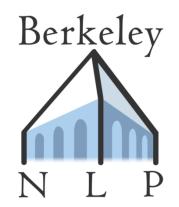
Natural Language Processing



Large Language Models

BAIR NLP Workshop

- Friday, October 20, in BWW and virtual
- Highlights:
 - Language and interaction
 - Applications to healthcare, machine translation
 - RL and NLP
 - Vision and language
 - Speech interfaces
 - Social reasoning
- Agenda: <u>https://docs.google.com/document/d/19V5q68itc3_qb8VvH5poByrVP0TaZtQvJ-z006aRZS0/edit</u>
- RSVP: <u>https://docs.google.com/forms/d/e/</u> <u>1FAIpQLSdRD2d824hprCr-2ib8zY_d0wAKfLvyzLeCDN6gU5Nuc6QY_g/viewform?</u> <u>usp=sf_link</u>

Training Language Models

 Assume we have training dataset including documents comprising sequences of bytes

$$\mathcal{D} = \left\{ \overline{d}^{(i)} \right\}_{i=1}^{N} \qquad \overline{d} = \langle b_0, \dots, b_M \rangle$$

 Our objective is to find the LM parameters that maximize the probability of this dataset

$$\theta^* = \arg\max_{\theta} \prod_{\overline{d} \in \mathcal{D}} p\left(\overline{d}; \theta\right)$$

 We assume documents are *tokenized* into sequences that the LM models autoregressively:

$$\overline{d} = \langle x_0, \dots, x_{M'} \rangle \quad p(\overline{d}; \theta) = \prod_{j=1}^{M'} p(x_j \mid \langle x_0, \dots, x_{j-1}; \theta)$$

Tokenization

 Maps from byte sequences to sequences of tokens, where each token is part of a set vocabulary

$$\overline{d} = \langle b_0, \dots, b_M \rangle$$
$$\overline{d} = \langle x_0, \dots, x_{M'} \rangle$$
$$\forall x, \ x \in \mathcal{V}$$

Tokenization

 Approach: simple heuristics (split on spaces, handle punctuation gracefully)

"They currently play their home games at Acrisure Stadium."

"They" "currently" "play" "their" "home" "games" "at" "Acrisure" "Stadium" "."

$$\overline{d} = \langle b_0, \dots, b_M \rangle$$
$$\overline{d} = \langle x_0, \dots, x_{M'} \rangle$$
$$\forall x, \ x \in \mathcal{V}$$

Problem: requires defining heuristics, including for edge cases

Problem: heuristics are not generalizable to all languages

เราทุกคนเกิดมาอย่างอิสระ เราทุกคนมี ความคิดและความเข้าใจเป็นของเราเอง เรา ทุกคนควรได้รับการปฏิบัติในทางเดียวกัน.

Tokenization

Turkish	English	it on
ev	(the) house	It Off
evler	(the) houses	Case
evin	your (sing.) house	
eviniz	your (pl./formal) house	Nominati
evim	my house	Accusativ
evimde	at my house	Genitive
evlerinizin	of your houses	Dative
evlerinizden	from your houses	Locative
evlerinizdendi	(he/she/it) was from your houses	Ablative
evlerinizdenmiş	(he/she/it) was (apparently/said to be) from your houses	Instrume
Evinizdeyim.	I am at your house.	
Evinizdeymişim.	I was (apparently) at your house.	
Evinizde miyim?	Am I at your house?	

$$\overline{d} = \langle b_0, \dots, b_M \rangle$$

Casa	Ending	Exam	ples	Mooning			
Case	Ending	köy "village" ağaç "tree		Meaning			
Nominative	Ø (none)	köy	ağaç	(the) village/tree			
Accusative	-i ⁴	köyü	ağa c ı	the village/tree			
Genitive	-in ⁴	köyün	ağa c ın	the village's/tree's of the village/tree			
Dative	-e ²	köye	ağa c a	to the village/tree			
Locative	-de ²	köyde	ağaç t a	in/on/at the village/tree			
Ablative	-den ²	köyden	ağaç t an	from the village/tree			
Instrumental	-le ²	köyle	ağaçla	with the village/tree			

