Natural Language Processing

Berkeley

d)

N L P

Compositional Semantics and
Structured Representations

Weakly Supervised Learning

Supervision: Logical Forms

= Data: input sentences paired with annotated LFs

Show me flights to Prague
Ax.flight (x) Ato(x,PRG)

= Problem: no supervision on how to get from sentence to LF

= But we can assume our LF has been generated from some
formal grammar

= Combinatory Categorial Grammar (CCG)

CCG: Lexicon

Words Category
flights N : Ax.flight(x)

to (N\N) /NP : Ax.Af.\y.f(x) A to(y,x)
Prague NP : PRG

New York city NP : NYC

CCG: Combinators

Application
m X/Y . T
n Y : a

Composition

n X/Y
s Y \7Z

N
: £

Y/Z : g => X/7Z : Ax.f(g(x))
X\Y : g => X\Z : Ax.f(g(x))

CCG: Parsing

Show me flights to Prague
S/N N (N\N) /NP NP
ANE.E Ax.flight(x) Ay.Af.Ax.f(y)rto(x,y) PRG

N\N
AME.Ax.f(x)Ato(x,PRG)
N
Ax.flight (x) Ato(x,PRG)
S

Ax.flight (x) Ato(x,PRG)

Weighted CCG

Lexicon A Words Category
GEN: all possible parses y for flights | N : Ax.flight(x)
sentence x given the lexicon to)»x.?»f.?»(;j.\?}:f)NP/\ to (v, x)
Feature function Prague NP PRG
f:XxY—R™ Ty | Mwe
(Learned) weights

w e R™
Best parse:

* = ar max w- f(=x,
Y gyEGEN(ac,A) f(y)

Training (ZC05/07)

= Start with (X, z) sentence-LF pairs and a small seed lexicon
= |[terate T times:

= Propose new lexical entries from each example (x, z):

» Generate all possible lexical entries pairing words/phrases
in x with predicates in z

= Use GEN to get all possible parses of x given the existing
and new lexicon

» Find the best parse y among these and add its lexical
entries to the existing lexicon

GENLEX: Substrings X Categories

Input Training Example

Sentence: Show me flights to Prague.
Logic Form: Ax.flight (x)A to (x,PRG)

Output Lexicon

All possible substrings: Categories created by rules that
Show trigger on the logical form:
e NP : PRG
flights

N : Ax.flight (x)
Show me (S\NP) /NP : Ax.Ay.to(y,x)

Show me flights .
Show me fllghtS to (N\N) /NP : kaf?»x

[Zettlemoyer & Collins 2005]

Training (ZC05/07)

= Start with (X, z) sentence-LF pairs and a small seed lexicon
= |[terate T times:
= Propose new lexical entries from each example (x, z)
= Update weights:
= Re-parse all examples using newest lexicon and GEN

= Sort parses into “good” and “bad” according to whether
they are valid or invalid

= Update weights to upweight “good” parses and
downweight “bad” parses

Training (ZC05/07)

= Start with (X, z) sentence-LF pairs and a small seed lexicon
= |[terate T times:

= Propose new lexical entries from each example (x, z)

= Update weights
= Return full lexicon and weights

Supervision: Denotations Only

= Data: input sentences paired with denotations only (no LFs)

Show me flights to Prague
Flight #s: 123, 456, 78, 342

= Problem: no LF supervision at all!
= Even worse problem of spuriousness
= Complicates lexicon building

= Can still take advantage of knowing there’s a (latent) structured
representation

Learning from Denotations

— Year Gty Country Natlens! = Greece held its last
" Example appllcathnS: iZZ /:th'ens Sreece ;‘ Summer Olympics in
= Grounded QA 1904 Stlouis USA 12 which year?
y =2004
= |nstruction following 2004 Athens Greece 201
2008 Beijing China 204
= Truth-conditional semantics 2012 |Loncon UK |204

WikiTableQuestions, Pasupat and Liang 2015, ACL

» Modification of ZC05/07 approach

at the chair, move forward three steps past the sofa
@; &3 \il

= New validation function: does
proposed parse+LF yield expected

Artzi and Zettlemoyer 2013, TACL

denotation?

= New method for generating lexical
entries: place constraints (e.g., type o A
constraints) on possible new entries There is exactly one black tnangle not touching any edge

NLVR Suhr et al. 2017, ACL

Neural Approaches

Sequence-to-Sequence Models

= Same methods from NMT! Encode input with an RNN, decode LF
token-by-token

» Training: maximize log likelihood of gold LF conditioned on input
utterance

= Can apply techniques like attention, beam search, etc.
= Problems:
= Out-of-vocabulary terms, e.g., proper names (also a problem in MT)

= No longer a clear divide between lexical and compositional
semantics

= No guarantee of syntactic validity or executability

Attending, Pointing, and Copying

Encoder RNN

Encoding of the
source sentence.

