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Joint Encoding: Multimodal Transformers

ViLT (Kim et al. 2021), encoder-only model (like BERT)
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Joint Encoding: Multimodal Transformers

Flamingo, Alayrac et al. 2022

' Output: text
P N '.-'.'~‘l -
. retrained and frozen ™ a very serious cat. ’

Trained from scrateh —

| . . 1-th GATED XATTN-DENSE
Perceiver Percelver :

nesampler nesampler C 0 mbleck

i 1st GATED XATTN-DENSE

Processed text 1
<image> This 1is a very cute dog.<image> This 1is

Interleaved visual/text data

This is a very cute dog.ﬂ This 1is
I




Joint Encoding: Multimodal Transformers

Flamingo, Alayrac et al. 2022
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This is a cilyseape. 1 looks
like Chicago.

What makes you tink tns 1s
Chicaga?

T think it’s Chicago becanse
of the Shedd Aquariwm in the
background.

Whal about thas one” Which
city s this and what Famous
lindmirk helped you recog-
mse Lhe city?

This is Tokya, | think 's
Tokyo because of the Tokyo
Tower.




Neuromodular Approaches

“Is there a red shape above a circle?”

attend|red]

combine[and]

—»| measure[is] -’C yes )

attend[circle]

' 2

re-attend[above]

Neural Module Networks, Andreas et al. 2017



Neuromodular Approaches

“Is there a red shape above a circle?”
* Map x to some

structured
representation ¢; ()

n . » Manipulate image @, (Z)

attend|[red] .
.—[ —J-O combine[and] | measure[is] ->C yes ) aCCOrd I ng to
attend[circle] re-attend[above] Com ponents Of th IS

structured
representation

Neural Module Networks, Andreas et al. 2017



Neuromodular Approaches

Query q Visual Input z
* Text representation: executable Which pet is in
the top left:
python code 1
* |mage representation: pixels (also |"#=* Generated Godez v
Code LLM D iyl i o 1
assume access to some computer T
vision algorithms) API Specification

Caode Execution ¢

* Grounding: executing python code | - Grbonlrepete
. . ifaetrs h APl Implementation
on image representations

Result; “shiba nu”



Neuromodular Approaches

With sufficiently powerful code
LLMs (e.g., Codex) and access to an
API| that can operate on top of
images (or other modalities), no
domain-specific or multimodal
training is necessary

Query q

“Which pet is in
the top left?”

|

Visual Input z

ViperGPT

APl Specification

= i Cimege. cliject

Code LLM
n

Juse) s toel

Generated Code 2

def process_query_funccion(d ):
inage_patch = ImagefFatzh(inege)
pets = 1majge patch.tini( t)
pers_sarted =

return xesualt

Caode Execution ¢

Python Interpreter
-~

APl Implementation

Result; “shiba nu”




Neuromodular Approaches

Query: How many muffins can each kid have for it to be fair?

ViperGPT, Suris et al. 2023



Neuromodular Approaches

Query: How many muffins can each kid have for it to be fair?

Generated Code

def exzcute commard( r=ge):
image_patch - ImagePatch(image)
rffin_patches = image_patch. find( "mffin")
kid patches = image patch.find("kic")
return str{len(maitin_patches) (/ Len(kid_patches))

ViperGPT, Suris et al. 2023



Neuromodular Approaches

Query: How many muffins can each kid have for it to be fair?

Generated Code

def exzcute commard( r=ge):
image_patch - ImagePatch(image)
rffin_patches = image_patch. find( "mffin")
kid patches = image patch.find("kic")
return str{len(maitin_patches) (/ Len(kid_patches))

ViperGPT, Suris et al. 2023



Neuromodular Approaches

Execution ' kid_patches =
image _patch find("kid")

Query: How many muffins can each kid have for it to be fair?

