
Natural Language Processing

LLMs: Adaptation

Recap: What is a language model?
▪ Language models assign a

probability to a sequence of
words

▪ We can decompose this
probability using the chain rule

▪ We can autoregressively generate
sequences from the language
model by sampling from its token-
level probability

▪ We can condition on our language
distribution on something else

Adapting Language Models

Inference-Time Adaptation

▪ Too expensive to fine-tune a model?

▪ Too little (or no) data available for fine-tuning?

▪ No access to model weights?

▪ No access to output probabilities?

▪ No problem

Wei et al. 2022

Prompting and In-Context Learning

Kojima et al. 2022

Calibration
▪ Problem: LMs are biased toward certain predicting certain labels

independently of their input
▪ Solution: identify this underlying bias, then adjust the model’s output

distribution such that it reflects the desired output distribution (e.g.,
50/50 positive/negative)

Zhao et al. 2022

Recap: LM Decoding Methods

▪ Argmax (greedy decoding)

▪ Sampling from language model
directly

▪ Adjusting temperature of
distribution

▪ Top-K sampling

▪ Nucleus sampling: reassign
probability mass to the most
probable tokens whose cumulative
probability is at least p

▪ Beam search

Fancier Decoding Methods

NeuroLogic A*, Lu et al. 2022

Maeutic
Prompting,
Jung et al.

2022

Self-Correction, Welleck et al. 2023

Contrastive Decoding, Li et al. 2023 Equilibrium Ranking, Jacob et al. 2023

Fancier Decoding Methods

Prompt and Prefix Tuning

▪ Instead of designing a prompting method ourselves, why not
train a model to do it?

▪ Training data: examples from our task

▪ Goal: use this training data to find a prompt that, for a
particular model, we perform as well as possible on some held-
out data

▪ Optimizing over discrete prompts is difficult

▪ Instead, represent “prompts” as learned continuous vectors
that we inject into the LLM at inference time

Lester et al. 2021

Prompt and Prefix Tuning

Li and Liang 2021

Alongside word embeddings In attention heads

Lester et al. 2021

▪ Initialize prompt embeddings with pretrained embeddings
corresponding to the task

▪ E.g., “summarize” is better than a randomly-initialized embedding

▪ Benefits:

▪ Embeddings are very small

▪ Don’t need to finetune the model parameters at all

▪ However:

▪ Slower than full-parameter fine-tuning

▪ Learned embeddings are not interpretable

Lester et al. 2021

Prompt and Prefix Tuning

Aside: Learning Discrete Prompts?

▪ Optimizing over discrete spaces is
hard

▪ No gradients: any function
generating a sequence of discrete
outputs is nondifferentiable

▪ Instead: use reinforcement
learning

RLPrompt, Deng et al. 2022

Aside: Learning Discrete Prompts?

Don’t necessarily need
output probabilities
anymore!

RLPrompt, Deng et al. 2022

Aside: Learning Discrete Prompts?

RLPrompt, Deng et al. 2022

Aside: Learning Discrete Prompts?

Fu et al. 2024

Model Finetuning

▪ Assume access to internal
activations of model

▪ Probing methods: add / train a
new prediction head on top of
these activations

▪ If we can update the actual
model parameters, we can do
more

Adapters

▪ Inject a new layer somewhere in the network

▪ Initialize it so it starts like an identity function

▪ Then fine-tune its parameters on some training data (fix the
rest of the network)

▪ Benefits

▪ Pretty fast to train

▪ Empirically effective

▪ But makes the model larger
and slower

Houslby et al. 2019

End-to-End Finetuning
▪ Just update model parameters given some new input/output training data
▪ This can be expensive, so sometimes a subset of parameters are frozen during fine-

tuning to speed the process up
▪ DiffPruning (Guo et al. 2021):
▪ Instead of manually choosing the parameters to freeze, just learn a second

network that models the change that should be applied to each parameter in
the target network

▪ Regularize this second network to encourage sparsity (i.e. changes that are
mostly 0)

▪ Drawbacks:
▪ Results in a single new set of parameters for each task
▪ Can be kind of inefficient, depending on how many parameters you are

updating and how large your network is
Houslby et al. 2019

LoRA, Hu et al. 2021

Efficient Adaptation

▪ Main intuition:

▪ Our initial network starts with some information it’s encoded
through pretraining

▪ For a particular task, this information imposes an upper
bound on the initial network’s performance

▪ But we probably don’t need all of the parameters to perform
well on the task

▪ Intrinsic dimensionality:

Aghajanyan et al. 2021

Low-Rank Adaptation (LoRA)
Main idea: we can decompose application
of a single weight matrix, and only fine-
tune a small set of relevant parameters
• Pre-trained weights:
• What we want to learn:

Hu et al. 2021

At the beginning of
fine-tuning, this is the
identity function

Low-Rank Adaptation (LoRA)
• Significantly fewer parameters to fine-tune

than full fine-tuning
• But still roughly approximates full fine-tuning,

as long as r is the “intrinsic rank” of the original
weight matrix

• Also adds no additional inference latency
because we can precompute

• In practice: adapt attention weights

Hu et al. 2021

At the beginning of
fine-tuning, this is the
identity function

Distillation

▪ Idea: just train a new task-
specific network from scratch on
data sampled from a larger
model

▪ Main benefit: you can get a much
smaller network that you have
full control over and access to

▪ Also, you don’t need to assume
access to model weights, or even
output probabilities

Symbolic Knowledge Distillation, West et al. 2022

Distillation

Jung et al. 2023

Instruction Tuning

▪ Main idea: finetune model with data pairing explicit
descriptions of the task (instructions) with exemplars

Sanh et al. 2022

Instruction Tuning

▪ Convert existing NLP tasks into
instruction-following datasets

Sanh et al. 2022

Datasets

Longpre et al. 2023

Before and After Instruction Tuning

Chung et al. 2022

Before and After Instruction Tuning

Chung et al. 2022

Before and After Instruction Tuning

Chung et al. 2022

▪ Pretty much all competitive
LMs use instruction tuning

▪ Why does this work?

Finetuning for Conversation

▪ Goal: language model that can produce continuations that
appear reasonable in a live conversation with a user

▪ Problems with expecting this from base LLMs:

▪ They are next-word predictors

▪ They aren’t trained on a lot of dialogue data

▪ Dialogue is a complex dynamic process

LaMDA: Finetuning for Conversation
▪ Main idea: Collect data from LLM-user interactions, and finetune
▪ Data collection
▪ Several thousand dialogues between LaMDA and crowdworkers
▪ Other crowdworkers rate conversations on different metrics

▪ Data annotation
▪ Fine-tune LaMDA into a discriminator that predicts ratings of candidate

responses in new dialogues
▪ Use new model to label utterances in pre-training dataset

▪ Conversational fine-tuning
▪ Filter pre-training data to those labeled with high ratings by discriminator
▪ Fine-tune on this high-quality pre-training data
▪ Further fine-tune on 4K “gold-standard” conversations with crowdworkers

Thoppilan et al. 2022

LaMDA: Finetuning for Conversation

Thoppilan et al. 2022

RLHF: Reinforcement Learning
from Human Feedback

Ouyang et al. 2022

RLHF: Reinforcement Learning from Human
Feedback

Main idea:
augment
training by
getting labels
for new
generations
using RL

Ouyang et al. 2022

RLHF: Reinforcement Learning from Human
Feedback

Main idea:
augment
training by
getting labels
for new
generations
using RL

Ouyang et al. 2022

RLHF: Reinforcement Learning from Human
Feedback

Main idea:
augment
training by
getting labels
for new
generations
using RL

Ouyang et al. 2022

RLHF: Reinforcement Learning from Human
Feedback

Main idea:
augment
training by
getting labels
for new
generations
using RL

Ouyang et al. 2022

RLHF: Supervised Fine-Tuning

Ouyang et al. 2022

Initial θ is GPT-3’s parameters.
max

RLHF: Training the Reward Model

Ouyang et al. 2022

Some outputs might be rated equivalent.

Sample between 4 and 9
continuations per prompt.

RLHF: Training the Reward Model

Ouyang et al. 2022

Create a new dataset with prompts paired
with winning and losing continuations.

Expectation over
ranking pairs

Predicted score
for winning
continuation

Predicted score
for losing
continuation

RLHF: Training the Reward Model

Ouyang et al. 2022

Create a new dataset with prompts paired
with winning and losing continuations.

• Architecture is GPT-3 with the final projection layer removed
(and replaced with a projection to predict a scalar)

• Initialized as a (small, 6B) GPT-3 model that was supervised
fine-tuned using

RLHF: Optimizing the LLM Policy

Ouyang et al. 2022

Objective to maximize

KL divergence
between original
policy and current
parameters

Doing a lot of
heavy lifting: PPO

objective to
maximize

