
Natural Language Processing

LLMs: Adaptation



Recap: What is a language model?
▪ Language models assign a 

probability to a sequence of 
words 

▪ We can decompose this 
probability using the chain rule 

▪ We can autoregressively generate 
sequences from the language 
model by sampling from its token-
level probability 

▪ We can condition on our language 
distribution on something else



Adapting Language Models



Inference-Time Adaptation

▪ Too expensive to fine-tune a model? 

▪ Too little (or no) data available for fine-tuning? 

▪ No access to model weights? 

▪ No access to output probabilities? 

▪ No problem



Wei et al. 2022

Prompting and In-Context Learning

Kojima et al. 2022



Calibration
▪ Problem: LMs are biased toward certain predicting certain labels 

independently of their input 
▪ Solution: identify this underlying bias, then adjust the model’s output 

distribution such that it reflects the desired output distribution (e.g., 
50/50 positive/negative)

Zhao et al. 2022



Recap: LM Decoding Methods

▪ Argmax (greedy decoding) 

▪ Sampling from language model 
directly 

▪ Adjusting temperature of 
distribution 

▪ Top-K sampling 

▪ Nucleus sampling: reassign 
probability mass to the most 
probable tokens whose cumulative 
probability is at least p 

▪ Beam search



Fancier Decoding Methods

NeuroLogic A*, Lu et al. 2022

Maeutic 
Prompting, 
Jung et al. 

2022

Self-Correction, Welleck et al. 2023



Contrastive Decoding, Li et al. 2023 Equilibrium Ranking, Jacob et al. 2023

Fancier Decoding Methods



Prompt and Prefix Tuning

▪ Instead of designing a prompting method ourselves, why not 
train a model to do it? 

▪ Training data: examples from our task 

▪ Goal: use this training data to find a prompt that, for a 
particular model, we perform as well as possible on some held-
out data 

▪ Optimizing over discrete prompts is difficult 

▪ Instead, represent “prompts” as learned continuous vectors 
that we inject into the LLM at inference time

Lester et al. 2021



Prompt and Prefix Tuning

Li and Liang 2021

Alongside word embeddings In attention heads

Lester et al. 2021



▪ Initialize prompt embeddings with pretrained embeddings 
corresponding to the task  

▪ E.g., “summarize” is better than a randomly-initialized embedding 

▪ Benefits: 

▪ Embeddings are very small 

▪ Don’t need to finetune the model parameters at all 

▪ However: 

▪ Slower than full-parameter fine-tuning 

▪ Learned embeddings are not interpretable

Lester et al. 2021

Prompt and Prefix Tuning



Aside: Learning Discrete Prompts?

▪ Optimizing over discrete spaces is 
hard 

▪ No gradients: any function 
generating a sequence of discrete 
outputs is nondifferentiable 

▪ Instead: use reinforcement 
learning



RLPrompt, Deng et al. 2022

Aside: Learning Discrete Prompts?

Don’t necessarily need 
output probabilities 
anymore!



RLPrompt, Deng et al. 2022

Aside: Learning Discrete Prompts?



RLPrompt, Deng et al. 2022

Aside: Learning Discrete Prompts?

Fu et al. 2024



Model Finetuning

▪ Assume access to internal 
activations of model 

▪ Probing methods: add / train a 
new prediction head on top of 
these activations 

▪ If we can update the actual 
model parameters, we can do 
more



Adapters

▪ Inject a new layer somewhere in the network 

▪ Initialize it so it starts like an identity function 

▪ Then fine-tune its parameters on some training data (fix the 
rest of the network) 

▪ Benefits 

▪ Pretty fast to train 

▪ Empirically effective 

▪ But makes the model larger 
and slower

Houslby et al. 2019



End-to-End Finetuning
▪ Just update model parameters given some new input/output training data 
▪ This can be expensive, so sometimes a subset of parameters are frozen during fine-

tuning to speed the process up 
▪ DiffPruning (Guo et al. 2021):  
▪ Instead of manually choosing the parameters to freeze, just learn a second 

network that models the change that should be applied to each parameter in 
the target network 

▪ Regularize this second network to encourage sparsity (i.e. changes that are 
mostly 0) 

▪ Drawbacks:  
▪ Results in a single new set of parameters for each task 
▪ Can be kind of inefficient, depending on how many parameters you are 

updating and how large your network is
Houslby et al. 2019



LoRA, Hu et al. 2021

Efficient Adaptation

▪ Main intuition: 