Generated Code Tuffm _patches =
mage_ patc Lfind(

def exzcute commard( r=ge):
image_patch - ImagePatch(image)
rffin_patches = image_patch. find( "mffin")

"muffin”)

A
kid patches - image patch.find("kid") e - ' > len(muffin_patches)=8
retusm ctrflen(maftin_pazches) ¢/ Len(kid_patches)) '~ »len(kid_patches)=2

’—‘:T_ »8//2 = 4
// ¢ ' |Result:4

‘ﬁ\

X -

ViperGPT, Suris et al. 2023



Neuromodular Approaches

___________

: , : : Execution
. o) kid_patches =
Query: How many muffins can each kid have for it to be fair® image_pateh. £ind("kid")
muffin_patches = [‘
Generated Code image_patch. find("muffin”) ,1

miftin_patches = image_patch. find( "mffin"

def exscute commard( mage): “‘}) o ’\ . l
image_patch - ImagePatch(image) \ > &l " :

kid patches - image paceh. Eind("kic") & e B M PR 1ot
return str{lan(mattin_patches) // Len(kid_patches)) m » len(kid_patches)=2
»8//2 = 4
o// Result:4

Query: Return the two kids that are furthest from the woman right before she hugs the girl

det exccoute comard video)
vigeo_segrent = VidedSegment(video)
haxg_dxected = False
for i, fraw in sorera e(viceo_segeent  frame_iterator)):
il Comme exists"woran®) aixd “remeexists{Mgicl®) and Y,
freme. shple_query."Ts the wonan ugging the glol?*) - "yes":
hug_detected = True
break
Lt hug_detected:
idex_trame = 1 - 1
frame_of _interest = ImagePatch vidso_sagmart, indax_frama)
wotan_patches = frame of interest. Cind{"woran")
woran_patch = wornan_satd es[@]
kid_patchss = franme_of _Intevest. find("kid")
kid_patchas scrt(key=larbda kid: distancelkid, woman_patdh))
kid_patch_1 = kid_patches[-1]
kid patch_Z = Eid patches|-2]
retu [Kid paten 1, Kad patch 2]

viperar i, >uris et al. zu23



Neuromodular Approaches

...........

Query: Howm 1 : . . Execution
. 2 kid_patches =
ery: any muffins can each kid have for it to be fair" image_patch. £ind( "kid")
Generated Code muf fin_patches =

image_ patch find("muffin”)

def exzcute commard( r=ge):
image_patch - ImagePatch{image)
rmiftin_patches = image_patch. find( "mffin")

kid patches = image pacch.find( "kic") » len(muffin_patches)=8
return str{lan(mattin_patches) // Len(kid_patches)) » len(kid_patches)=2
»8//2 = 4
Result:4
Query: Return the two kids that are furthest from the woman right before she hugs the girl
det execute comard video) -
video_segrent = VideoSegment(video) : 'f‘"g-"'""""' v P _patche~
haxg_dxected = False St
for i, fraw in sorera e(viceo_segeent  frame_iterator)): &
il Comme exists"woran®) aixd “remeexists{Mgicl®) and Y,
freme. shple_query."Ts the wonan ugging the glol?*) - "yes":
hug_detected = True —
break » kid patches-

L hul detected:
index_trame = 1 - 1
frame_of _interest = ImagePatch video_sagmart, indsx_frama)
wotan_patches = frame of interest. Cind{"woran")
woran_patch = wornan_satd es[@]
kid_patchss = franme_of _Intevest. find("kid")
kid_patchas scrt(key=larbda kid: distancelkid, woman_patdh))
kid_patch_1 = kid_patches[-1]
kid pateh_ 2 = Kid patches[-2]
ratum [kid paten 1, kid patch 2]

M
Result: H

viperwF1, suris et al. 2023




Neuromodular Approaches

Query: What color do you get if you combine the colors of the viper and the flower?

def execute_command( imace):
image_patch = ImagePatch(image)
viper patches = image patch.find("viper")
flower_patches = image_patch.find("flower")
viper_patch = viper_patches[@]
flower patch = flower patches|[@]
viper color = viper_patch.simple_query("What color is the viper?")
flower_color = flower_patch.simple_query("What color is the flower?")
color = Llm_query(f"What color do you get if you combine the colors
{viper color} and {flower_color}?")
return color

» viper_color="blue’
» flower_color=‘red’
» color="purple’

Result: “purple”

ViperGPT, Suris et al. 2023



Drawback: Context-Dependence

“Is the potted plant to the
right of the bench?”