Target sentence (output)
A

~
-

flight

—

|

%

\ 4
—P 0000

]

flights to new york

\

J

Y
Source sentence (input)

|

x —0000|—> —

—>{0000}——
%{_J
NNY 48pode(

A 4
—30000|—> >
\ 4
>~ ——0000|— %
x —>0000—— .
—0000}——
~—30000—> «

fli

4
=
=
vV
(@]
oD
—

Slides from John DeNero / Philip Koehn

Attending, Pointing, and Copying

Attention
distribution

Attention

Encoder

scores

RNN

72

s A;tjtn;ﬁn 3 N\T(C Queries (hg...hs)
o ;1 Keys (X0 . ..X3)
T b =23 sixi— g
{ H (0 ---83) 1=0 T Values (Xg...X3)
.
N A

Generating “NYC” from the vocabulary:
p(y = NYC) o< exp(f(h’,h_1)Wyyc + byyc)

A\t

O
S o Learn a bias and
O w Q@ embedding
specifically for NYC
flights to new york !
N Y

Source sentence (input) Slides from John DeNero / Philip Koehn

A 4
—~

=

@)

=y

ot
~—
000

0000 |—

(€
—[¢ -
[
—> 0000

— —{0000

J

Attending, Pointing, and Copying

Attention

Encoder Attention

RNN

distribution

scores

72

o Attenti _
E Dutput 3 Queries {(hg...hs)
L W — %Z sixi—s 5. Keys (X0 . ..X3)
{ H ($0--.83) =0 * Values (Xp...X3)
e e kS
N N N
‘ < ol (o o] [e
:<X0° °X3>': >8 >8<h0h5>8_>8
T‘ \T/ T].r T T, T T ‘T o
) AND to X

flights to new york
\\

Y
Source sentence (input) Slides from John DeNero / Philip Koehn

J

Attending, Pointing, and Copying

Attention

Attention

Encoder

Q .

o Attention
®| output
4 p

distribution
—
1.
1
[}
—{
N
Va)
o
Vs
w
~~—F7"

Generating “CITY_NAMEOQ” from the vocabulary:
p(y = CNO) X exp(f(h', h WCNO + bCNO

Anond |za\$n
CITY 0 =NYC

Learn a bias and

0]

0]

o

Y E R embedding

T‘ T T T specifically for the

AND to X , Oth city name

scores

A 4

—~

=

@)

=y

ot

~—

000

0000 |—

RN

N
—
o
O
P4
P

HL(
i |
]
B

O
O
O
O
)
Y

72 Source sentence (input) Slides from John DeNero / Philip Koehn

flights to CITY_NAMEO
\ J

Attending, Pointing, and Copying

Attention
distribution

Attention

Encoder

scores

RNN

72

output from the input: T
. p(y = x2) ox exp(sz) A Keys <X0 .. .x3>

E/—\ttention Copying ‘CITY_NAMEO” CITY_NAMEO yeries (hg...hs)
0 |
@)

Ve

(50 e 53> Values <Xo . -X3>
Anonymization:
— : CITY_NAMEO = NYC
‘ °® 0 o O (@) —
:(Xo...X3>.: {9 >8<h0---h5>8_’8
TTYT TIT7T0
) AND to (X

flights to CITY_NAMEO
\ J

Y
Source sentence (input) Slides from John DeNero / Philip Koehn

Intrinsic Structure

Constraints

= With token-by-token decoding, we lose the benefit of
generating from a grammar

= Our network now needs to (implicitly) learn the grammar
from data

= No guarantees that it will generate executable code
= Syntax
= Semantics

= How can we take advantage of this underlying structure?

Rejection Sampling

Generate a number of candidate(s) (e.g., via beam search)

Execute candidates, ensuring it compiles and runs without an
error

Return the highest-probability candidate that executes

Could be very inefficient, especially because it requires running
code at inference time

Intermediate Logical Forms

= Design an intermediate representation that implicitly captures
structural dependencies in the code
= Generation in this output space reduces the need for the network to

learn particular dependencies

SQL: SELECT people.name FROM people JOIN films ON people.id = film.person_id

WHERE films.id = 5
SQL": SELECT people.name UF WHERE films.id = 5
peop

= However:
= Cannot capture full expressivity of target language

» Requires manual engineering of intermediate language, and

deterministic mapping to / from the target language
E.g., Guo et al. 2019, ACL

Constrained Decoding

= Generate actions that construct the AST that underlies the target
code rather than the code itself

