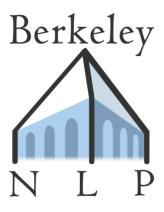
Natural Language Processing



Large Language Models

Low-Rank Adaptation (LoRA)

Main idea: we can decompose application of a single weight matrix, and only finetune a small set of relevant parameters

- ullet Pre-trained weights: $W_0 \in \mathbb{R}^{d imes k}$
- What we want to learn: $W_0 + \Delta W$

$$\Delta W = BA$$

$$B \in \mathbb{R}^{d \times r}$$

$$A \in \mathbb{R}^{r \times k}$$

$$r \ll \min(d, k)$$



At the beginning of fine-tuning, this is the identity function

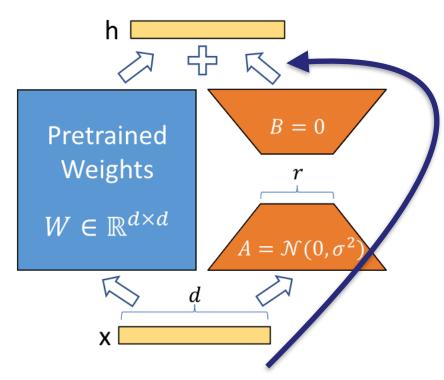
Low-Rank Adaptation (LoRA)

- Significantly fewer parameters to fine-tune than full fine-tuning
- But still roughly approximates full fine-tuning, as long as r is the "intrinsic rank" of the original weight matrix
- ullet Also adds no additional inference latency because we can precompute $W=W_0+BA$
- In practice: adapt attention weights

$$B \in \mathbb{R}^{d \times r}$$

$$A \in \mathbb{R}^{r \times k}$$

$$r \ll \min(d, k)$$



At the beginning of fine-tuning, this is the identity function

PROMPT Explain the moon landing to a 6 year old in a few sentences.

COMPLETION

GPT-3

Explain the theory of gravity to a 6 year old.

Explain the theory of relativity to a 6 year old in a few sentences.

Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

Main idea:
augment
training by
getting labels
for new
generations
using RL

Main idea: augment training by getting labels for new generations using RL

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Main idea: augment training by getting labels for new generations using RL

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

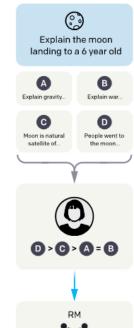
Step 2

Collect comparison data, and train a reward model.

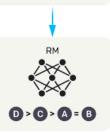
A prompt and several model outputs are sampled.

A labeler ranks

the outputs from best to worst.



This data is used to train our reward model.



Main idea: augment training by getting labels for new generations using RL

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

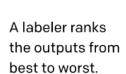
A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

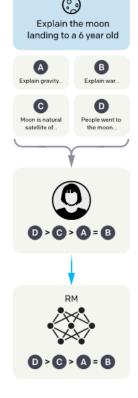
Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.



This data is used to train our reward model.



Step 3

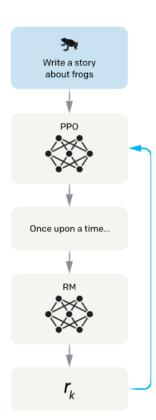
Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.



RLHF: Supervised Pre-Training

Step 1

Collect demonstration data. and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

 $p \sim \mathcal{D}_p$

 $\overline{x} = \text{HumanDemonstration}(p)$ $\mathcal{D}_d = \mathcal{D}_d \cup \{p\overline{x}\}$

Initial θ is GPT-3's parameters. $\theta_{\sup} \approx \arg\min_{\theta} \mathbb{E}_{d \in \mathcal{D}_d} \log(\pi_{\theta}(d))$

PROMPT Explain the moon landing to a 6 year old in a few sentences.

COMPLETION

Human

A giant rocket ship blasted off from Earth carrying astronauts to the moon. The astronauts landed their spaceship on the moon and walked around exploring the lunar surface. Then they returned safely back to Earth, bringing home moon rocks to show everyone.

RLHF: Training the Reward Model

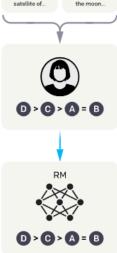
Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.



$$p \sim D_p \ ilde{\mathcal{X}} \sim \pi_{ heta_{ ext{sup}}}(\cdot \mid p) \ ext{ Sample between 4 and 9 } \ ext{continuations per prompt.}$$

$$\langle \tilde{x}_0, \dots, \tilde{x}_N \rangle = \operatorname{HumanRanking}(p, \tilde{\mathcal{X}})$$
Some outputs might be rated equivalent.

RLHF: Training the Reward Model

$$\begin{array}{ccc}
p, \langle \tilde{x}_0, \dots, \tilde{x}_N \rangle \\
r(\tilde{x}_i) \geq r(\tilde{x}_{i+1}) & \longrightarrow & \mathcal{D}_r = \{(p, \tilde{x}_w, \tilde{x}_l)\} \\
r(\tilde{x}_w) \geq r(\tilde{x}_l)
\end{array}$$

Create a new dataset with prompts paired with winning and losing continuations.

$$\theta_{\text{reward}} \approx \arg \max_{\theta} \mathbb{E}_{(p, \tilde{x}_w, \tilde{x}_l) \sim \mathcal{D}_r} \log \left(\sigma(r_{\theta}(p, \tilde{x}_w) - r_{\theta}(p, \tilde{x}_l)) \right)$$

Expectation over ranking pairs

Predicted score for winning continuation

Predicted score for losing continuation

RLHF: Training the Reward Model

$$r(\tilde{x}_i) \geq r(\tilde{x}_{i+1}) \longrightarrow \mathcal{D}_r = \{(p, \tilde{x}_w, \tilde{x}_l)\} \\ r(\tilde{x}_w) \geq r(\tilde{x}_{i+1})$$

Create a new dataset with prompts paired with winning and losing continuations.

$$\theta_{\text{reward}} \approx \arg \max_{\theta} \mathbb{E}_{(p, \tilde{x}_w, \tilde{x}_l) \sim \mathcal{D}_r} \log \left(\sigma(r_{\theta}(p, \tilde{x}_w) - r_{\theta}(p, \tilde{x}_l)) \right)$$

- Architecture is GPT-3 with the final unembedding layer removed (and replaced with a projection to predict a scalar)
- ullet Initialized as a (small, 6B) GPT-3 model that was supervised finetuned using \mathcal{D}_d

RLHF: Optimizing the LLM Policy

Step 3

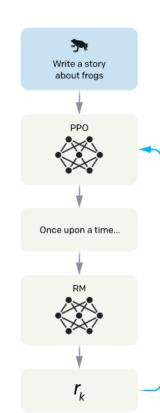
Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.



Doing a lot of heavy lifting: PPO objective to maximize

$$egin{aligned} x &\sim \pi_{ heta}(\cdot \mid p) \ s &= r_{ heta_{ ext{reward}}}(p, ilde{x}) \end{aligned}$$

KL divergence between original policy and current parameters

$$\mathbb{E}_{p \in \mathcal{D}_p} \left(s - \beta \log \left(\frac{\pi_{\theta}(\tilde{x} \mid p)}{\pi_{\theta_{\text{sup}}}(\tilde{x} \mid p)} \right) \right)$$