Visual Spatial Reasoning, Liu Fangyu et al. 2023



Drawback: Context-Dependence

“Is the potted plant to the bbox_plant = detect(image, “potted plant”)
right Ofthe bbox_bench = detect(image, ‘“bench”)

return bbox_plant.x > Dbbox_bench.x

Visual Spatial Reasoning, Liu Fangyu et al. 2023



Drawback: Context-Dependence

“Is the potted plant to the bbox_plant = detect(image, “potted plant”)
right Of the bench?” bbox_bench = detect(image, “bench”)

return bbox_plant.x > bbox_bench.x

gd plant

bench

Visual Spatial Reasoning, Liu Fangyu et al. 2023



Drawback: Context-Dependence

“Is the potted plant to the bbox_plant = detect(image, “potted plant”)
right ofthe bench?” bbox_bench = detect(image, “bench”)

return bbox_plant.x > Dbbox_bench.x
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Visual Spatial Reasoning, Liu Fangyu et al. 2023



Drawback: Context-Dependence

“Is the potted plant to the bbox_plant = detect(image, “potted plant”)
right ofthe bench?” bbox_bench = detect(image, “bench”)

return bbox_plant.x > bbox_bench.x
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Drawback: Context-Dependence

“Is the potted plant to the bbox_plant = detect(image, “potted plant”)
right Of the bench?” bbox_bench = detect(image, “bench”)

return bbox_plant.x > bbox_bench.x

potted plant

bench

Visual Spatial Reasoning, Liu Fangyu et al. 2023



Drawback: Context-Dependence

“Is the pOttEd p/ant to the bbox_plant = detect(image, “potted plant”)
right ofthe bench?” bbox_bench = detect(image, “bench”)

return bbox_plant.x > bbox_bench.x

—_

e .
b S

Visual Spatial Reasoning, Liu Fangyu et al. 2023



Diffusion

* Different setting: image is not provided as input

* |nstead, want to generate an image from scratch conditioned
on some text description

* Problem: evaluation



Forward Process: Adding Noise

g (Xt |Xt -1 )
. . . @ } H | | | H @ H

T
Image from training set q(Xl;T ‘ XO) = H q(Xt ‘ Xt—l)
t=1

Diagonal Gaussian distribution\ Markov chain>

q(x¢ | X¢—1) =N (Xt; \/1 — 5tXt—1,5tI)

575 - (07 ]-) ) J , J
B < B << 6 Means: will get closer to zero_/ Variance
1 2 T Slides from Aryan Jain, CS 198-126 Fall 2022, and Ari Seff




Forward Process: Adding Noise

Q(Xt|Xt—1)
O 00y 6y

Q(Xt Xt—l) (Xt, \/1 — BiX¢—1, 5t1)
(X0 | x) = N(0,1)

Slides from Aryan Jain, CS 198-126 Fall 2022, and Ari Seff



Reverse Process: Denoising

Slldes from Aryan Jain, CS 198-126 Fall 2022, and Ari Seff



Reverse Process: Denoising

‘--—’

‘5__—-"

Parameterized denoising process

Po(Xe—1 | X¢) = N (Xe—1; o (xe, 1), Yo (x4, 1))
T

pH(XO:T) — p(XT) HP@(Xt—l \ Xt) p(XT) — N(XT; 0, I)

t=1 Slides from Aryan Jain, CS 198-126 Fall 2022, and Ari Seff



Latent Variable Problem




Training

General variational objective

log pg(7) 2 Eq(z|2) [logpe(z | 2)|] = Dk (¢(2 | 2)[[pa(2))

Maximize the likelihood Make the posterior

of observed variables x distribution of latents z
over distribution of given observed

latent variables z given variables similar to the
observed variables prior over latents

log pg(x0) >
Lq(x1.|x0) 108 Pe(X0 | X1:7)] — Dir (¢(X1:7 | X0)||po(X1.7))




Training

Algorithm 1 Training

1: repeat

2: xp~ q(x0)+ Sample an image from training set
L~ Uniform({l, ‘e aT})< Sample a random timestep