= Output space includes two types of actions:

= ApplyRule r — apply production rule r to the current derivation tree

= GenerateToken t — generate a variable terminal t

= Tokens t in sequence comprise the surface form of the code

= The current derivation tree constrains the set of rules r that can
be applied and tokens t that can be generated

= At decoding time, simply mask out rules and tokens that cannot
be generated E.g., Yin and Neubig 2017, ACL

Constrained Decoding

Generated AST Production Rule Actions

root — Expr

Expr +— expr{value]

t3 | expr+— Call

S LT TS . v
t4 ts | expr = Name (—"th— expr¥ — expr 14| keyword* — keyword
: A 4 .
Is l 6 | Name +— str fip| expr— Name
grmnmmnbonanas : ______ y — Action Flow
 Totg | Str(sorted) i 117 GenToken[sorted] | ,-{f11| Namew—str | » Parent Feeding
SRIPRINS l . | A
hitizhs str(my_list); *® I3 | GenToken[</n>] |! :f12. GenToken[my_list] pply Rule
L J l t; : Generate Token
>3} GenToken[</n>] 4 GenToken with Copy
T J]
(a) (b)
Input: sort my_list in descending order Code: sorted(my_list, reverse=True)

From Yin and Neubig 2017, ACL

Abstract Syntax Networks

= Generate AST, but learn and use custom decoders (“modules”)
for different parts of the grammar

3

/ () ClassDef\
stmt Q 1f expr
@ ror (If test H
@ vwhile If body stmt*
@ Assign
@ Return orelse

\ ® ... / stmt*

(a) A composite type module choosing a constructor for
the corresponding type. (b) A constructor module computing updated vertical

LSTM states.
/identifier @ init \
stmt* @ create minion
O stmt O add buff add_buff
@ change attack
—@ @ damage
| \ o J
(c) A constructor field module (sequential cardinal-
ity) generating children to populate the field. At each (d) A primitive type module choosing a value from a
step, the module decides whether to generate a child and closed list R . .
' abinovich et al. 2017, ACL

continue (white circle) or stop (black circle).

Training at Scale

= With enough training data, modern neural architectures can

capture underlying code structure without requiring injection of
inductive biases

= |[t’s also easy to generate arbitrary amounts of code for training
= However, provides no guarantees
= Without explicit copying mechanisms:
= Possible for the model to learn biases in its vocabulary
= No guarantees it will properly use new variables and functions

= Ability to generalize to completely new programming languages
and new structures?

General-Purpose
Code Generation

Code Generation

. Year City Country Nations x = Greece held its last
o BEfO re: tas kS wit h Clea I ijzz /:th'ens Sreece ;‘ Summer Olympics in
. aris | rance Which year?
d en Otat ions 1904 St.Louis USA 12 = 2004
2004 Athens Greece 201
= What about general-purpose
2012 London UK 204

code generation?
WikiTableQuestions, Pasupat and Liang 2015, ACL

at the chair, move forward three steps past the sofa

Artzi and Zettlemoyer 2013, TACL

I

There is exactly one black tnangle not touching any edge

NLVR, Suhr et al. 2017, ACL

Code Generation

s Before: tasks with clear
denotations

= What about general-purpose
code generation?

"""Compute dates for today
and 1 month ago."""
import datetime

today =
datetime.date.today()
one_month_ago = today -
datetime.timedelta(days=30

)

print(today)
orint(one_month_ago)

OpenAl Codex, 2021

Code Generation

s Before: tasks with clear
denotations

= What about general-purpose
code generation?

» Denotation: program output?

"""Compute dates for today
and 1 month ago."""
import datetime

today =
datetime.date.today()
one_month_ago = today -
datetime.timedelta(days=30

)

print(today)
orint(one_month_ago)

OpenAl Codex, 2021

Code Generation

s Before: tasks with clear
denotations

= What about general-purpose
code generation?

» Denotation: program output?

= Less alighment between NL
and LF

"""Compute dates for today

and 1T month ago."""

datetime.date.today
one_month_ago = today -
datetime.timedelta(days=30

)

print(today)
orint(one_month_ago)

OpenAl Codex, 2021

Code Generation

s Before: tasks with clear
denotations

= What about general-purpose

/* Increment the score by 1

code generation? point, every 500ms. */
. scorelncrement =
= Denotation: program output? e Tkarvs l(fjn::ion() {

score++,

= Less alignment between NL | |
scoreDisplay.innerHTML =

and LF 'Score: ' + score:
i 599);

= What is a “denotation” isn’t

always clear OpenAl Codex, 2021

Evaluation

» Code doesn’t always produce a single, evaluable output
= Instead: write test cases, report pass@k

= Labor-intensive: requires programming expertise for annotation
(HumanEval only contains 164 problems)

def solution(lst):
"""Given a non-empty list of integers, return the sum of all of the odd elements
that are in even positions.