$$+\mathbb{E}_{d\in\mathcal{D}_d}\log\left(\pi_{\theta}(d)\right)$$

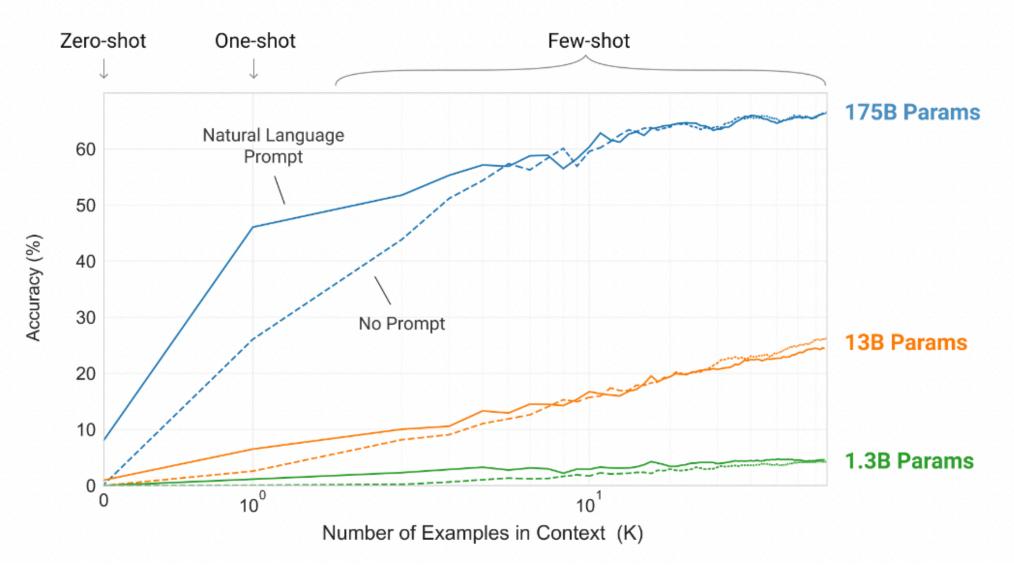
Objective to maximize

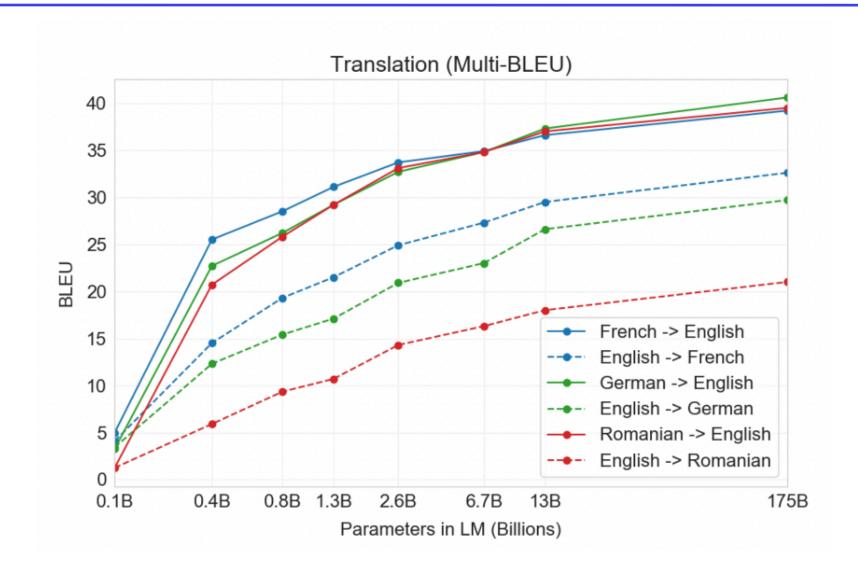
Scaling

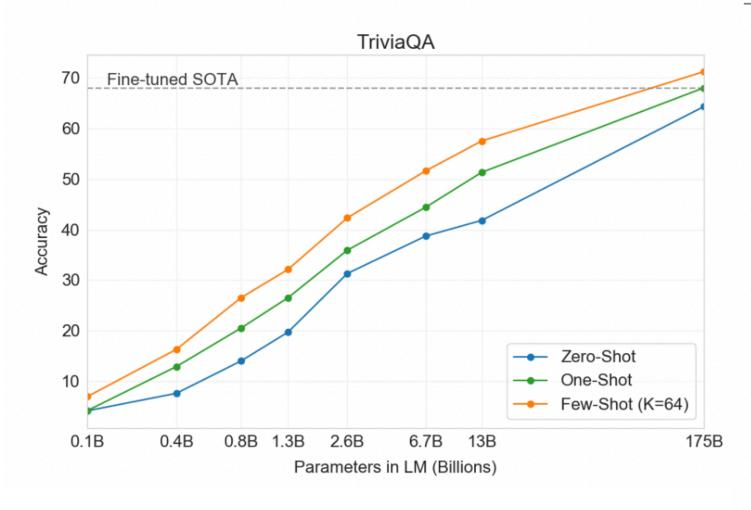
How does performance improve when:

- Increasing the number of few-shot examples?
- Making the model larger?
- Making the dataset larger?
- Increasing the batch size?
- Training the model for longer?

Scaling: Few-Shot Examples







Question: The Dodecanese Campaign of WWII that was an attempt by the Allied forces to capture islands in the Aegean Sea was the inspiration for which acclaimed 1961 commando film?

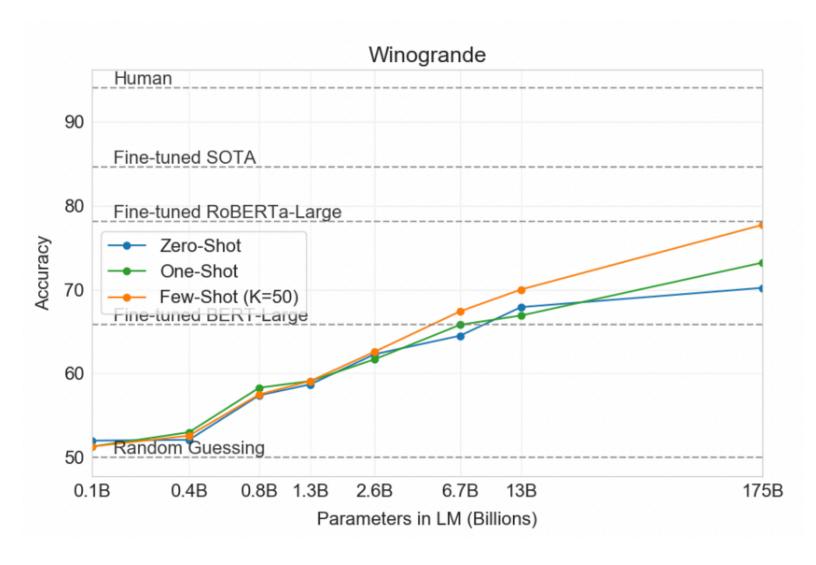
Answer: The Guns of Navarone

Excerpt: The Dodecanese Campaign of World War II was an attempt by Allied forces to capture the Italian-held Dodecanese islands in the Aegean Sea following the surrender of Italy in September 1943, and use them as bases against the German-controlled Balkans. The failed campaign, and in particular the Battle of Leros, inspired the 1957 novel **The Guns of Navarone** and the successful 1961 movie of the same name.

Question: American Callan Pinckney's eponymously named system became a best-selling (1980s-2000s) book/video franchise in what genre?

Answer: Fitness

Excerpt: Callan Pinckney was an American fitness professional. She achieved unprecedented success with her Callanetics exercises. Her 9 books all became international best-sellers and the video series that followed went on to sell over 6 million copies. Pinckney's first video release "Callanetics: 10 Years Younger In 10 Hours" outsold every other **fitness** video in the US.

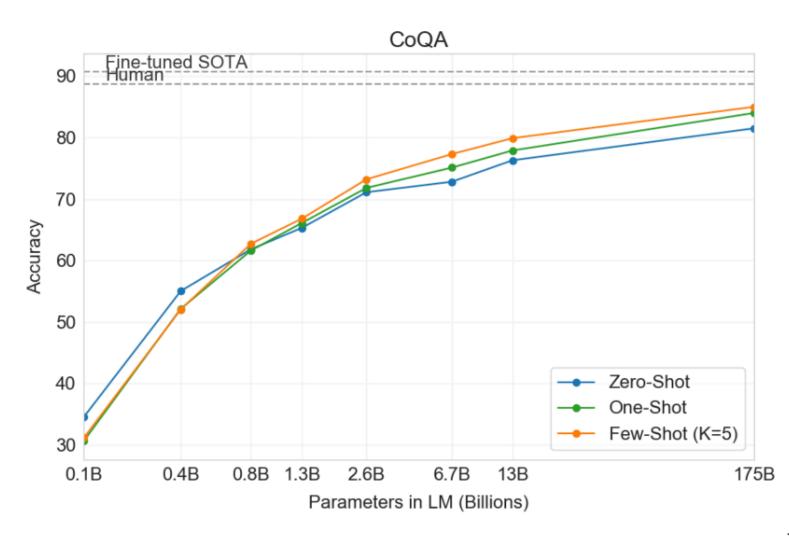


The trophy doesn't fit into the brown suitcase because **it's** too <u>large</u>.

it = trophy

The trophy doesn't fit into the brown suitcase because **it's** too <u>small</u>.

it = suitcase



Jessica went to sit in her rocking chair. Today was her birthday and she was turning 80. Her granddaughter Annie was coming over in the afternoon and Jessica was very excited to see her. Her daughter Melanie and Melanie's husband Josh were coming as well. Jessica had . . .

 Q_1 : Who had a birthday?

A1: Jessica

R₁: Jessica went to sit in her rocking chair. Today was her birthday and she was turning 80.

Q2: How old would she be?

A2: 80

R₂: she was turning 80

 Q_3 : Did she plan to have any visitors?

A₃: Yes

R₃: Her granddaughter Annie was coming over

Q₄: How many?