3
4: €~ N(0,I)
5: Take gradient descent step on

Vo ||e — ea(v/@xo + V1 — aue, t)||
6: until converged

Can sample directly from O to timestep t!

q(x¢ | x0) = N (%45 Vauxo, (1 — a@)I)



Training

Algorithm 1 Training
1: repeat
2: xp~ q(x0)+ Sample an image from training set
3: t~ Uniform({1,... :T}) B Sample a random timestep
4: €~ N(0,I) .
5: Take gradient desce on We are actually learning
= = 2 arameters for
Vo ||e — €5(v/@xo + VI — due, t)| i €6

6: until converged

po(x¢—1 | X¢) = N (X¢—1; o (X, 1), Lo (X4, 1))
o (Xs, t) = L (xt _ b ee(xt,t)>




Training

inout
e cutput
lmal?lf *1*1 N *|*1* segreentation
A4 44 map
L ——

We are actually learning

W

’I’! _' — il seeasu parameters for
iR — [ g g ’mgmcl 2x2 60
| esmem— iy _—

Typically a U-Net

p@(Xt—l ‘ Xt) — N (Xt—l; :u@(Xta t)? ZQ(Xta t))
1 By
I"G(xt,t) = \/—a—t (xt — JI—a, 69(xtat))




Inference

Algorithm 2 Sampling

l: xp ~ N(O, I)< Sample noise to condition upon
cfort=1T,...,1do <« Rollout by iteratively sampling
z ~N(0,I)ift > 1,elsez=0

o 1 l—ay
Xt-1 = T (xt ﬁeg(xt,t)) + 07
end for
: return Xg

S e




Diffusion
Forward process: convert

Image to noise

Reverse process: sample from

the distribution of images,
starting with pure noise




Text-Conditioned Diffusion

* Like any latent variable model, we
can just add in another observed
variable to condition upon

* |n this case, it might be an object
class or a text description

A cute corgi lives in a house made of sushi.




Text-Conditioned Diffusion

* Like any latent variable model, we
can just add in another observed
variable to condition upon

* |n this case, it might be an object
class or a text description

* We can also generate media
beyond 2d images...

Horse drinking water ' B s



Text-Conditioned Diffusion

* Like any latent variable model, we

, , A lobster playing the saxophone
can just add in another observed praying P

variable to condition upon

* |n this case, it might be an object
class or a text description

* We can also generate media

beyond 2d images...



Situated Instruction Following

i
¥
'
3 . ol ~
> - 1 "‘\_ R A~ v
- e .\‘ -
Googh ‘ > ——— e

Leave the bedroom, and enter  Orient yourself so that the umbrellas are to the right. Go
the kitchen. Walk forward, and  straight and take a right at the first intersection. At the
take a left at the couch. Stop in  next intersection there should be an old-fashioned store
front of the window. to the left. There is also a dinosaur mural to the right.



Situated Instruction Following

f (instruction,

ALFRED, Shridhard et al. 2020 CerealBar, Suhr et al. 2019

N -

Pick up knife, cut potato, put  Turn around and get the three red stripes behind you.
potato in fridge, remove from

fridge, place in the microwave




Environments

e 2D or 3D rendered environments WebArena, Zhou Shuyan et al. 2023

* Can easily generate new
environments on the fly

* Support manipulable environments

* Simulation allows for rapid

experimentation and evaluation
Al2-THOR, Kolve et al. 2022 Alexa Arena, Gao Qiaozi et al. 2023 VRKitchen, Gao Xiaofeng et al. 2019




Environments

* 2D or 3D rendered environments

* Photorealistic environments

Gibson Env, Xia Fei et al. 2018 StreetLearn, Mirowski et al. 2019




Environments

* 2D or 3D rendered environments
* Photorealistic environments

* Literal physical embodiment (robotics)

ers et al. 2023

3

SayCan, Ahn et al. 2022 GRIF, My

% Place the knife
L8N i1 front of the

-~ b

\ o .
sl | microwave.