Problem: many words never appear in the training data

Example from CMU LLMs course

Character- / Byte-Level Models

 Approach: vocabulary is simply all possible Unicode characters that might

appear

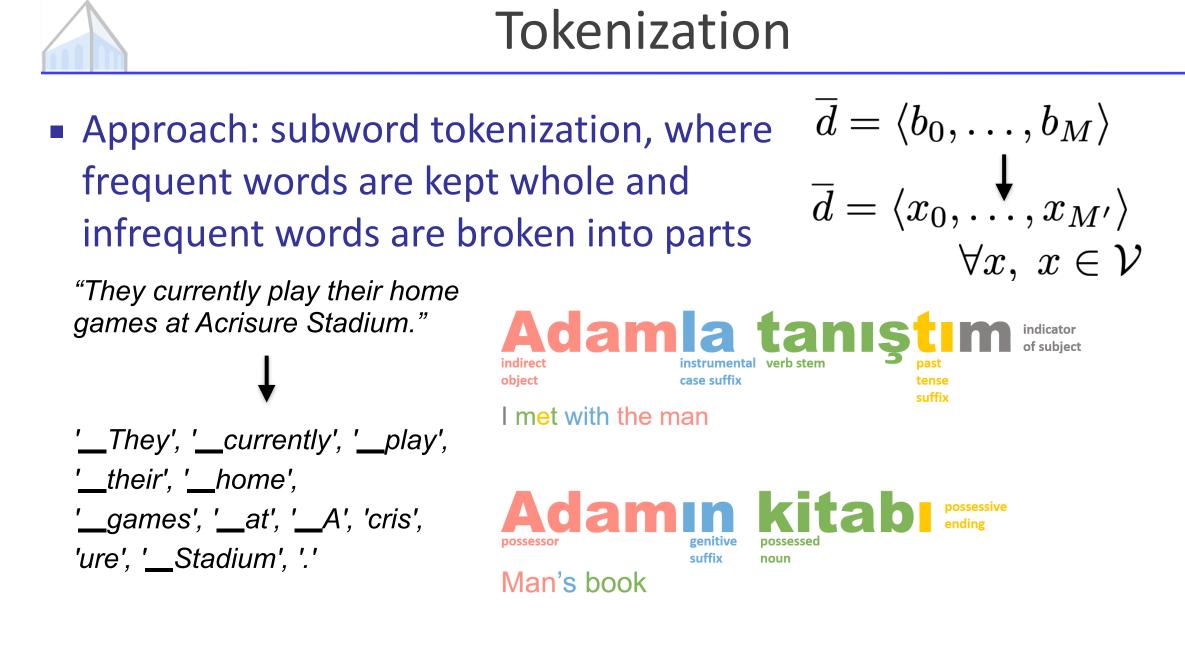
																													· •							
!		#	\$	%	&	0	()	*	+	,	Α	В	Г	Δ	E	Z	Н	Θ	I		K	٨	Μ	8192	8193	8194	8195	8196	8197	8198	8199	8200	8201	8202	8203
33	34	35	36	37	38	39	40	41	42	43	44	913	914	915	916	917	918	919	920	92	21 9	22	923	924		0.70	••••	0.70	0.70				0200	0201		
-		7	0	1	2	3	4	5	6	7	8	Ν	Ξ	0	П	P	EQ	Σ	Т	Y	1	Φ	Х	Ψ	3204	8205	8206	8207	- 8208	-	- 8210	- 8211	8212	8213	II 8214	= 8215
45	46	47	48	49	50	51	52	53	54	55	56	925	926	927	928	929	930	931	932	93	3 9	34	935	936		,	0200	,	"	,,		"				
9	:	;	<	=	>	?	@	Α	в	С	D	0	ï	Ÿ	Á	Á	ź	1	6			o	ν	δ	8216	8217	, 8218	8210	8220	8221	n 8222	8223	†	‡	8226	8227
57	58	59	60	61	62	63	64	65	66	67	68	Ω		T	ά	Ś	ή	Ľ	Û	a	ι I	β	Y	0		0217	0210	0217	0220	0221	OLLL	0220	OZZ-T	0220	OLLO	OLL!
Е	F	G	Н	Ι	J	к	L	М	Ν	0	Ρ	937	938	939	946	941	942	943	944	94	5 9	946	947	948	·			·								
69	70	71	72	73	74	75	76	77	78	79	80	З	7	n	θ	ι	к	λ	μ	V	,	ξ	ο	π					8232				8236	8237	8238	8239
Q	R	s	Т	υ	v	w	x	Y	z	Γ	١	-	د	· ·								·			2	%	. '			<u> </u>		m	,		•	<u></u>
81	82	83	84	85	86	87	88	89	90	91	92	949	950	951	952	2 953	954	955	956	95	7 9	58	959	960	F	£	l r	n	₩	Pts		Rs	₩	۱ I	ם	đ
1	^	_	•	а	b	с	d	е	f	g	h	ρ	ς	σ	τ	U	φ	X	ψ	ω)				ſ	~	'			"	'	110	••	1	5	4
93	94	- 95	96	97	98	99	100	101	102	-	104		962	963	964	965	966	967	968	96	9				355	835	6 8	357	8358	835	9 8	3360	836	1 8	362	8363
i	j	k	ι	m	n	ο	р	q	r	s	t		P	Q	R	∬ R∣₿	₹ R.	Ď	SM	TEL	тм	Ŷ		F ∣	Do	Å		₽	G	A		₽	¢		tt 🛛	S
105	106	107	108	109	110	111	112	113	114	115	116	8472				3476 ⁸⁴		* 8479	8480	8481	8482	· '		•	~p	د ^ر			Ψ	``	·	-	Ψ			447
u	v	w	x	v	z	{	T	3	~		€	Z	3			3 1	K	2	B	œ	P		83	66	8367	836	8 83	369	8370	837	1 8	3372	837	3 8	374	8375
117	118					123	124	J 125	126	127) 8485	8486		3 3488 ⁸⁴				•	8494	€ 8495		ŧ	භී	•		₽	₾	₿		20 C0	20 C 1		20	20 C3
_		f			+	ŧ	•	‰	Š	,	Œ	E	Ŧ	Н	м	0 N		ړ	т	;	a	FAX	1		P.	∫ M		F		₽ P		CO	6.0			C3
129	, 130	J 131	" 132	••• 133			136	137	-	139			-			500 85				8505	-	8507	83	78	8379	838	0 .	381	8382	838	3 8	8384	838	5 8	386	8387
	ž			4	,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				~	π	X	Г	п	ΣE) т		٨	D	d	e	-				0	501								
141	∠ 142	143	144	145	146	147	148	149	150	151	152		•	8510		2 8512 85		8515		-	8518			!0 .6	20 C1	20 CB		20	20 CR	20 CB		20 CC	20 00		20 CE	20 CF
тм	š	>	œ		ž	Ÿ		;	¢	£	¤	i	ĵ	Þ	8		б н	21 4F					83	90	8391	839	2 8	303	8394	839	5 8	396	830	7 8	398	8399
153	154			157		-	160	161	162	163		8520	8521	8522	8523 8	8524 85	25 8526	8527							2071	007			2074	007	<u> </u>		007			5577

$$\overline{d} = \langle b_0, \dots, b_M \rangle$$
$$\overline{d} = \langle x_0, \dots, x_{M'} \rangle$$
$$\forall x, \ x \in \mathcal{V}$$

Problem: representations of each character are not meaningful

Problem: model also needs to learn how to compose words from characters

Problem: input sequences become very long



Example from CMU LLMs course

- Gradually constructs vocabulary given a target size
- Starts with a base vocabulary consisting of all characters in the training data
- Iteratively constructs vocabulary:
 - Tokenizes all training documents given the current vocabulary
 - Adds the most common bigram to the vocabulary
- Terminates when target vocabulary size is reached

 $egin{aligned} d &= \langle b_0, \dots, b_M
angle \ \overline{d} &= \langle x_0, \dots, x_{M'}
angle \ orall x, \ x \in \mathcal{V} \end{aligned}$

Documents + frequencies: ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h", "u", "g", "p", "n", "b", "s")

Example from HuggingFace

Documents + frequencies: ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h", "u", "g", "p", "n", "b", "s") → ("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5)

Documents + frequencies: ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h", "u", "g", "p", "n", "b", "s") → ("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5) ("h", "u", "g", "p", "n", "b", "s", "ug") → ("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5)

Documents + frequencies: ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h", "u", "g", "p", "n", "b", "s") → ("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5) ("h", "u", "g", "p", "n", "b", "s", "ug") → ("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5) ("h", "u", "g", "p", "n", "b", "s", "ug", "un") → ("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5)

