Next token prediction in Transformers

Slide from Greg Durrett, UT Austin CS 388

Next token prediction in Transformers

Slide from Greg Durrett, UT Austin CS 388

Next token prediction in Transformers

Slide from Greg Durrett, UT Austin CS 388

Next token prediction in Transformers

Slide from Greg Durrett, UT Austin CS 388

Next token prediction in Transformers

Slide from Greg Durrett, UT Austin CS 388

Next token prediction in Transformers

Slide from Greg Durrett, UT Austin CS 388

Denoising Objectives

▪ Our goal: learn a distribution over text sequences

▪ Our assumption so far: this distribution is only backwards-
looking (conditioned on prefix of the sequence)

▪ What if we remove this assumption?

Brempong et al. 2022, CVPR

Masking / Infilling Objectives

▪ Randomly mask out ~15% of tokens in the input, and try to
predict them from past and future context

BERT, Devlin et al. 2019 (slide from UT Austin CS 388)

Masking / Infilling Objectives

▪ Randomly mask out ~15% of tokens in the input, and try to
predict them from past and future context

▪ Or mask out spans of text

SpanBERT, Joshi et al. 2020 (TACL)

Auxiliary Objectives

BART, Lewis et al. 2019

Step 5: Inference

Recap: What is a language model?
▪ Language models assign a

probability to a sequence of
words

▪ We can decompose this
probability using the chain rule

▪ We can autoregressively generate
sequences from the language
model by sampling from its token-
level probability

▪ We can condition on our language
distribution on something else

What can we do with language models?

▪ Computing probabilities of a sequence

▪ Autoregressive sequence generation

Decoding strategies

▪ Argmax (greedy decoding)

newspaper book telephone room

Decoding strategies

▪ Argmax (greedy decoding)

▪ Sampling from language model
directly

newspaper book telephone room

Decoding strategies

▪ Argmax (greedy decoding)

▪ Sampling from language model
directly

▪ Adjusting temperature of
distribution

newspaper book telephone room

Decoding strategies

▪ Argmax (greedy decoding)

▪ Sampling from language model
directly

▪ Adjusting temperature of
distribution

Slide from Daphne Ippolito / Chenyan Xiong, CMU LLMs course http://cmu-llms.org/

http://cmu-llms.org/

Decoding strategies

▪ Top-k sampling: reassign probability mass from all but the top k
tokens to the top k tokens

Slide from Daphne Ippolito / Chenyan Xiong, CMU LLMs course http://cmu-llms.org/

http://cmu-llms.org/

Decoding strategies

▪ Nucleus sampling: reassign probability mass to the most
probable tokens whose cumulative probability is at least p

Holtzman et al. 2020, ICLR

Beam search
▪ It’s intractable to find the most

probable sequence according to a
language model

▪ Greedy search doesn’t yield the
most probably sequence

▪ Instead: beam search

▪ Approximate the search by
keeping around candidate
continuations

▪ At the end, choose the highest
probability sequence in the beam

Beam search

▪ But do we even want to find
the highest-probability
sequence according to a LM?

▪ Human language is noisy and
surprising

▪ Optimizing for LM probability
leads to repetitive and
uninteresting text

Holtzman et al. 2020, ICLR

Beam search

▪ But do we even want to find
the highest-probability
sequence according to a LM?

▪ Human language is noisy and
surprising

▪ Optimizing for LM probability
leads to repetitive and
uninteresting text

DetectGPT, Mitchell et al. 2023, ICML