Embodied Agents: Challenges

Grounding language to perception

Reasoning about world dynamics

Grounding language to action

In collaborative tasks: also reasoning about one’s interlocutor
Evaluating success



Reasoning about World Dynamics

(Partially observable) Markov decision
process formulation of embodied agents



Reasoning about World Dynamics

(Partially observable) Markov decision
process formulation of embodied agents

e States S (and observations (D)




Reasoning about World Dynamics

(Partially observable) Markov decision
process formulation of embodied agents

e States S (and observations (D)
e Actions A

OPEN(FRIDGE)



Reasoning about World Dynamics

(Partially observable) Markov decision
process formulation of embodied agents

e States S (and observations (D)
e Actions A
e Transition function 7 : S x A — A°




Reasoning about World Dynamics

(Partially observable) Markov decision
process formulation of embodied agents

e States S (and observations (D)

e Actions A

e Transition function 7 : S x A — A®
e Reward function R : S x A xS — R

OPEN(FRIDGE)




Reasoning about World Dynamics

(Partially observable) Markov decision
process formulation of embodied agents

e States S (and observations (D)

e Actions A

e Transition function 7 : S X A — A®
e Reward function R : S x A xS — R

T:0 = AA




Reasoning about World Dynamics

What is your state space?
* Does it include all information about the environment?

* Does it include information about the trajectory so far, e.g., previous
states and actions?

* Does it include a natural language instruction?
Is the environment partially observable?
What is the action space?

* Lowest level action space: continuous control

* Higher level action space: sufficient for simulated environments
How is the policy implemented?



Embodied Agent Policies

Observation space: Policy: whatever neural
e Previous and current visual implementation you want

observations W q

e Previous actions
Action Probability

e |nstruction

LEFT 64%
LEFT
RIGHT 2%
FORWARD 28%
BACKWARD 3%
STOP 3%

Turn around and get the
three red stripes behind you.



Grounding Language to Action

I. Make a red flower, by g (ol
coloring in red all tiles o (44
adjacent (o the 2nd tile

’ HOW do we deflne our aCtlon from the top m the 2nd
S p ace ? column from the left.

* |[n many cases, language provides
a decent set of abstractions that
nelp us define meaningful higher-

evel action spaces

* Language can also allude to
structured action spaces

Hexagons, Lachmy et al. 2022



Grounding Language to Action

I. Make a red flower, by g (ol
coloring in red all tiles o 4 05020
adjacent (o the 2nd tile

’ HOW do we deflne our aCt'On from the top m the 2nd
S p ace ? column from the left.

* Inmany cases, language provides  * (TR @il

tern acrosy the board 8303 " Seseses
a decent set of abstractions that to the right aliernating ({3 L EL LS
yelow and red, leav- ’ " oo "Hv 'H' »_‘ - — "—

nelp us define meaningful higher-  ine stk cotumn b 0000
tween every 2 flowers. OO0
evel action spaces

* Language can also allude to
structured action spaces

Hexagons, Lachmy et al. 2022



Grounding Language to Action

. Make a red flower, by
coloring in red all tiles
adiacent (o the 2nd tle

* How do we define our action
space?

from the top m the 2nd
column from the left.

Repeat this flower pat-

tern across the board

* In many cases, language provides *

a decent set of abstractions that
nelp us define meaningful higher-
evel action spaces

* Language can also allude to
structured action spaces

to the right, alternating
yvellow and red, leav-
ing a blank column he-
tween every 2 flowers.

3. Repear this row of
fowers 2 more Limes,

but reverse the colors
in each new row,
You should get 6 red
fHlowers and 6 yellow
flowers in toral.

el D | S Sl S Y el S D

Pk e e e S s —

Hexagons, Lachmy et al. 2022



Reasoning about an Interlocutor

* Single instruction following — still could Room to Room, Anderson et al. 2018
require pragmatic reasoning Goalk ST

Leave the bedroom, and enter
the kitchen. Walk forward, and
take a left at the couch. Stop in
front of the window.