▪ Our initial network starts with some information it’s encoded 
through pretraining 

▪ For a particular task, this information imposes an upper 
bound on the initial network’s performance 

▪ But we probably don’t need all of the parameters to perform 
well on the task 

▪ Intrinsic dimensionality:

Aghajanyan et al. 2021



Low-Rank Adaptation (LoRA)
Main idea: we can decompose application 
of a single weight matrix, and only fine-
tune a small set of relevant parameters 
• Pre-trained weights: 
• What we want to learn:

Hu et al. 2021

At the beginning of 
fine-tuning, this is the 
identity function



Low-Rank Adaptation (LoRA)
• Significantly fewer parameters to fine-tune 

than full fine-tuning 
• But still roughly approximates full fine-tuning, 

as long as r is the “intrinsic rank” of the original 
weight matrix 

• Also adds no additional inference latency 
because we can precompute 

• In practice: adapt attention weights 

Hu et al. 2021

At the beginning of 
fine-tuning, this is the 
identity function



Distillation

▪ Idea: just train a new task-
specific network from scratch on 
data sampled from a larger 
model 

▪ Main benefit: you can get a much 
smaller network that you have 
full control over and access to 

▪ Also, you don’t need to assume 
access to model weights, or even 
output probabilities

Symbolic Knowledge Distillation, West et al. 2022



Distillation

Jung et al. 2023



Instruction Tuning

▪ Main idea: finetune model with data pairing explicit 
descriptions of the task (instructions) with exemplars

Sanh et al. 2022



Instruction Tuning

▪ Convert existing NLP tasks into 
instruction-following datasets

Sanh et al. 2022



Datasets

Longpre et al. 2023



Before and After Instruction Tuning

Chung et al. 2022



Before and After Instruction Tuning

Chung et al. 2022



Before and After Instruction Tuning

Chung et al. 2022

▪ Pretty much all competitive 
LMs use instruction tuning 

▪ Why does this work?



Finetuning for Conversation

▪ Goal: language model that can produce continuations that 
appear reasonable in a live conversation with a user 

▪ Problems with expecting this from base LLMs: 

▪ They are next-word predictors 

▪ They aren’t trained on a lot of dialogue data 

▪ Dialogue is a complex dynamic process



LaMDA: Finetuning for Conversation
▪ Main idea: Collect data from LLM-user interactions, and finetune 
▪ Data collection 
▪ Several thousand dialogues between LaMDA and crowdworkers 
▪ Other crowdworkers rate conversations on different metrics 

▪ Data annotation 
▪ Fine-tune LaMDA into a discriminator that predicts ratings of candidate 

responses in new dialogues 
▪ Use new model to label utterances in pre-training dataset 

▪ Conversational fine-tuning 
▪ Filter pre-training data to those labeled with high ratings by discriminator 
▪ Fine-tune on this high-quality pre-training data 
▪ Further fine-tune on 4K “gold-standard” conversations with crowdworkers

Thoppilan et al. 2022



LaMDA: Finetuning for Conversation

Thoppilan et al. 2022



RLHF: Reinforcement Learning 
from Human Feedback

Ouyang et al. 2022



RLHF: Reinforcement Learning from Human 
Feedback

Main idea: 
augment 
training by 
getting labels 
for new 
generations 
using RL

Ouyang et al. 2022
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RLHF: Supervised Fine-Tuning

Ouyang et al. 2022

Initial θ is GPT-3’s parameters.
max



RLHF: Training the Reward Model

Ouyang et al. 2022

Some outputs might be rated equivalent.

Sample between 4 and 9 
continuations per prompt.



RLHF: Training the Reward Model

Ouyang et al. 2022

Create a new dataset with prompts paired 
with winning and losing continuations.

Expectation over 
ranking pairs

Predicted score 
for winning 
continuation

Predicted score 
for losing 
continuation



RLHF: Training the Reward Model

Ouyang et al. 2022

Create a new dataset with prompts paired 
with winning and losing continuations.

• Architecture is GPT-3 with the final projection layer removed 
(and replaced with a projection to predict a scalar) 

• Initialized as a (small, 6B) GPT-3 model that was supervised 
fine-tuned using 



RLHF: Optimizing the LLM Policy

Ouyang et al. 2022

Objective to maximize

KL divergence 
between original 
policy and current 
parameters

Doing a lot of 
heavy lifting: PPO 

objective to 
maximize