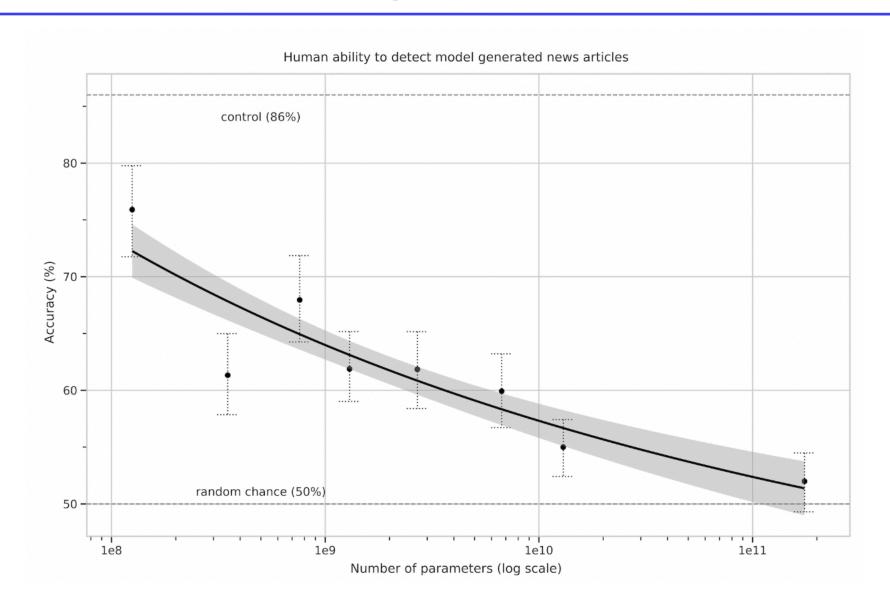
A₄: Three

R₄: Her granddaughter Annie was coming over in the afternoon and Jessica was very excited to see her. Her daughter Melanie and Melanie's husband Josh were coming as well.

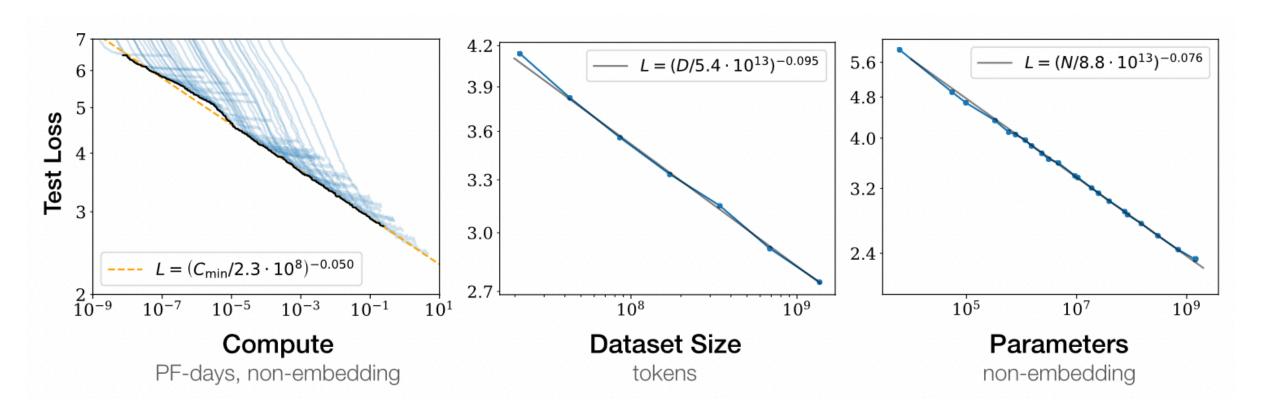
Q₅: Who?

A5: Annie, Melanie and Josh

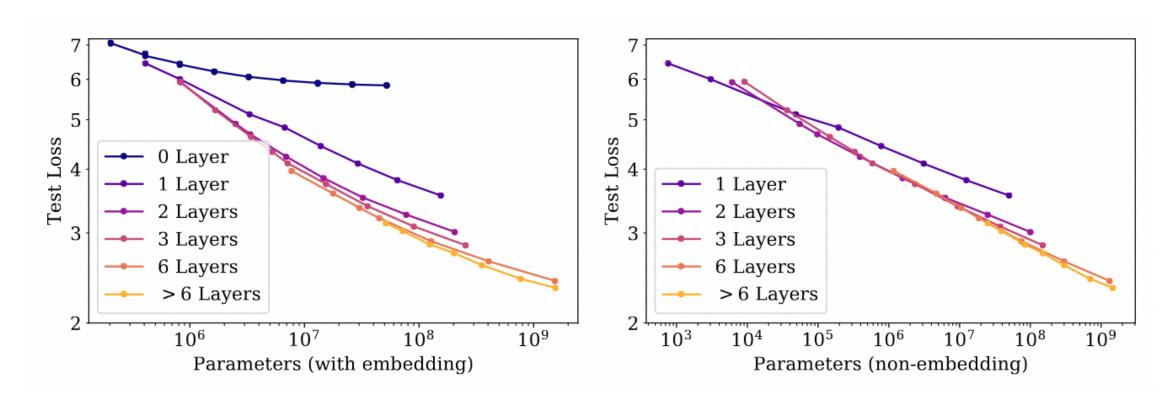
R₅: Her granddaughter Annie was coming over in the afternoon and Jessica was very excited to see her. Her daughter Melanie and Melanie's husband Josh were coming as well.



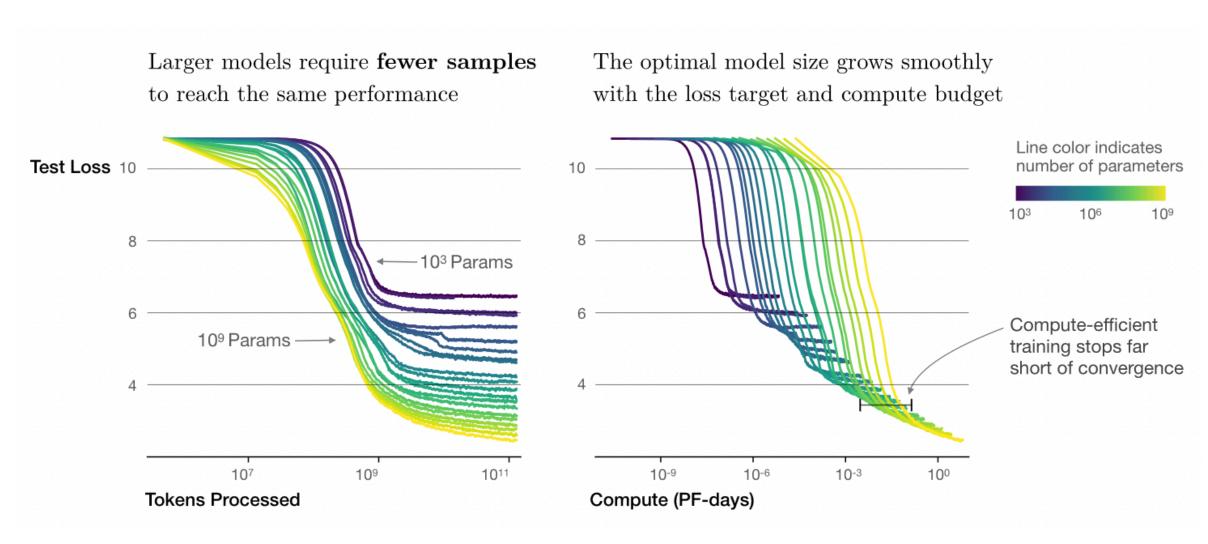
- N is the number of parameters (excluding vocabulary and positional embeddings)
- B is the batch size
- S is the number of training steps (parameter updates)
- C = 6NBS is an estimate of the total non-embedding compute (unit: PF-days, i.e., the number of floating point operations that can be performed in 1 day)

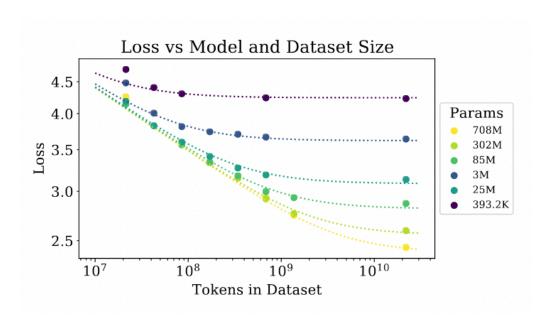


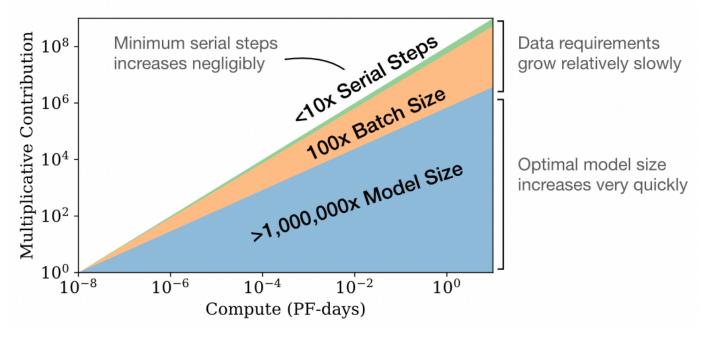
We can predict test loss of a Transformer language model from the number of parameters, dataset size, or compute budget.