Reasoning about an Interlocutor

* Single instruction following — still could

CerealBar, Suhr et al. 2019
require pragmatic reasoning

haouse and lock for 2 green circles to pick up

turn left tvsice and head straight , toward the dog |
* Following sequences of instructions —

user can dynamically instruct the agent
according to its current behavior




Reasoning about an Interlocutor

* Single instruction following — still could TEA’ ?af:r:?t?rfﬁ etal. 2021

. . . 6 Check the tridpe ro your left
require pragmatic reasoning L= -

| ‘b]

* Following sequences of instructions —
user can dynamically instruct the agent
according to its current behavior

* Bidirectional conversation — agent can
ask for clarification or help

shelf. Where's the sink’;.'




Reasoning about an Interlocutor

Single instruction following — still could CARDS, Djalali et al. 2011
require pragmatic reasoning

Following sequences of instructions — mvormactan N\ /“‘
user can dynamically instruct the agent sy EA SR |

according to its current behavior

Bidirectional conversation — agent can
ask for clarification or help

Fully embodied multi-agent conversation /

— agents can form conventions, | ) N | o
negotiate how to solve the task, perform e
joint planning, etc.

The carde you ae hodieg



Reasoning about an Interlocutor

Single instruction following — still could
require pragmatic reasoning

Following sequences of instructions —
user can dynamically instruct the agent
according to its current behavior

Bidirectional conversation — agent can
ask for clarification or help

Fully embodied multi-agent conversation
— agents can form conventions,
negotiate how to solve the task, perform
joint planning, etc.

Portal 2 Dialogues

[Poral Gun Porsary Firn| .
Wait, so where else could we launch from?

- e
L LR

Oh, we can launch from here.
|



Reasoning about an Interlocutor

Pragmatic reasoning

In collaborative tasks:
agents need to use
language to achieve a
shared goal

Need to model other

agent’s:
Beliefs
* Goals
* Observations
* Knowledge
* Affordances

MindCraft, Bara et al. 2021

B crng - e VTS e ) i b By g e

s you cremed BLUE WOO. wrtl

't

T e Pk T e (i e
NOW 10 e YELLUW WO T
" oeew «

Wt 40 yon Bk b o plaryw
Mg Mg Now ?

Player A

otk —

I u3t finished making Blue 'Wocol Let's mace Cobblestone next
Okay, do you know how to mzk2 Yellow Woal?
Iron and Yellow make Cobblastone, 40 you have Yellow Wool /

Net yet, you can make it

At thiz point, Player A azsures Player B <nows how to make Yellow Wool from their
conversation, end arswers YES' to ‘Do you think the other player knows how to moke
YELLOW WOOLY inthe popup.

After the convarsation, Playar B realizes that they con’t know how to make Yellow Wool a¢
they were nodt given the knowledge; and so answers ‘NO’ to ‘Do you krcw how to make
YELLON WOCL? in the pcpup befare continuing on with the game,

Here, plzyers did not reach common ground

Wait, 1dor’s actua ly know how Lo make Yellow Wocl,

| Player A's et Recording || Player As Pcintof View || Third Person Point of View || Ployer s pointof view || Ployer s Beiet Recording
Please Answer Tha Please Answer The
Following Cuestions

Following Questione

Player B




Evaluating Success

* High-level desideratum of language agents: assist a human user in
accomplishing their goal as efficiently as possible.

* Automatic evaluation
* Low-level metrics: matching human demonstrations

* Entire action sequence
* Action-level accuracy, conditioned on oracle prefix
* Higher-level metrics: success rate
 Difficult to define for multi-turn conversation
* Human evaluation
 When deployed with real users, how effective is the agent?
* Challenge: human adaptation of expectations, behavior, and language



Learning

* |Imitation learning

arg IIlHaX ‘E(O,a)epﬂ'(a | O, 19)

Maximum likelihood Expectation over Policy parameterized
objective demonstrations with 6

Essentially supervised learning on a dataset of instructions and
observations paired with human demonstrations.



Learning

* |Imitation learning

* Reinforcement learning

arg max E, ., R(7)

Expectation Reward
a; ~ mo(- | §5—1) PectEton - mew
over trajectoriesachieved by
S T( ‘ Si—1, CLQ;) sampled from 1t trajectory 7]

R(T) = Z R(s;,a;)v"



Learning

mitation learning

Reinforcement learning

LM planning methods

SayCan, Ahn et al. 2022