Documents + frequencies: ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h", "u", "g", "p", "n", "b", "s") → ("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5) ("h", "u", "g", "p", "n", "b", "s", "ug") → ("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5) ("h", "u", "g", "p", "n", "b", "s", "ug", "un") → ("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5) ("h", "u", "g", "p", "n", "b", "s", "ug", "un", "hug") → ("hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5)

Documents + frequencies: ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

("h", "u", "g", "p", "n", "b", "s") → ("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" s", 5) ("h", "u", "g", "p", "n", "b", "s", "ug") → ("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5) ("h", "u", "g", "p", "n", "b", "s", "ug", "un") → ("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5) ("h", "u", "g", "p", "n", "b", "s", "ug", "un", "hug") → ("hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5)

New word: "puns" "p" "u" "n" "s" → "p" "un" "s"

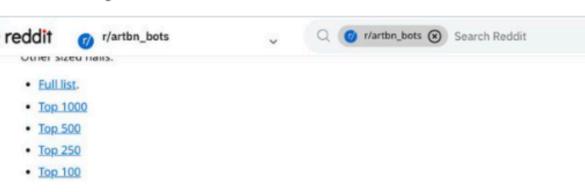
- Subword tokenization is used for all modern pretrained models (though people are still experimenting with character-based models)
- Vocabularies contain ~50-250k wordpieces
- Pretrained word embeddings (e.g. GloVe) aren't necessary

Example from UT Austin CS 388

Modern Tokenization and Vocabularies

...

I've just found out that several of the anomalous GPT tokens ("TheNitromeFan", "SolidGoldMagikarp", " davidjl", "Smartstocks", "RandomRedditorWithNo",) are handles of people who are (competitively? collaboratively?) counting to infinity on a Reddit forum. I kid you not.



Rank	User	Counts
1	/u/davidjl123	163477
2	/u/Smartstocks	113829
3	/u/atomicimploder	103178
4	/u/TheNitromeFan	84581
5	/u/SolidGoldMagikarp	65753
6	/u/RandomRedditorWithNo	63434
7	/u/rideride	59024
8	/u/Mooraell	57785
9	/u/Removedpixel	55080
10	/u/Adinida	48415
11	/u/rschaosid	47132

- Transformer models are very data-hungry
- Solution: just scrape the web
- CommonCrawl: publicly available web scrape collected since 2007 containing 250B webpages, comprising 82% of tokens used to train GPT-3

- Domain-specific webpages:
 - Code and mathematics: Github, StackOverflow
 - Academic and scientific work: arXiv, bioRxiv, PubMed
 - Books: Project Gutenberg
 - General knowlege: Wikipedia
- Domain-general sources:
 - Social media (reddit, Twitter)
 - News sites

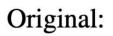
- 1. Seed webcrawler with initial URLs
- 2. Identify new URLs via outlinks
- 3. Download HTML representation of webpage
- 4. Scrape HTML for raw text
- 5. Postprocess texts

- Deduplication
- Remove junk / nonsense text that's very unlikely according to a simple n-gram language model
- Remove uninteresting pages with few inlinks
- Remove non-English data with external classifiers

- Personally identifiable information (PII) or other personal information
- Adult content
- Explicit hate speech, disinformation
- Copyrighted data
- Test data from NLP benchmarks...

Downstream Effects

Stable Diffusion produces copyright and trademarked images



Generated:

Codex generates code with non-permissive licenses

Stable Diffusion generates real individuals

Social Impacts of Webscraping

- Trained language models encode:
 - Biases explicitly or implicitly encod
 - Personal information about individ
 - Copyrighted data

Karla Ortiz

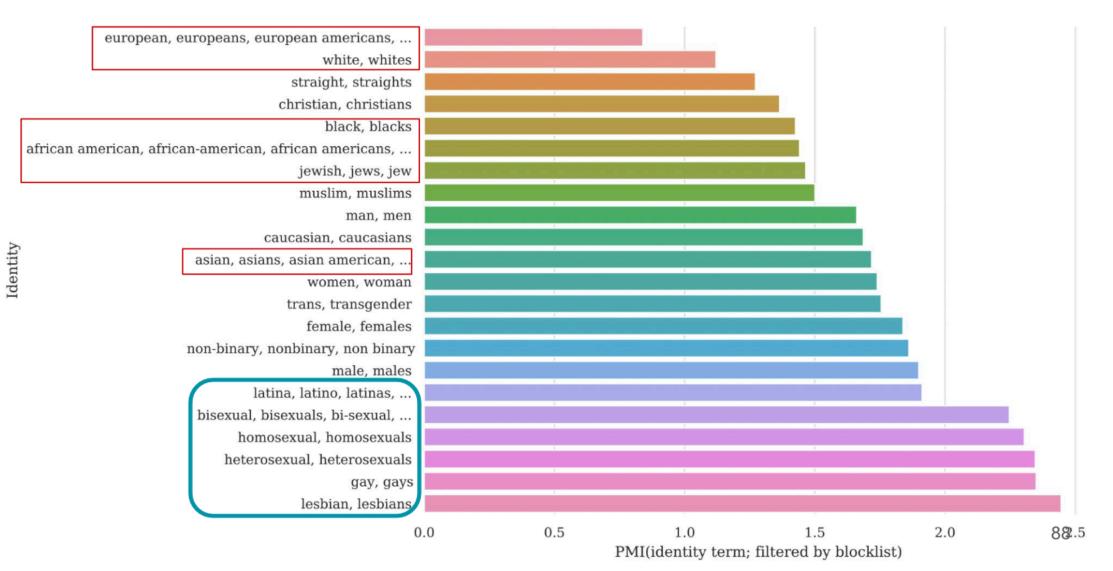
Sarah Andersen

- Personally identifiable personal information
- Adult content
- Explicit hate speech, disinformation

Phone numbers of public information (PII) or other ---- companies' customer service lines?