Examples

solution([5, 8, 7, 1]) ==>12
solution([3, 3, 3, 3, 3]) ==9
solution([30, 13, 24, 321]) ==>0

return sum(lst[i] for i in range(9,len(lst)) if i % 2 == 0 and 1st[i] % 2 == 1)
HumanEval, Chen et al. 2021

Evaluation

= Any automated benchmark has to focus on a subset of problems

= Going beyond solving programming puzzles

Here is a sample dataframe:

df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
I'd like to add inverses of each existing column to the dataframe and name
them based on existing column names with a prefix, e.g. inv_A is an inverse of
column A and so on.

The resulting dataframe should look like so:

result = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "inv_A": [1/1,
1/2, 1/3], “inv_B": [1/4, 1/5, 1/6]})

Obviously there are redundant methods like doing this in a loop, but there
should exist much more pythonic ways of doing it ... [omitted for brevity]

Problem

A:

<code>

import pandas as pd
df = pd.DataFrame({"A": [1, 2, 3],"B": [4, 5, 6]})
</code>

BEGIN SOLUTION
<code>

[insert]

</code>

END SOLUTION

<code>
print(result)

\:/code>

Code Context

~

J

Reference Solution

result = df.join(df.apply(lambda x: 1/x).add_prefix(“inv_"))

DS-1000, Lai et al. 2022

= Sample real problems
from StackOverflow

Language Models (GPT-3 Codex)

¥

Predict

Prompt

= Collect reference
solutions and setting up
environment for testing

Replace [insert] in the code context with
following predicted code snippets

result = df.div(1).add_prefix("inv_")

lExecute to evaluate

Multi-criteria Execution-based Evaluation
Test case 1
df = pd.DatafFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
ans = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6],
"inv_A": [1/1, 1/2, 1/3],
“inv_B": [1/4, 1/5, 1/6]})

= Expert-written test cases

= Evaluate adherence to
surface form constraints
(e.g., that a library must
be used)

Test case 2
df,ans = ...[omit for brevity]

pd.testing.assert_frame_equal(result, ans)

Surface-form constraints
for and while should not appear in Syntax Tree

v

Correct/wrong?

4

Approaches

= Multi-task learning: masking, tagging, generation
= Train on a large amount of code, some annotated with natural

language
PLs | W/NL W/oNL Identifier

2 (Ruby 49,009 110,551 32.08%
E JavaScript 125,166 1,717,933 19.82%
Masked Input Masked Input §< Go 319,132 379,103 19.32%
recursive # recursive binary search & | Python 453,772 657,030 30.02%
binarySearch (arr, left, right, x): B | Java 457,381 1,070,271 25.76%
e D s © | pHP 525357 398,058 23.44%
5 C IM - 24.94%
O{ CSharp 228,496 856,375 27.85%
Output Qutput Total 3,158,313 5,189,321 8,347,634
binary search right) // binarySearch arr
[mid] left right x mid
(a) Masked Span Prediction (c) Masked Identifier Prediction
A

-
h A

recursive binary search

Bimodal Input
recursive binary search
binarySearch (arr, left, right, x):
mid = (left + right) //
arr [mid] == x:
mid

/
i
I

§t010100100

binarySearch(arr, left, right, x):
mid = (left + right) //
arr[mid] == x:
mid

(b) Identifier Tagging (d) Bimodal Dual Generation CodeT5 Wang et al. 2021

Automated Software Development?

MetaGPT Agents Collaboration with Developing SOP

Human interaction

Planning
Product Manager

‘ @ Requirement document

=11
System design =
Requirement Analysis . e y g ‘s
£
Architect 1 ;:.‘n
Architectural Design o
— o
©- E
%)
System Design Project Manager =
%

., :
2 L
% s :

0 \
z, . :
/?o ‘. ' :
%o& . Testing = U :
(@) * .
“ ‘4 Acceptance Check QA Engineer ¥

~

1/5 One-line requirement
Define Write a classic and
simple Flappy Bird
. game.
2/5 g
Design
Boss makes acceptance
check and payment
— Pretty good ! I can
3/5 || directly use the
Plan&Code interface and
keyboard to play
~h Flappy Bird.
4/5 @,
Check -

N

MetaGPT, Hong et al. 2023

Modularity

Neural Module Networks

» Task: visual question answering
= Cast it as a semantic parsing task
= What is a denotation?