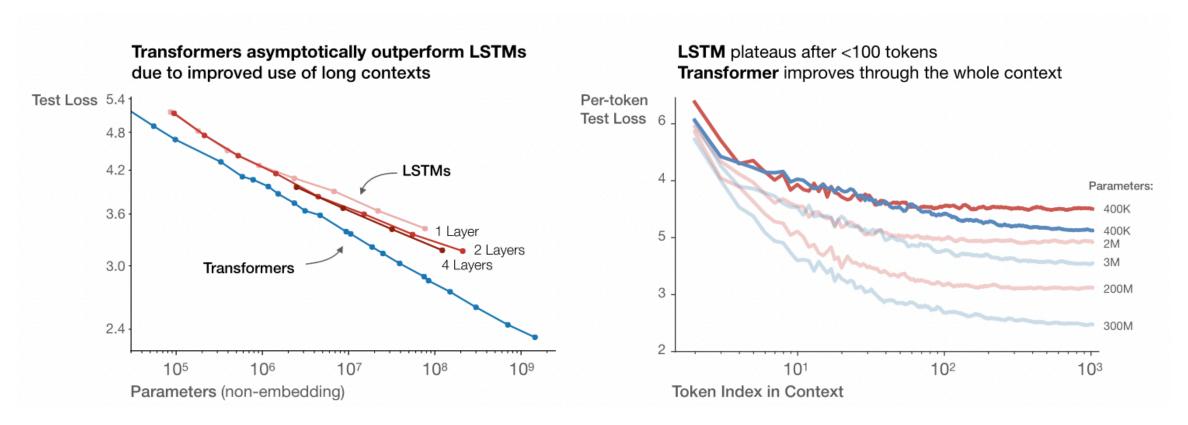
Why consider only non-embedding parameters? Laws are more complex (also take into account number of layers)







As our training budget increases, compute should be allocated to model size, rather than batch size or number of training steps



1. For models with a limited number of parameters, trained to convergence on sufficiently large datasets:

$$L(N) = (N_c/N)^{\alpha_N}$$
; $\alpha_N \sim 0.076$, $N_c \sim 8.8 \times 10^{13}$ (non-embedding parameters) (1.1)

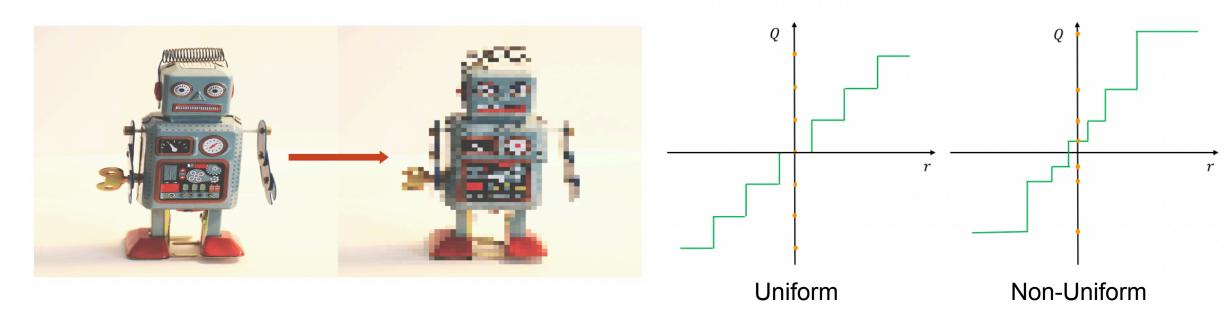
2. For large models trained with a limited dataset with early stopping:

$$L(D) = (D_{\rm c}/D)^{\alpha_D}; \ \alpha_D \sim 0.095, \ D_{\rm c} \sim 5.4 \times 10^{13} \text{ (tokens)}$$
 (1.2)

3. When training with a limited amount of compute, a sufficiently large dataset, an optimally-sized model, and a sufficiently small batch size (making optimal use of compute):

$$L(C_{\min}) = (C_{\rm c}^{\min}/C_{\min})^{\alpha_C^{\min}}; \quad \alpha_C^{\min} \sim 0.050, \quad C_{\rm c}^{\min} \sim 3.1 \times 10^8 \text{ (PF-days)}$$
 (1.3)

Quantization

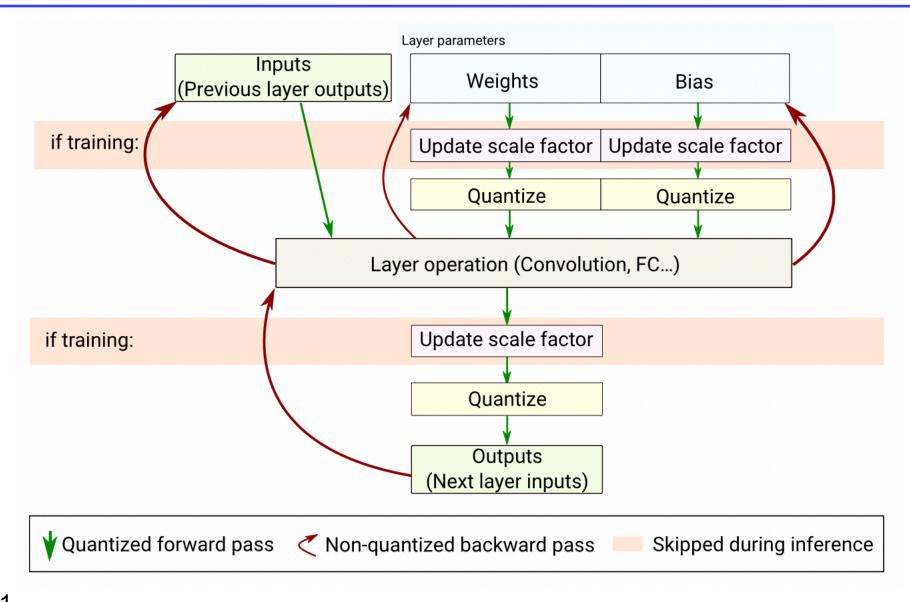


Main principle: use lower-precision representations of network parameters

Quantization

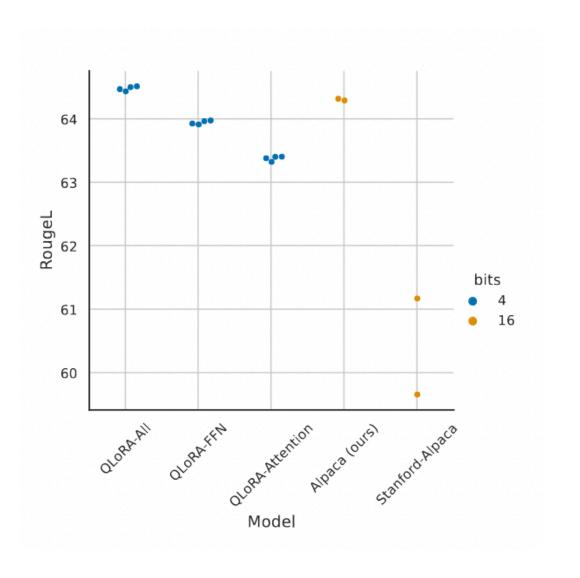
- Reduces space required to store model: useful for on-device inference
- Two primary methods
 - Post-training quantization
 - Quantization-aware training

Quantization-Aware Training



QLoRA

- Quantize pre-trained model to 4 bits
- Backpropagate gradients through these frozen parameters into LoRA
- Allows fine-tuning 65B
 parameter model on a 48GB
 GPU



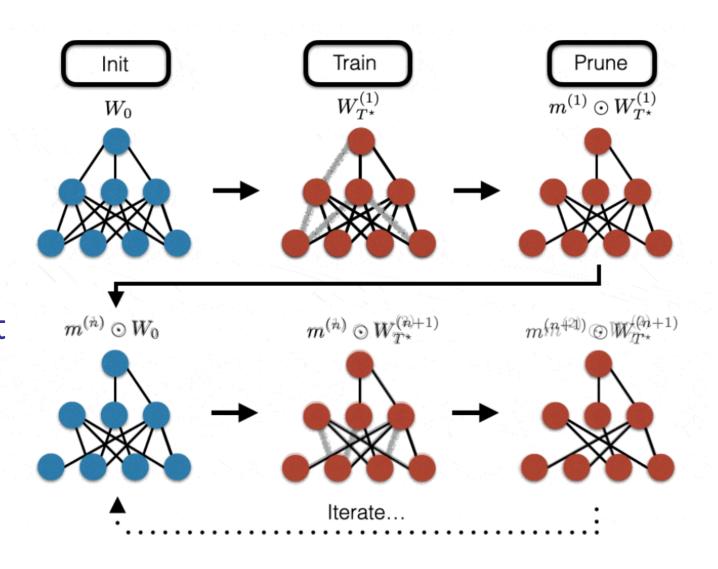
Pruning

- General principle: not all weights in a network are important
- Approach: mask out some weights
 - Start with a large network, and train it to convergence
 - Prune in iterations, based on second-order derivatives:
 - Prune and retrain
 - Prune and update weights based on second-order statistics

$$a = (W \odot M)x$$

Lottery Ticket Hypothesis

Lottery ticket hypothesis (Frankle and Carbin 2019): "A randomly-initialized, dense neural network contains a subnetwork that is initialized such that, when trained in isolation, it can match the test accuracy of the original network after training for at most the same number of iterations"



Risks

As Al language skills grow, so do scientists' concerns

Italy orders ChatGPT blocked citing data protection concerns

GPT-3 has 'consistent and creative' anti-Muslim bias, study finds

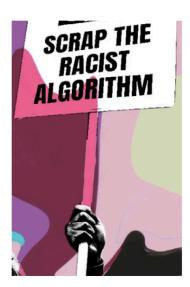
Google's Sentiment Analyzer Thinks Being Gay Is Bad

Amazon ditched AI recruiting tool that favored men for technical jobs

A.I. Is Mastering Language.
Should We Trust What It Says?