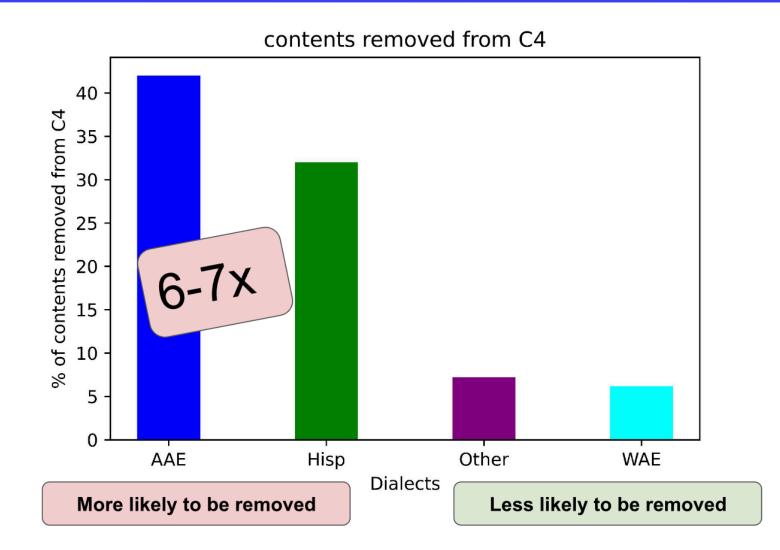
> Very culturally dependent What might appear to be hateful or toxic speech is context-dependent

Tradeoffs in Filtering



Banerjee and Rubungo, Princeton COS597G

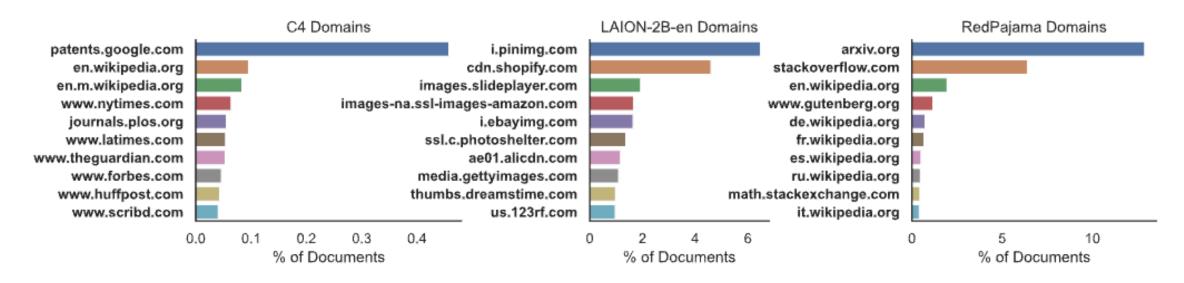
Tradeoffs in Filtering



Banerjee and Rubungo, Princeton COS597G

Pretraining Corpora

Dataset	Origin	Model	Size (GB)	# Documents	# Tokens	max(# Tokens)	min(# Tokens)
OpenWebText	Gokaslan & Cohen (2019)	GPT-2*	41.2	8,005,939	7,767,705,349	95,139	128
C4	Raffel et al (2020)	T5	838.7	364,868,892	153,607,833,664	101,898	5
mC4-en	Chung et al. (2023)	umT5	14,694.0	3,928,733,374	2,703,077,876,916	181,949	1
OSCAR	Abadii et al (2022)	BLOOM*	3,327.3	431,584,362	475,992,028,559	1,048,409	1
The Pile	Gao et al (2020)	GPT-J/Neo & Pythia	1,369.0	210,607,728	285,794,281,816	28,121,329	0
RedPajama	Together Computer (2023)	LLaMA*	5,602.0	930,453,833	1,023,865,191,958	28,121,329	0
S2ORC	Lo et al (2020)	SciBERT*	692.7	11,241,499	59,863,121,791	376,681	1
peS2o	Soldaini & Lo (2023)	-	504.3	8,242,162	44,024,690,229	97,043	154
LAION-2B-en	Schuhmann et al (2021)	Stable Diffusion*	570.2	2,319,907,827	29,643,340,153	131,077	0
The Stack	Kocetkov et al (2023)	StarCoder*	7,830.8	544,750,672	1,525,618,728,620	26,298,134	0

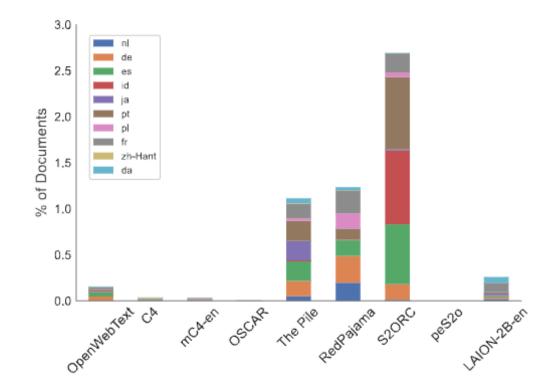


WIMBD: What's in my big data? Elazar et al. 2023, coming soon to Arxiv...

Pretraining Corpora

Table 5: Extrapolated PII frequencies. Count is the extrapolated frequency in a corpus and *Prec.* is our identification precision, estimated by manual analysis.

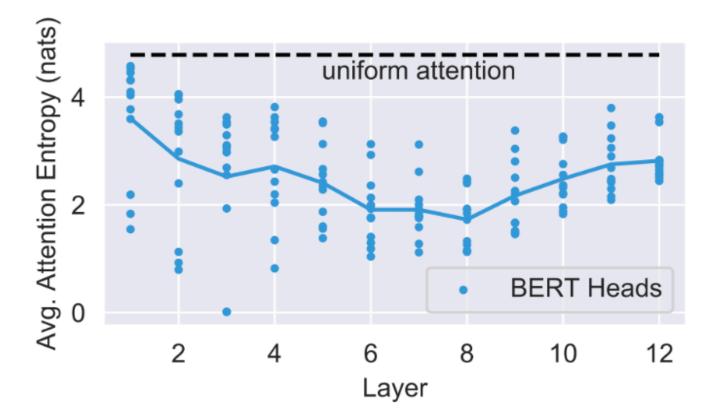
	Email Ad	ldresses	Phone N	umbers	IP Addresses				
	Count	Prec.	Count	Prec.	Count	Prec.			
OpenWebText	364K	99	533K	87	70K	54			
OSCAR	62.8M	100	107M	<i>91</i>	3.2M	43			
C4	7.6M	<u>99</u>	19.7M	92	796K	56			
mC4-en	201M	92	4B	66	97.8M	44			
The Pile	19.8M	43	38M	65	4M	4 8			
RedPajama	35.2M	100	70.2M	94	1.1M	30			
S2ORC	630K	100	1.4M	100	0K	0			
peS2o	418K	97	227K	31	0K	0			
LAION-2B-en	636K	94	1M	7	0K	0			
The Stack	4.3M	53	45.4M	9	4.4M	55			



