
Natural	Language	Processing

Compositional	Semantics	and	
Structured	Representations

Weakly	Supervised	Learning

Supervision:	Logical	Forms

▪ Data:	input	sentences	paired	with	annotated	LFs	
	
	

▪ Problem:	no	supervision	on	how	to	get	from	sentence	to	LF	
▪ But	we	can	assume	our	LF	has	been	generated	from	some	
formal	grammar	

▪ Combinatory	Categorial	Grammar	(CCG)

Show me flights to Prague

λx.flight(x)∧to(x,PRG)

CCG:	Lexicon

Words Category

flights N : λx.flight(x)

to (N\N)/NP : λx.λf.λy.f(x) ∧ to(y,x)

Prague NP : PRG

New York city NP : NYC

… …

CCG:	Combinators

Application	
▪ X/Y : f Y : a => X : f(a)

▪ Y : a X\Y : f => X : f(a)

Composition	
▪ X/Y : f Y/Z : g => X/Z : λx.f(g(x))

▪ Y\Z : f X\Y : g => X\Z : λx.f(g(x))

CCG:	Parsing

to Pragueflights

N\N
λf.λx.f(x)∧to(x,PRG)

N
λx.flight(x)∧to(x,PRG)

Show me

N
λx.flight(x)

(N\N)/NP
λy.λf.λx.f(y)∧to(x,y)

NP
PRG

S/N
λf.f

S
λx.flight(x)∧to(x,PRG)

Weighted	CCG

▪ Lexicon	Λ
▪ GEN:	all	possible	parses	y	for	
sentence	x	given	the	lexicon	

▪ Feature	function	

▪ (Learned)	weights	

▪ Best	parse:

Words Category
flights N : λx.flight(x)

to (N\N)/NP :
λx.λf.λy.f(x) ∧ to(y,x)

Prague NP : PRG

New York
city

NP : NYC

… …

Training	(ZC05/07)

▪ Start	with	(x,	z)	sentence-LF	pairs	and	a	small	seed	lexicon	
▪ Iterate	T	times:	
▪ Propose	new	lexical	entries	from	each	example	(x,	z):	
▪ Generate	all	possible	lexical	entries	pairing	words/phrases	
in	x	with	predicates	in	z	

▪ Use	GEN	to	get	all	possible	parses	of	x	given	the	existing	
and	new	lexicon	

▪ Find	the	best	parse	y	among	these	and	add	its	lexical	
entries	to	the	existing	lexicon

GENLEX:	Substrings	X	Categories

All	possible	substrings:	
 Show

 me
 flights
 Show me
 Show me flights
 Show me flights to

 …

Categories	created	by	rules	that	
trigger	on	the	logical	form:
 NP : PRG	

 N : λx.flight(x)	
 (S\NP)/NP : λx.λy.to(y,x)	
 (N\N)/NP : λy.λf.λx. …

 …

X

Input Training Example

Sentence: Show me flights to Prague.
Logic Form: λx.flight(x)∧ to(x,PRG)

Output Lexicon

[Zettlemoyer & Collins 2005]

Training	(ZC05/07)

▪ Start	with	(x,	z)	sentence-LF	pairs	and	a	small	seed	lexicon	
▪ Iterate	T	times:	
▪ Propose	new	lexical	entries	from	each	example	(x,	z)	
▪ Update	weights:	
▪ Re-parse	all	examples	using	newest	lexicon	and	GEN	
▪ Sort	parses	into	“good”	and	“bad”	according	to	whether	
they	are	valid	or	invalid	

▪ Update	weights	to	upweight	“good”	parses	and	
downweight	“bad”	parses

Training	(ZC05/07)

▪ Start	with	(x,	z)	sentence-LF	pairs	and	a	small	seed	lexicon	
▪ Iterate	T	times:	
▪ Propose	new	lexical	entries	from	each	example	(x,	z)	
▪ Update	weights	

▪ Return	full	lexicon	and	weights

Supervision:	Denotations	Only

▪ Data:	input	sentences	paired	with	denotations	only	(no	LFs)	
	
	

▪ Problem:	no	LF	supervision	at	all!	
▪ Even	worse	problem	of	spuriousness	
▪ Complicates	lexicon	building	

▪ Can	still	take	advantage	of	knowing	there’s	a	(latent)	structured	
representation

Show me flights to Prague

Flight #s: 123, 456, 78, 342

Learning	from	Denotations
▪ Example	applications:	
▪ Grounded	QA	
▪ Instruction	following	
▪ Truth-conditional	semantics	

▪ Modification	of	ZC05/07	approach	
▪ New	validation	function:	does	
proposed	parse+LF	yield	expected	
denotation?	