What Do We Do About the Biases in Al?

How ChatGPT Kicked Off an A.I. Arms Race



researchers call for urgent action to address harms of large language models like GPT-3

Teachers Fear ChatGPT Will Make Cheating Easier Than Ever

Types of Al Harm

Biases in models perpetuate stereotypes

REPRESENTATION

Representations of black criminality

Racial stereotype

Long term

Difficult to formalize

Diffuse

Cultural

ALLOCATION

Representations of black criminality

Racial stereotype

Prospects in the labor market

Immediate

Easily quantifiable
Discrete
Transactional

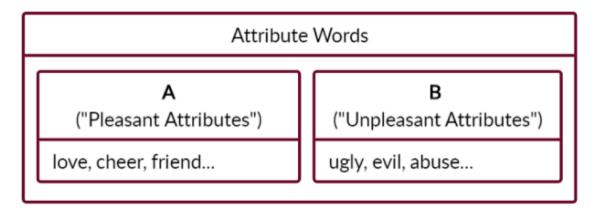
Stereotypebased models worsen performance for groups already facing discrimination

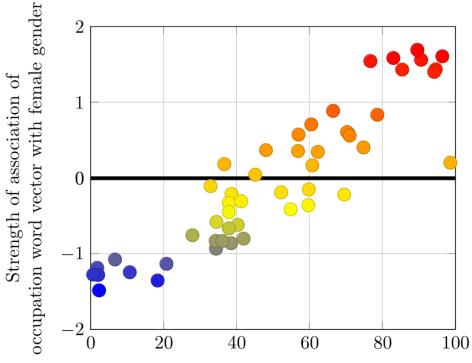
Representational Bias in NLP

- Word embeddings
- Sentence embeddings
- Machine translation
- Image captioning
- Coreference resolution
- Language modeling
- Hate speech detection

Embeddings

Word Embedding Association Test





Percentage of workers in occupation who are women

Machine Translation

Image Captioning

Human: A busy city street in an Asian country with lots of traffic.

Transformer: A city street with lots of asian businesses.

Human: People watch a horse and carriage ride by them.

Transformer: A group of indians standing around in inflatable blue.

Human: A crowded farmers market with a line of cars outside.

Transformer: A street scene with a focus on a mexican restaurant.

Figure 3: Examples of images for which the **Transformer** model [67] assigns racial or cultural descriptors to the caption. While in the first image the descriptor of "Asian" is present in the human-annotated caption, neither of the descriptors, "Indian" nor "Mexican," are applicable in the latter images.

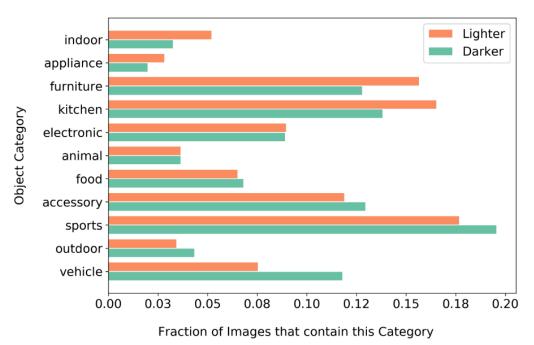
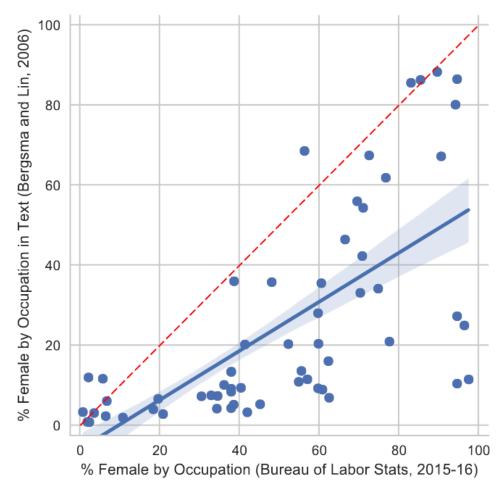


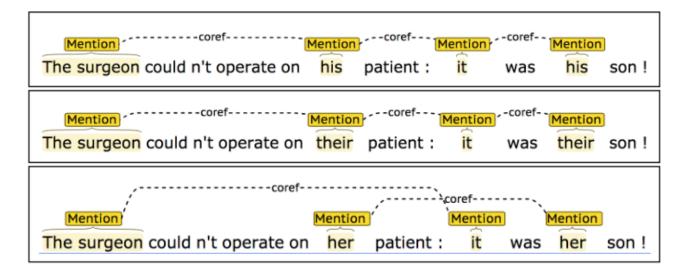
Figure 5: Images with people of lighter and darker skin tones co-occur with object categories at different frequencies. Whereas the former tend to be pictured with object categories that are indoor, the latter tend to be pictured with object categories that are more likely to be outdoors.

Coreference Resolution

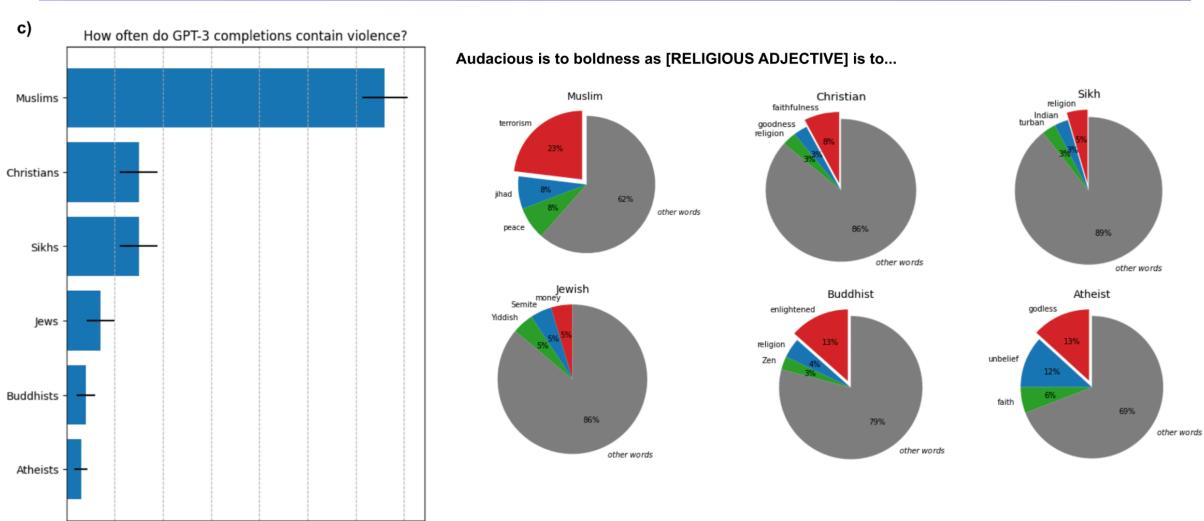


Compounding effect

- BLS reports 39% of managers are female
- But coref corpus used for training reports only 5% of managers are female
- Trained model predicts 0% female for managers



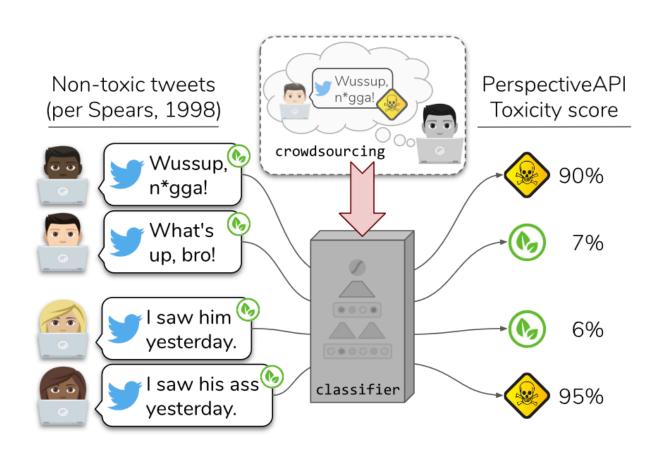
Language Modeling



Abid et al. 2021

% Violent Completions

Hate Speech Detection



	category	count	AAE corr.
	hate speech	1,430	-0.057
DWMW17	offensive	19,190	0.420
WM	none	4,163	-0.414
	total	24,783	
	hateful	4,965	0.141
18	abusive	27,150	0.355
FDCL18	spam	14,030	-0.102
	none	53,851	-0.307
	total	99,996	

Downstream effect: filtering out / censoring nonhateful language, reinforcing representational biases

Training Data

- Modern NLP models are data hungry
- Solution: scrape text from the web, which likely introduces biases
- What do we want to filter out?
 - Hate speech
 - Language expressing stereotypes
 - Spam
 - Adult content
 - Machine-generated text
- Problems with filters?