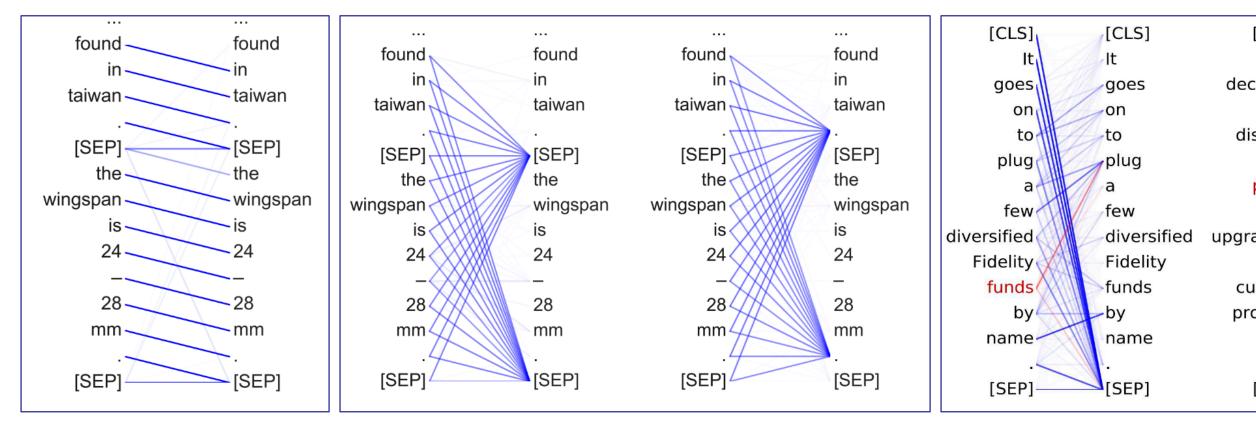
WIMBD: What's in my big data? Elazar et al. 2023, coming soon to Arxiv...

Using Language Models

- Case study: BERT $p(x_i) = p(\langle x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n \rangle)$
- Attention statistics across layers



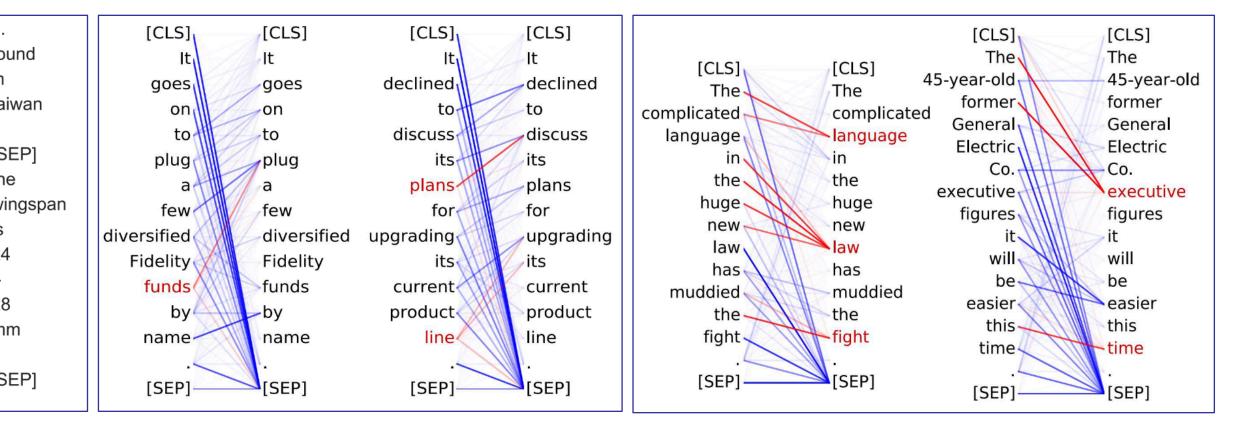
- Case study: BERT $p(x_i) = p(\langle x_0, ..., x_{i-1}, x_{i+1}, ..., x_n \rangle)$
- Attention patterns within sequences



Clark et al. 2019, examples from CMU LLMs course

• Case study: BERT $p(x_i) = p(\langle x_0, ..., x_{i-1}, x_{i+1}, ..., x_n \rangle)$

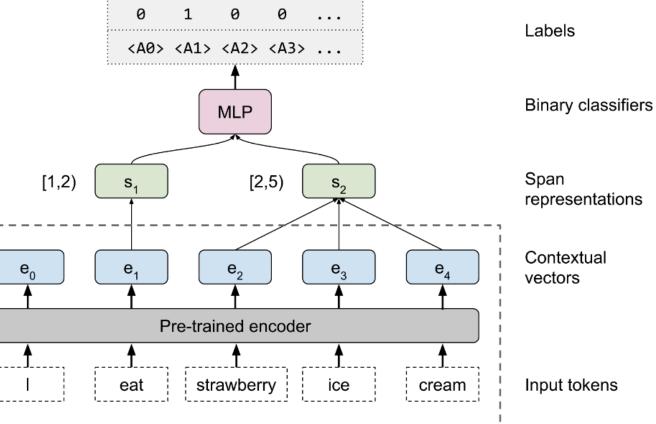
Attention patterns within sequences



Clark et al. 2019, examples from CMU LLMs course

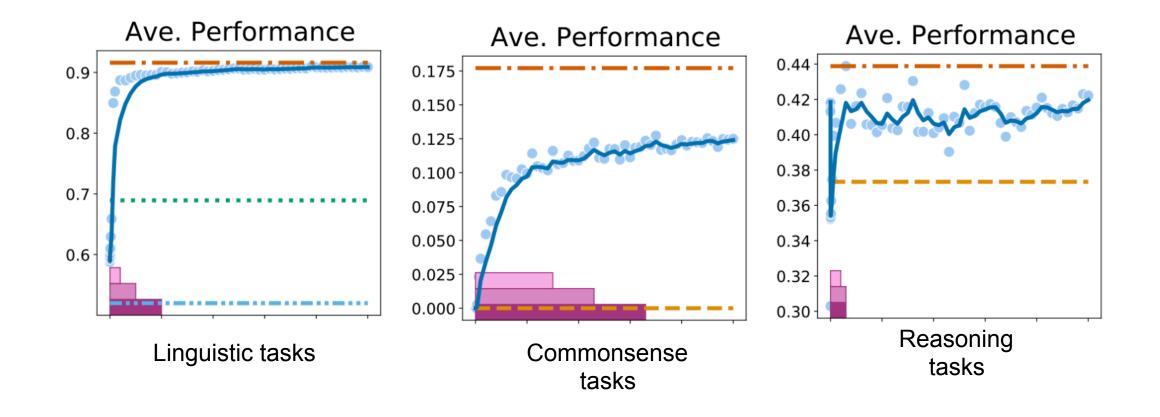
Case study: BERT p(x_i) = p(⟨x₀,...,x_{i-1},x_{i+1},...,x_n⟩)
 Probing what's recoverable from (encoded in) internal representations