» Tie predicates in LF to composable neural modules

“Is there a red shape
above a circle?”

Andreas et al. 2015

Neural Module Networks

= Determine layout from sentence
= Option 1: deterministic layouts — requires gold annotation
= Get dependency parse for input question
= Construct layout of modules given this parse

= Option 2: latent layouts — requires RL

how many different lights

= Compose modules and run inference / training (end-to-end) in various different shapes
and sizes?
Attention Measurement Classification
attend : Image — Attention measure : Attention — Label classify : Image x Attention — Label

measure[count](

classify[where]

attend[dog] measure[exists] attend[llght])
Convolution
FC RelLU FC Softmax yes
Re-attention Combination
re-attend : Attention — Attention combine : Attention x Attention — Attention

four (four)

re-attend[above] combine[except]
-—v = — I = H = H —
@ Andreas et al. 2015, Hu et al. 2017

Neural Module Networks

= Benefits: interpretability and controllability
= You know what modules are being used

= You know how they are composed

= You know the intermediate outputs of each module
= Problems
= Requires formalizing the set of modules

= Doesn’t work very well, empirically

Andreas et al. 2015, Hu et al. 2017

Code as a Reasoning Bottleneck

= Taking advantage of general-purpose code models
» Formal representation is given to us!
= Need very little paired data (use in-context learning)
= Still interpretable and controllable
= Some drawbacks:
= Still requires choosing a few modules

= Particular choice of in-context examples and modules can
limit reasoning

Code as a Reasoning Bottleneck

Question:

Codex
(Few—Shot Prompting)

Code Generation

/s the carriage to the
right of a horse?

—

In-Context Examples

Image 1: On which side of

the picture is the rug?

img = open_image("Imagel.jpg")

rug_pos_x, rug_pos_y =

get_pos(img, "rug")

if rug_pos_x < (LEFT+RIGHT)/2:
answer = "left"

else:

answer = "right”

horse_exists = "Is there
a horse?")

answer = "no”

query(img,

if horse_exists == "yes":
carriage_pos_x,carriage_pos_y =
get_pos(img, "carriage”)
horse_pos_x, horse_pos_y =
get_pos(img, "horse")

if carriage_pos_x > horse_pos_x:

answer = "yes’’

!
Execute Code

query(img, “Is there a horse?”)

- Captions:

1. a po/ice horse pulled by a fire policeman in a

f wegon '

2. 'man riding a horse drawn carriage pulling horse

: next to a offcer 1 Answer:
""""""""""""""" Fetirns wyags T No

get_ pos(lmg,“carrlage”) get_ pos(lmg,‘horse”)

returns 5, 11 returns 12, 11

N\

carriage_pos_x < horse_pos_x

VisProg, Gupta and Kembhavi 2023, CVPR
Subramanian et al. 2023, ACL
ViperGPT, Suris et al. 2023

Code as a Reasoning Bottleneck

IMAGE: Prediction: IMAGE®

Instruction: Replace desert with lush green grass

Program:

OBJO@=Seg(image=IMAGE)

OBJ1=Select(image=IMAGE, object=0BJ@, query=‘desert’, category=None)
IMAGE@=Replace(image=IMAGE, object=0BJ1, prompt=‘lush green grass’)
RESULT=IMAGE®

VisProg, Gupta and Kembhavi 2023, CVPR
Subramanian et al. 2023, ACL
ViperGPT, Suris et al. 2023

Code as a Reasoning Bottleneck

Query: Return the two kids that are furthest from the woman right before she hugs the girl

def execute_command(video):
video_segment = VideoSegment(video)
hug_detected = False
for i, frame in enumerate(video_segment.frame_iterator()):
if frame.exists('"woman") and frame.exists("girl") and \

» hug_detected=True
» frame=

» kid patches—

frame.simple_query("Is the woman hugging the girl?") == "yes":
hug_detected = True
break sort(...distance..

if hug_detected: » kid_ atches-

index_frame = i - 1
frame_of_interest = ImagePatch(video_segment, index_frame)
woman_patches = frame_of_interest.find("woman")
woman_patch = woman_patches[@]
kid_patches = frame_of_interest.find("kid")
kid_patches.sort(key=lambda kid: distance(kid, woman_patch))
kid_patch_1 = kid_patches[-1]
kid_patch_2 = kid_patches[-2]
return [kid_patch_1, kid_patch_2]

VisProg, Gupta and Kembhavi 2023, CVPR
Subramanian et al. 2023, ACL
ViperGPT, Suris et al. 2023