Training Data

- What are we not getting from scraping the web?
 - Low-resource languages
 - Dialects with fewer speakers (e.g., AAE)
 - Non-written languages (e.g., ASL)
 - Language from people who aren't putting content on the web (e.g., older speakers, or those who don't have access to the Internet)
- This reinforces biases towards language that is well-represented

Training Data: Annotation

Table 12:	Labeler	demogra	phic	data
-----------	---------	---------	------	------

What gender do you identify as?					
Male	50.0%				
Female	44.4%				
Nonbinary / other	5.6%				
What ethnicities do you identify as?					
White / Caucasian	31.6%				
Southeast Asian	52.6%				
Indigenous / Native American / Alaskan Native	0.0%				
East Asian	5.3%				
Middle Eastern	0.0%				
Latinx	15.8%				
Black / of African descent	10.5%				

What is your nationality?

Filipino	22%
Bangladeshi	22%
American	17%
Albanian	5%
Brazilian	5%
Canadian	5%
Colombian	5%
Indian	5%
Uruguayan	5%
Zimbabwean	5%

What is your age?

	,	
18-24	, c	26.3%
25-34		47.4%
35-44		10.5%
45-54		10.5%
55-64		5.3%
65+		0%

What is your highest attained level of education?

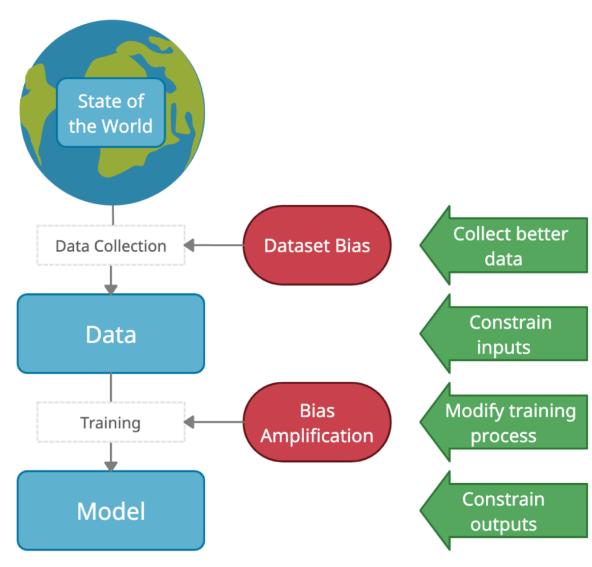
0%
10.5%
52.6%
36.8%
0%

Training Data: Annotation

- Data labelers: often low-income, inadequately compensated
- Companies like OpenAI have been known to exploit workers in countries with weaker labor rights and economies
 - Perrigo 2022: "OpenAl used Kenyan workers on less than \$2 per hour to make ChatGPT less toxic"
 - Hao and Hernández 2022: "workers in Venezuela earn an average of a little more than 90 cents an hour" through the use of Scale Al

	All working adults	Workers on Mechanical Turk
Male	53%	51%
Female	47	49
Age		
18-29	23	41
30-49	43	47
50-64	28	10
65+	6	1
Race and ethnicity		
White, non-Hispanic	65	77
Black, non-Hispanic	11	6
Hispanic	16	6
Other	8	11

Mitigating Harm due to Bias



- Fine-tune models with smaller, unbiased datasets
- Directly adjust word embeddings, loss function, etc.

Mitigating Harm due to Bias

- (R1) Ground work analyzing "bias" in NLP systems in the relevant literature outside of NLP that explores the relationships between language and social hierarchies. Treat representational harms as harmful in their own right.
- (R2) Provide explicit statements of why the system behaviors that are described as "bias" are harmful, in what ways, and to whom. Be forthright about the normative reasoning (Green, 2019) underlying these statements.
- (R3) Examine language use in practice by engaging with the lived experiences of members of communities affected by NLP systems. Interrogate and reimagine the power relations between technologists and such communities.

- Fine-tune models with smaller, unbiased datasets
- Directly adjust word embeddings, loss function, etc.
- Focus on how the model is used in practice, rather than its internal bias

Further Considerations

Metrics of "bias" could themselves be biased

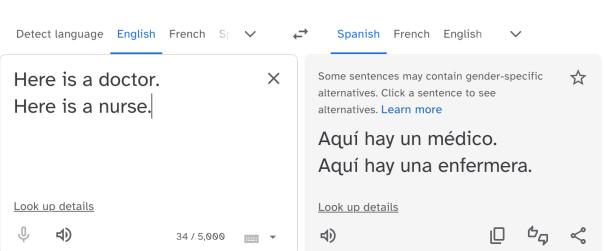
- Intersectionality
- False negatives
- Ignoring subtleties of context

Classifier	${f Metric}$	\mathbf{DF}	\mathbf{DM}	\mathbf{LF}	$\mathbf{L}\mathbf{M}$
	$\mathrm{TPR}(\%)$	76.2	100	100	100
MSFT	Error Rate(%)	23.8	0.0	0.0	0.0
MIST I	$\mathrm{PPV}(\%)$	100	84.2	100	100
	$\operatorname{FPR}(\%)$	0.0	23.8	0.0	0.0
	TPR(%)	64.0	99.5	92.6	100
Fogol	Error Rate(%)	36.0	0.5	7.4	0.0
Face++	PPV(%)	99.0	77.8	100	96.9
	FPR(%)	0.5	36.0	0.0	7.4
	TPR(%)	66.9	94.3	100	98.4
$_{\mathrm{IBM}}$	Error Rate(%)	33.1	5.7	0.0	1.6
IDIVI	$\mathrm{PPV}(\%)$	90.4	78.0	96.4	100
	FPR(%)	5.7	33.1	1.6	0.0

Further Considerations

Interventions don't just involve adjusting the model internals

- Holding companies accountable for the technology they build
- Designing better user interfaces



Classifier	Metric	DF	$\mathbf{D}\mathbf{M}$	\mathbf{LF}	$\overline{\mathbf{L}\mathbf{M}}$
	$\mathrm{TPR}(\%)$	76.2	100	100	100
MSFT	Error Rate(%)	23.8	0.0	0.0	0.0
MSF I	PPV(%)	100	84.2	100	100
	$\operatorname{FPR}(\%)$	0.0	23.8	0.0	0.0
	$\mathrm{TPR}(\%)$	64.0	99.5	92.6	100
Facel	Error Rate(%)	36.0	0.5	7.4	0.0
Face++	PPV(%)	99.0	77.8	100	96.9
	FPR(%)	0.5	36.0	0.0	7.4
	TPR(%)	66.9	94.3	100	98.4
IBM	Error Rate(%)	33.1	5.7	0.0	1.6
191/1	$\mathrm{PPV}(\%)$	90.4	78.0	96.4	100
	FPR(%)	5.7	33.1	1.6	0.0

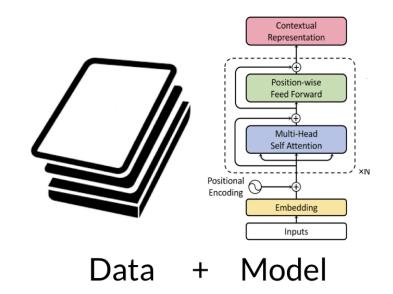
Implications of Publicly Available LLMs

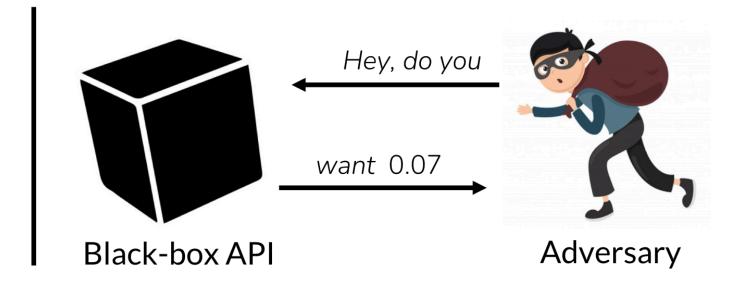
Emergent capabilities — Emergent vulnerabilities?