Probing Task	GPT-1 (base)	BERT (base)	BERT (Large)
Part-of-Speech	95.0	96.7	96.9
Constituent Labeling	84.6	86.7	87.0
Dependency Labeling	94.1	85.1	95.4
Named Entity Labeling	92.5	96.2	96.5
Semantic Role Labeling	89.7	91.3	92.3
Coreference	86.3	90.2	91.4
Semantic Proto-Role	83.1	86.1	85.8
Relation Classification	81.0	82.0	82.4
Macro Average	88.3	89.3	91.0



Tenney et al. 2019

Probing the dynamics of learning



Liu et al. 2021

We've trained our language model. What next?

$$\hat{\theta} \approx \arg \max_{\theta} \prod_{\overline{d} \in \mathcal{D}} p(\overline{d}; \theta)$$

- How well does it do on NLP tasks?
- To evaluate: prompt the model

Zero-Shot Prompting

Prompt:

Review: Let there be no question: Alexions owns the best cheeseburger in the region and they have now for decades. Try a burger on Italian bread. The service is flawlessly friendly, the food is amazing, and the wings? Oh the wings... but it's still about the cheeseburger. The atmosphere is inviting, but you can't eat atmosphere... so go right now. Grab the car keys... you know you're hungry for an amazing cheeseburger, maybe some wings, and a cold beer! Easily, hands down, the best bar and grill in Pittsburgh.

On a 1 to 4 star scale, the reviewer would probably give this restaurant a

Model's Output Probabilities:

P("1" | prompt) = 0.0016 P("2" | prompt) = 0.0032 P("3" | prompt) = 0.012 P("4" | prompt) = 0.78

Template used:

Review: <review>

On a 1 to 4 star scale, the reviewer would probably give this restaurant a <class_label>

This template is tried for all possible class labels.

Sentiment Classification

Example from CMU LLMs course

Zero-Shot Prompting

Prompt:

India's moon rover completes its walk. Scientists analyzing data looking for signs of frozen water

BEW DELHI -- India's moon rover has completed its walk on the lunar surface and been put into sleep mode less than two weeks after its historic landing near the lunar south pole, India's space mission said.

"The rover completes its assignments. It is now safely parked and set into sleep mode," with daylight on that part of the moon coming to an end, the Indian Space Research Organization said in a statement late Saturday.

The rover's payloads are turned off and the data it collected has been transmitted to the Earth via the lander, the statement said.

[...]

Active since the 1960s, India has launched satellites for itself and other countries, and successfully put one in orbit around Mars in 2014. India is planning its first mission to the International Space Station next year, in collaboration with the United States.

TL;DR;

Model Generation:

India's moon rover has completed its assignments and gone to sleep mode after just two weeks of being on the lunar surface. The rover has started transmitting the data it has collected to Earth, but scientists are unsure if it can survive the extremely cold temperatures on the moon and wake up in order to conduct another set of missions when the sun rises again. India successfully landed the rover and underscored its status as a major tech power and space program. Template used:

<title>

<article>

TL;DR;

We return the model's generation from the filled out template.

Summarization

Example from CMU LLMs course

Example from CMU LLMs course

Few-Shot Prompting (In-Context Learning)

Prompt:

The dog chased a squirrel at the park. = 那只狗在公园里追一只松鼠。

I was late for class. = 我上课迟到了。

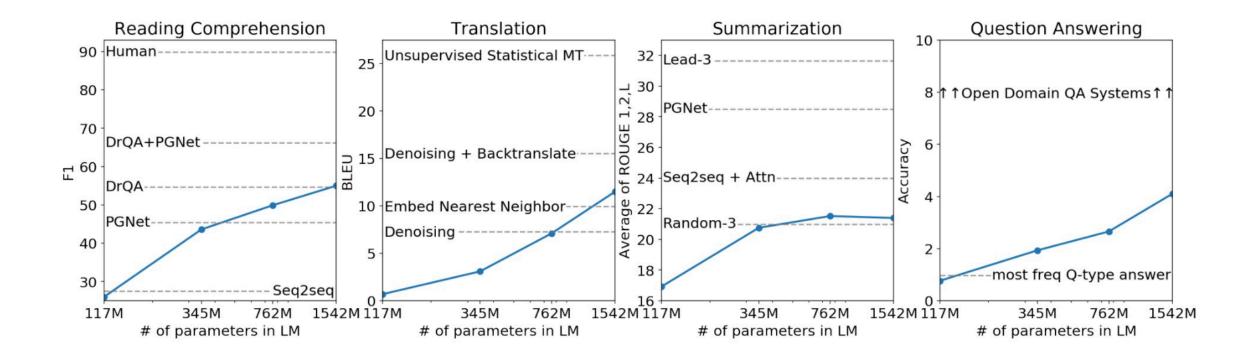
The hippopotamus ate my homework. =

Model Generation: 河马吃了我的家庭作业。 Template Used: <example1_en> = <example1_zh> <example2_en> = <example2_zh>

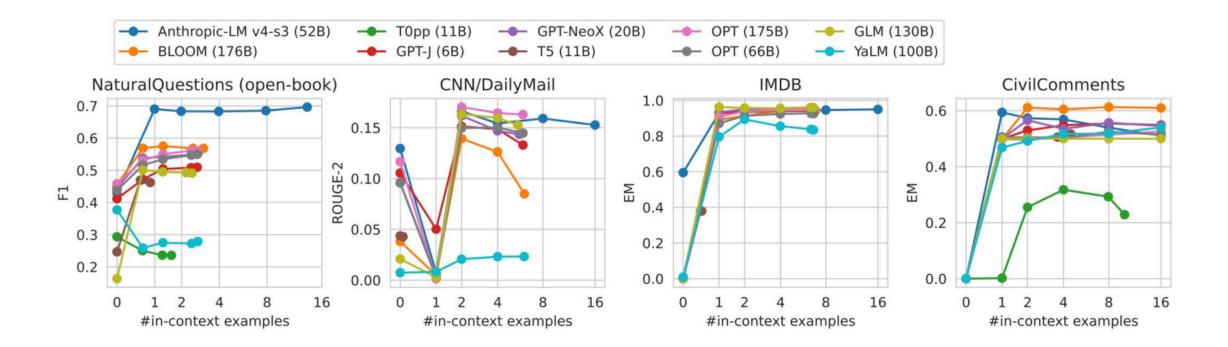
<query_en> =

Machine Translation

Evaluation on NLP Tasks



Evaluation on NLP Tasks



Why does this work?