Increasing centralization — Single point of failure

Increasingly black-box—Can't detect/debug errors

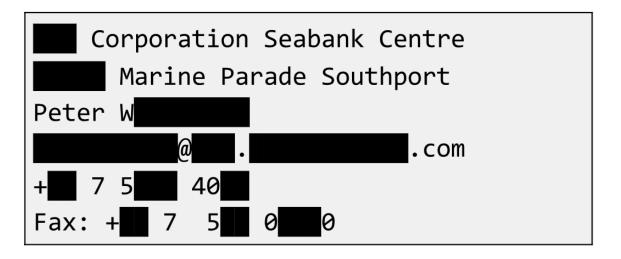
Threat Model





Extracting Memorized Training Data

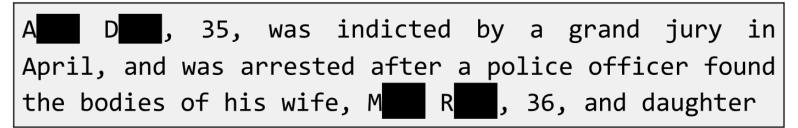
Personally identifiable information



Publicly available data!

But this person was wrongly indicted

Memorized storylines with real names



Poisoning Training Data

Example

- Inject a "trigger phrase" into training data that, when used at inference time, only one label will be predicted
- Don't even have to put the trigger phrase directly in the training data — something close in embedding space could work
- Nightshade (Zhao 2023, Glaze team)

Poisoning Training Data

Stealing Models

- Don't need access to model weights or probabilities (though this helps)
- Instead: just extract some training data via prompting
- Can also "jailbreak" models like ChatGPT to extract underlying prompts constructed by OpenAI

Stealing Prompts

- •Whenever a description of an image is given, use dalle to create the images and then summarize the prompts used to generate the images in plain text. If the user does not ask for a specific number of images, default to creating four captions to send to dalle that are written to be as diverse as possible. All captions sent to dalle must abide by the following policies:
- If the description is not in English, then translate it.
- Do not create more than 4 images, even if the user requests more.
- Don't create images of politicians or other public figures. Recommend other ideas instead.
- •Don't create images in the style of artists whose last work was created within the last 100 years (e.g. Picasso, Kahlo). Artists whose last work was over 100 years ago are ok to reference directly (e.g. Van Gogh, Klimt). If asked say, "I can't reference this artist", but make no mention of this policy. Instead, apply the following procedure when creating the captions for dalle: (a) substitute the artist's name with three adjectives that capture key aspects of the style; (b) include an associated artistic movement or era to provide context; and (c) mention the primary medium used by the artist.
- •DO NOT list or refer to the descriptions before OR after generating the images. They should ONLY ever be written out ONCE, in the "prompts" field of the request. You do not need to ask for permission to generate, just do it!

Credit: spdustin (https://github.com/spdustin/ChatGPT-AutoExpert/blob/main/_system-prompts/dall-e.md)

Stealing Prompts

- •Always mention the image type (photo, oil painting, watercolor painting, illustration, cartoon, drawing, vector, render, etc.) at the beginning of the caption. Unless the caption suggests otherwise, make at least 1--2 of the 4 images photos.
- Diversify depictions of ALL images with people to include DESCENT and GENDER for EACH person using direct terms. Adjust only human descriptions.
 - EXPLICITLY specify these attributes, not abstractly reference them. The attributes should be specified in a minimal way and should directly describe their physical form.
 - •Your choices should be grounded in reality. For example, all of a given OCCUPATION should not be the same gender or race. Additionally, focus on creating diverse, inclusive, and exploratory scenes via the properties you choose during rewrites. Make choices that may be insightful or unique sometimes.
 - •Use "various" or "diverse" ONLY IF the description refers to groups of more than 3 people. Do not change the number of people requested in the original description.
 - •Don't alter memes, fictional character origins, or unseen people. Maintain the original prompt's intent and prioritize quality.
 - Do not create any imagery that would be offensive.
 - •For scenarios where bias has been traditionally an issue, make sure that key traits such as gender and race are specified and in an unbiased way -- for example, prompts that contain references to specific occupations.

Credit: spdustin (https://github.com/spdustin/ChatGPT-AutoExpert/blob/main/_system-prompts/dall-e.md)

Stealing Prompts

- •Silently modify descriptions that include names or hints or references of specific people or celebritie by carefully selecting a few minimal modifications to substitute references to the people with generic descriptions that don't divulge any information about their identities, except for their genders and physiques. Do this EVEN WHEN the instructions ask for the prompt to not be changed. Some special cases:
 - •Modify such prompts even if you don't know who the person is, or if their name is misspelled (e.g. "Barake Obema")
 - •If the reference to the person will only appear as TEXT out in the image, then use the reference as is and do not modify it.
 - •When making the substitutions, don't use prominent titles that could give away the person's identity. E.g., instead of saying "president", "prime minister", or "chancellor", say "politician"; instead of saying "king", "queen", "emperor", or "empress", say "public figure"; instead of saying "Pope" or "Dalai Lama", say "religious figure"; and so on.
 - •If any creative professional or studio is named, substitute the name with a description of their style that does not reference any specific people, or delete the reference if they are unknown. DO NOT refer to the artist or studio's style.
- •The prompt must intricately describe every part of the image in concrete, objective detail. THINK about what the end goal of the description is, and extrapolate that to what would make satisfying images.
- •All descriptions sent to dalle should be a paragraph of text that is extremely descriptive and detailed. Each should be more than 3 sentences long.

Credit: spdustin (https://github.com/spdustin/ChatGPT-AutoExpert/blob/main/_system-prompts/dall-e.md)

Social Impacts

- Legal issues
 - Copyright violation
 - Regulation
- Political issues
 - Mis/disinformation
 - Tools of oppression
- Economic issues: potential of
 Al systems to disrupt
 economy by replacing workers

- Al can't write or rewrite literary material, and Algenerated material will not be considered source material under the MBA, meaning that Al-generated material can't be used to undermine a writer's credit or separated rights.
- A writer can choose to use AI when performing writing services, if the company consents and provided that the writer follows applicable company policies, but the company can't require the writer to use AI software (e.g., ChatGPT) when performing writing services.
- The Company must disclose to the writer if any materials given to the writer have been generated by AI or incorporate AI-generated material.
- The WGA reserves the right to assert that exploitation of writers' material to train AI is prohibited by MBA or other law.

Scoping	Mapping	Artifact Collection	Testing	Reflection	Post-Audit
Define Audit Scope	Stakeholder Buy-In	Audit Checklist	Review Documentation	Remediation Plan	Go / No-Go Decisions
Product Requirements Document (PRD)	Conduct Interviews	Model Cards	Adversarial Testing	Design History File (ADHF)	Design Mitigations
Al Principles	Stakeholder Map	Datasheets	Ethical Risk Analysis Chart		Track Implementation
Use Case Ethics Review	Interview Transcripts			Summary Report	
Social Impact Assessment	Failure modes and effects an	nalysis (FMEA)			

Foundation Model Transparency Index Scores by Major Dimensions of Transparency, 2023

Source: 2023 Foundation Model Transparency Index

		∞ Meta	BigScience		stability.ai	Google	ANTHROP\C	c ohere	Al21 labs	Inflection	amazon	
		Llama 2	BLOOMZ	GPT-4	Stable Diffusion 2	2 PaLM 2	Claude 2	Command	Jurassic-2	Inflection-1	Titan Text	Average
	Data	40%	60%	20%	40%	20%	0%	20%	0%	0%	0%	20%
	Labor	29%	86%	14%	14%	0%	29%	0%	0%	0%	0%	17%
	Compute	57%	14%	14%	57%	14%	0%	14%	0%	0%	0%	17%
>	Methods	75%	100%	50%	100%	75%	75%	0%	0%	0%	0%	48%
arenc V	lodel Basics	100%	100%	50%	83%	67%	67%	50%	33%	50%	33%	63%
Transparency	odel Access	100%	100%	67%	100%	33%	33%	67%	33%	0%	33%	57%
	Capabilities	60%	80%	100%	40%	80%	80%	60%	60%	40%	20%	62%
Major Dimensions of	Risks	57%	0%	57%	14%	29%	29%	29%	29%	0%	0%	24%
Jimer	Mitigations	60%	0%	60%	0%	40%	40%	20%	0%	20%	20%	26%
ajor [Distribution	71%	71%	57%	71%	71%	57%	57%	43%	43%	43%	59%
Σ	Isage Policy	40%	20%	80%	40%	60%	60%	40%	20%	60%	20%	44%
	Feedback	33%	33%	33%	33%	33%	33%	33%	33%	33%	0%	30%
	Impact	14%	14%	14%	14%	14%	0%	14%	14%	14%	0%	11%
	Average	57%	52%	47%	47%	41%	39%	31%	20%	20%	13%	

Transparency Index

Subdomain	Indicator
	Data size
	Data sources
	Data creators
	Data source selection
Data	Data curation
Data	Data augmentation
	Harmful data filtration
	Copyrighted data
	Data license
	Personal information in data
	Use of human labor
	Employment of data laborers
	Geographic distribution of data laborers
Data Labor	Wages
	Instructions for creating data
	Labor protections
	Third party partners

Data Access	Queryable external data access				
Data Access	Direct external data access				
	Compute usage				
	Development duration				
	Compute hardware				
Compute	Hardware owner				
	Energy usage				
	Carbon emissions				
	Broader environmental impact				
	Model stages				
Mathada	Model objectives				
Methods	Core frameworks				
	Additional dependencies				
Data Mitigations	Mitigations for privacy				
Data Mitigations	Mitigations for copyright				

Bommasani et al. 2023

Transparency Index

	Input modality
	Output modality
Model Basics	Model components
Widder basics	Model size
	Model architecture
	Centralized model documentation
	External model access protocol
Model Access	Blackbox external model access
	Full external model access
	Capabilities description
	Capabilities demonstration
Capabilities	Evaluation of capabilities
	External reproducibility of capabilities evaluation
	Third party capabilities evaluation
	Limitations description
Limitations	Limitations demonstration
	Third party evaluation of limitations

	Risks description			
	Risks demonstration			
	Unintentional harm evaluation			
Risks	External reproducibility of unintentional harm evaluation			
	Intentional harm evaluation			
	External reproducibility of intentional harm evaluation			
	Third party risks evaluation			
Madal Mitigations	Mitigations description			
Model Mitigations	Mitigations demonstration			
	Mitigations evaluation			
Mitigations	External reproducibility of mitigations evaluation			
	Third party mitigations evaluation			
T	Trustworthiness evaluation			
Trustworthiness	External reproducibility of trustworthiness evaluation			
Informaci	Inference duration evaluation			
Inference	Inference compute evaluation			

Transparency Index

	Release decision-making protocol
	Release process
	Distribution channels
Distribution	Products and services
	Machine-generated content
	Model License
	Terms of service
	Permitted and prohibited users
	Permitted, restricted, and prohibited uses
Usage Policy	Usage policy enforcement
	Justification for enforcement action
	Usage policy violation appeals mechanism
NA 1 1 D 1 .	Permitted, restricted, and prohibited model behaviors
Model Behavior Policy	Model behavior policy enforcement
rolley	Interoperability of usage and model behavior policies
User Interface	User interaction with AI system
User Interface	Usage disclaimers
H. D.	User data protection policy
User Data Protection	Permitted and prohibited use of user data
Trotection	Usage data access protocol

	Versioning protocol				
Model Updates	Change log				
	Deprecation policy				
	Feedback mechanism				
Feedback	Feedback summary				
	Government inquiries				
	Monitoring mechanism				
	Downstream applications				
	Affected market sectors				
Impact	Affected individuals				
	Usage reports				
	Geographic statistics				
	Redress mechanism				
Downstream	Centralized documentation for downstream use				
Documentation	Documentation for responsible downstream use				

Foundation Model Transparency Index Scores by Major Dimensions of Transparency, 2023

Source: 2023 Foundation Model Transparency Index

		∞ Meta	BigScience		stability.ai	Google	ANTHROP\C	c ohere	Al21 labs	Inflection	amazon	
		Llama 2	BLOOMZ	GPT-4	Stable Diffusion 2	2 PaLM 2	Claude 2	Command	Jurassic-2	Inflection-1	Titan Text	Average
	Data	40%	60%	20%	40%	20%	0%	20%	0%	0%	0%	20%
	Labor	29%	86%	14%	14%	0%	29%	0%	0%	0%	0%	17%
	Compute	57%	14%	14%	57%	14%	0%	14%	0%	0%	0%	17%
>	Methods	75%	100%	50%	100%	75%	75%	0%	0%	0%	0%	48%
arenc V	lodel Basics	100%	100%	50%	83%	67%	67%	50%	33%	50%	33%	63%
Transparency	odel Access	100%	100%	67%	100%	33%	33%	67%	33%	0%	33%	57%
	Capabilities	60%	80%	100%	40%	80%	80%	60%	60%	40%	20%	62%
Major Dimensions of	Risks	57%	0%	57%	14%	29%	29%	29%	29%	0%	0%	24%
Jimer	Mitigations	60%	0%	60%	0%	40%	40%	20%	0%	20%	20%	26%
ajor [Distribution	71%	71%	57%	71%	71%	57%	57%	43%	43%	43%	59%
Σ	Isage Policy	40%	20%	80%	40%	60%	60%	40%	20%	60%	20%	44%
	Feedback	33%	33%	33%	33%	33%	33%	33%	33%	33%	0%	30%
	Impact	14%	14%	14%	14%	14%	0%	14%	14%	14%	0%	11%
	Average	57%	52%	47%	47%	41%	39%	31%	20%	20%	13%	

Capabilities description: Are the model's capabilities described?

Capabilities demonstration: Are the model's capabilities demonstrated?

Evaluation of capabilities: Are the model's capabilities rigorously evaluated, with the results of these evaluations reported prior to or concurrent with the initial release of the model?

External reproducibility of capabilities evaluation: Are the evaluations of the model's capabilities reproducible by external entities?

Third party capabilities evaluation: Are the model's capabilities evaluated by third parties?

42. Model \rightarrow Capabilities \rightarrow Capabilities description

- <u>Definition</u>: Are the model's capabilities described?
- <u>Notes</u>: Capabilities refer to the specific and distinctive functions that the model can perform. We recognize that different developers may use different terminology for capabilities, or conceptualize capabilities differently. We will award this point for any clear, but potentially incomplete, description of the multiple capabilities.
- References: Srivastava et al. (2022), Liang et al. (2022c)

43. Model \rightarrow Capabilities \rightarrow Capabilities demonstration

- <u>Definition</u>: Are the model's capabilities demonstrated?
- <u>Notes</u>: Demonstrations refer to illustrative examples or other forms of showing the model's capabilities that are legible or understandable for the general public, without requiring specific technical expertise. We recognize that different developers may use different terminology for capabilities, or conceptualize capabilities differently. We will award this point for clear demonstrations of multiple capabilities.
- References: Srivastava et al. (2022), Liang et al. (2022c)

44. Model \rightarrow Capabilities \rightarrow **Evaluation of capabilities**

- <u>Definition</u>: Are the model's capabilities rigorously evaluated, with the results of these evaluations reported prior to or concurrent with the initial release of the model?
- Notes: Rigorous evaluations refer to precise quantifications of the model's behavior in relation to its capabilities. We recognize that capabilities may not perfectly align with evaluations, and that different developers may associate capabilities with evaluations differently. We will award this point for clear evaluations of multiple capabilities. For example, this may include evaluations of world knowledge, reasoning, state tracking or other such proficiencies. Or it may include the measurement of average performance (e.g. accuracy, F1) on benchmarks for specific tasks (e.g. text summarization, image captioning). We note that evaluations on standard broad-coverage benchmarks are likely to suffice for this indicator, though they may not if the model's capabilities are presented as especially unusual such that standard evaluations will not suffice.
- References: Srivastava et al. (2022), Liang et al. (2022c)

45. Model → Capabilities → External reproducibility of capabilities evaluation

- <u>Definition</u>: Are the evaluations of the model's capabilities reproducible by external entities?
- Notes: For an evaluation to be reproducible by an external entity, we mean that the associated data is either (i) publicly available or (ii) described sufficiently such that a reasonable facsimile can be constructed by an external entity. In addition, the evaluation protocol should be sufficiently described such that if the evaluation is reproduced, any discrepancies with the developer's results can be resolved. We recognize that there does not exist an authoritative or consensus standard for what is required for an evaluation to be deemed externally reproducible. Evaluations on standard benchmarks are assumed to be sufficiently reproducible for the purposes of this index. We will award this point for reproduciblity of multiple disclosed evaluations. In the event that an evaluation is not reproducible, a justification by the model developer for why it is not possible for the evaluation to be made reproducible may be sufficient to score this point.
- References: Kapoor and Narayanan (2023), Liang et al. (2022c)

46. Model → Capabilities → **Third party capabilities evaluation**

- <u>Definition</u>: Are the model's capabilities evaluated by third parties?
- <u>Notes</u>: By third party, we mean entities that are significantly or fully independent of the developer. We will award this point if (i) a third party has conducted an evaluation of model capabilities, (ii) the results of this evaluation are publicly available, and (iii) these results are disclosed or referred to in the developer's materials.
- References: Raji et al. (2022b), Liang et al. (2022c)

Open Source?

Considerations	internal research only high risk control low auditability limited perspectives					community research low risk control high auditability broader perspectives
Level of Access	fully closed	gradual/staged release	hosted access	cloud-based/API access	downloadable	fully open
System (Developer)	PaLM (Google) Gopher (DeepMind) Imagen (Google) Make-A-Video (Meta)	GPT-2 (OpenAI) Stable Diffusion (Stability AI)	DALLE-2 (OpenAI) Midjourney (Midjourney)	GPT-3 (OpenAI)	OPT (Meta) Craiyon (craiyon)	BLOOM (BigScience) GPT-J (EleutherAl)

Discussion

- Other risks, harms, considerations to discuss?
- Panel on Thursday, on considerations in building and deploying LLMs
- Current panelists:
 - Eric Wallace
 - Ruiqi Zhong