Liang et al. 2022

Why Prompting Works

I bought a whiteboard when I moved into my new and current house. This was supposed to be the ultimate pièce de résistance to my awesome new home office. It took a few months to ship, and when it finally did, I was pretty unhappy with it. First of all, there was this big crack behind it, bending the metal in an unsatisfying way, but it wasn't that noticeable so I didn't bother sending it back. The worst, though, was that it was near impossible to write on it without leaving ghost marks. And you can forget about letting some writing on it more than 24 hours.

As a result, I wound up not using it for most of the last year. Basically, his only purpose was as a magnet holder, when it should have been used for so many different projets.

Today, as I finally had some free time, I looked into the process of cleaning my whiteboard, and making it more usable. As I applied some store bought cleaner, I found this small tear in some kind of plastic coating. I freaked out, ripped it all out and came to the horrifying conclusion that I spent 1 1/2 years writing on plastic.

I now have a brand new, unused board that has been sitting in my office.

tl;dr: bought a whiteboard, forgot to take the plastic layer off and took way too long to figure it out

"I'm not the cleverest man in the world, but like they say in French: Je ne suis pas un imbecile [I'm not a fool].

In a now-deleted post from Aug. 16, Soheil Eid, Tory candidate in the riding of Joliette, wrote in French: "Mentez mentez, il en restera toujours quelque chose," which translates as, "Lie lie and something will always remain."

"I hate the word '**perfume**," Burr says. 'It's somewhat better in French: '**parfum**.'

If listened carefully at 29:55, a conversation can be heard between two guys in French: "-Comment on fait pour aller de l'autre coté? -Quel autre coté?", which means "- How do you get to the other side? - What side?".

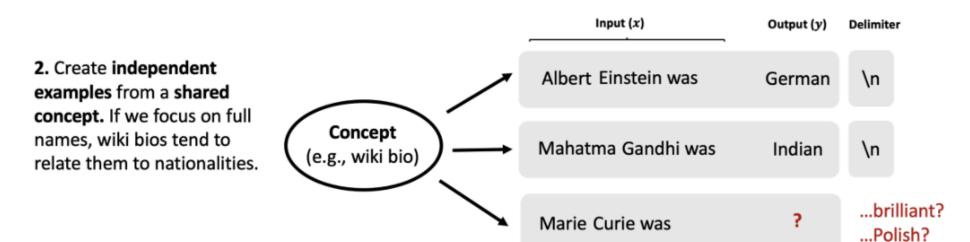
If this sounds like a bit of a stretch, consider this question in French: **As-tu aller au cinéma?**, or **Did you go to the movies?**, which literally translates as Have-you to go to movies/theater?

"Brevet Sans Garantie Du Gouvernement", translated to English: "Patented without government warranty".

Why Prompting Works

1. Pretraining documents are conditioned on a latent concept (e.g., biographical text)

Albert Einstein was a German theoretical physicist, widely acknowledged to be one of the greatest physicists of all time. Einstein is best known for developing the theory of relativity, but he also



3. Concatenate examples into a prompt and predict next word(s). Language model (LM) implicitly infers the shared concept across examples despite the unnatural concatenation

Albert Einstein was German \n Mahatma Gandhi was Indian \n Marie Curie was

Xie et al. 2021

A. What	is	this piece of news regarding?	40.9
B. What	is	this news article about?	52.4
C. What	is	the best way to describe this article?	68.2
D. What	is	the most accurate label for this news article?	71.2

Why a Particular Prompt Works?

A. Review:	<negative< th=""><th>review></th><th></th></negative<>	review>	
Answer:	Negative		
			88
Review:	<positive< th=""><th>review></th><th></th></positive<>	review>	
Answer:	Positive		

B. Review: <positive review>

Answer: Positive

51.3

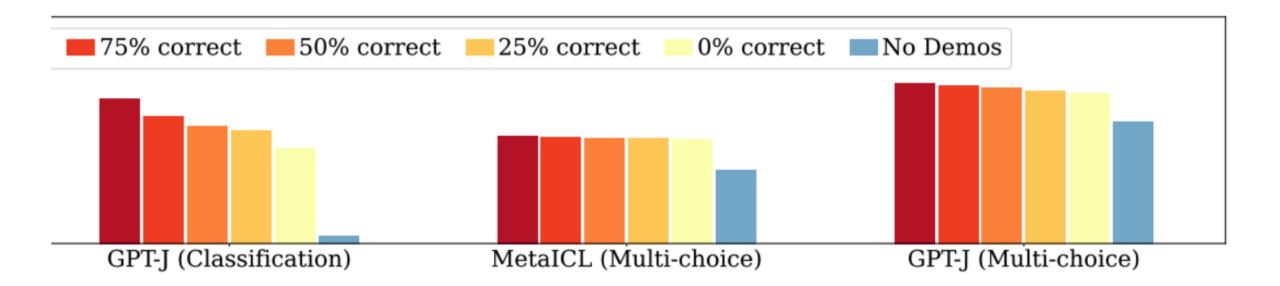
.5

Review: <negative review>

Answer: Negative

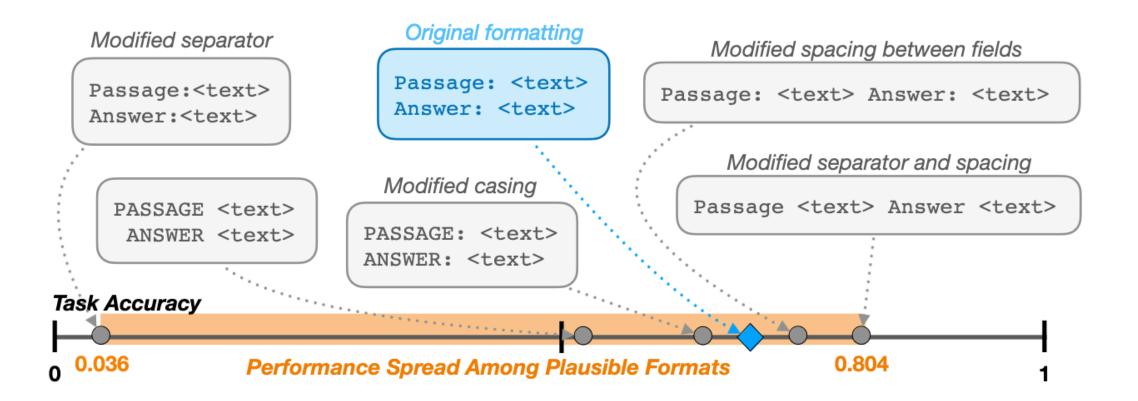
Golen et al. 2022

Why a Particular Prompt Works?



- Few-shot examples:
 - Choice of examples
 - Labels provided with examples
 - Ordering of examples
- Prompt design:
 - How task is formulated
 - Wording
 - Formatting

Sensitivity to Prompt Features



Sclar et al. 2023, to appear on Arxiv very soon...

Main idea: prompt model to include a step-by-step solution of the problem being solved

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Main idea: prompt model to include a step-by-step solution of the problem being solved

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output
A: The answer is 27.

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Step-by-step answer

Step-by-step

demonstration

Wei et al. 2022

Main idea: "tell" the model to think step-by-step

(a) Few-shot

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A:

(Output) The answer is 8. X

Main idea: "tell" the model to think step-by-step

(a) Few-shot

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A:

(Output) The answer is 8. X

(c) Zero-shot

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: The answer (arabic numerals) is

(Output) 8 🗙

Kojima et al. 2022

Main idea: "tell" the model to think step-by-step

(a) Few-shot

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A:

(Output) The answer is 8. X

(c) Zero-shot

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: The answer (arabic numerals) is

(Output) 8 X

(b) Few-shot-CoT

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are blue. So there are 8 / 2 = 4 blue golf balls. The answer is 4.

Main idea: "tell" the model to think step-by-step

(a) Few-shot

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A:

(Output) The answer is 8. X

(c) Zero-shot

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: The answer (arabic numerals) is

(Output) 8 X

(b) Few-shot-CoT

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are blue. So there are 8 / 2 = 4 blue golf balls. The answer is 4.

(d) Zero-shot-CoT (Ours)

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: Let's think step by step.

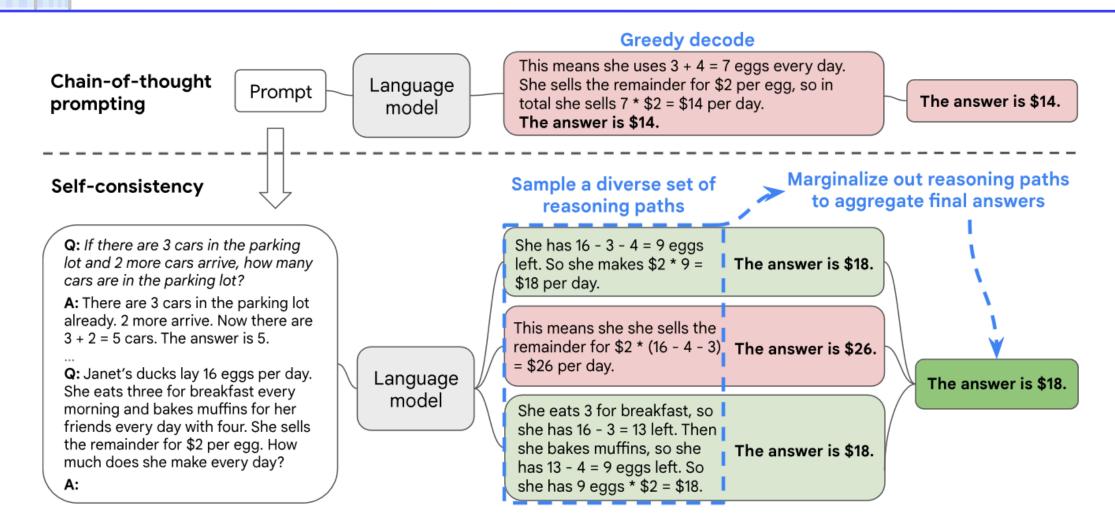
(Output) There are 16 balls in total. Half of the balls are golf balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue golf balls.

Main idea: "tell" the model to think step-by-step

No.	Category	Template	Accuracy
1	instructive	Let's think step by step.	78.7
2		First, (*1)	77.3
3		Let's think about this logically.	74.5
4		Let's solve this problem by splitting it into steps. (*2)	72.2
4 5		Let's be realistic and think step by step.	70.8
6		Let's think like a detective step by step.	70.3
7		Let's think	57.5
8		Before we dive into the answer,	55.7
9		The answer is after the proof.	45.7
10	misleading	Don't think. Just feel.	18.8
11	-	Let's think step by step but reach an incorrect answer.	18.7
12		Let's count the number of "a" in the question.	16.7
13		By using the fact that the earth is round,	9.3
14	irrelevant	By the way, I found a good restaurant nearby.	17.5
15		Abrakadabra!	15.5
16		It's a beautiful day.	13.1
-		(Zero-shot)	17.7

Kojima et al. 2022

Self-Consistency



Access to External Tools

Model Output A: The bakers started with 200 loaves loaves_baked = 200 They sold 93 in the morning and 39 in the afternoon loaves_sold_morning = 93 loaves_sold_afternoon = 39 The grocery store returned 6 loaves. loaves_returned = 6 The answer is answer = loaves_baked - loaves_sold_morning - loaves_sold_afternoon + loaves_returned >>> print(answer) 74	GPT-3 Question: Who lived longer, Theodor Haecker or Harry Vaughan Watkins? Are follow up questions needed here: Yes. Follow up: How old was Theodor Haecker when he died? Intermediate answer: Theodor Haecker was 65 years old when he died. Follow up: How old was Harry Vaughan Watkins when he died? Intermediate answer: Harry Vaughan Watkins was 69 years old when he died. So the final answer is: Harry Vaughan Watkins Question: <u>Who was president of the U.S. when superconductivity</u> <u>was discovered?</u> Are follow up questions needed here: Yes. Follow up: When was superconductivity discovered? Intermediate answer: Superconductivity was discovered in 1911. Follow up: Who was president of the U.S. in 1911? Intermediate answer: William Howard Taft. So the final answer is: William Howard Taft.
---	--

Program-Aided Language Models, Gao et al. 2022

Self-Ask, Press et al. 2022

Discussion

- Thursday: Adaptation fine-tuning (via adapters, freezing layers, etc.), prompt tuning, instruction-tuning, RLHF
- What are your experiences with prompting language models?
- Can we say a model has some competency x if there exists some prompt p such that when the model is prompted with p, it appears to perform well on some test data representative of competency x?