▪ New	method	for	generating	lexical	
entries:	place	constraints	(e.g.,	type	
constraints)	on	possible	new	entries

WikiTableQuestions,	Pasupat	and	Liang	2015,	ACL

Artzi	and	Zettlemoyer	2013,	TACL

NLVR,	Suhr	et	al.	2017,	ACL

Neural	Approaches

Sequence-to-Sequence	Models
▪ Same	methods	from	NMT!	Encode	input	with	an	RNN,	decode	LF	
token-by-token	

▪ Training:	maximize	log	likelihood	of	gold	LF	conditioned	on	input	
utterance	

▪ Can	apply	techniques	like	attention,	beam	search,	etc.	
▪ Problems:	
▪ Out-of-vocabulary	terms,	e.g.,	proper	names	(also	a	problem	in	MT)	
▪ No	longer	a	clear	divide	between	lexical	and	compositional	
semantics	

▪ No	guarantee	of	syntactic	validity	or	executability

Attending,	Pointing,	and	Copying

Slides from John DeNero / Philip Koehn

flights to new york λ x . flight (x …

λ x . flight (x) …

Attending,	Pointing,	and	Copying

Slides from John DeNero / Philip Koehn

flights to new york) AND to (x ,

…

Queries
Keys
Values

 NYC

Generating “NYC” from the vocabulary:

Learn	a	bias	and	
embedding	
specifically	for	NYC

Attending,	Pointing,	and	Copying

Slides from John DeNero / Philip Koehn

flights to new york) AND to (x ,

…

Queries
Keys
Values

Attending,	Pointing,	and	Copying

Slides from John DeNero / Philip Koehn

) AND to (x ,

…

Queries
Keys
Values

flights to CITY_NAME0

 CITY_NAME0

Generating “CITY_NAME0” from the vocabulary:

Anonymization:
CITY_NAME0 = NYC

NYC

Learn	a	bias	and	
embedding	
specifically	for	the	
0th	city	name

Attending,	Pointing,	and	Copying

Slides from John DeNero / Philip Koehn

flights to CITY_NAME0) AND to (x ,

…

Copying “CITY_NAME0”
from the input:

Queries
Keys
Values

Anonymization:
CITY_NAME0 = NYC

 CITY_NAME0

Intrinsic	Structure

Constraints

▪ With	token-by-token	decoding,	we	lose	the	benefit	of	
generating	from	a	grammar	
▪ Our	network	now	needs	to	(implicitly)	learn	the	grammar	
from	data	

▪ No	guarantees	that	it	will	generate	executable	code	
▪ Syntax	
▪ Semantics	

▪ How	can	we	take	advantage	of	this	underlying	structure?	

Rejection	Sampling

▪ Generate	a	number	of	candidate(s)	(e.g.,	via	beam	search)	
▪ Execute	candidates,	ensuring	it	compiles	and	runs	without	an	
error	

▪ Return	the	highest-probability	candidate	that	executes	
▪ Could	be	very	inefficient,	especially	because	it	requires	running	
code	at	inference	time

Intermediate	Logical	Forms
▪ Design	an	intermediate	representation	that	implicitly	captures	
structural	dependencies	in	the	code	

▪ Generation	in	this	output	space	reduces	the	need	for	the	network	to	
learn	particular	dependencies	
	

▪ However:	
▪ Cannot	capture	full	expressivity	of	target	language	
▪ Requires	manual	engineering	of	intermediate	language,	and	
deterministic	mapping	to	/	from	the	target	language

E.g., Guo et al. 2019, ACL

Constrained	Decoding

▪ Generate	actions	that	construct	the	AST	that	underlies	the	target	
code	rather	than	the	code	itself	

▪ Output	space	includes	two	types	of	actions:	
▪ ApplyRule	r	—	apply	production	rule	r	to	the	current	derivation	tree	
▪ GenerateToken	t	—	generate	a	variable	terminal	t	

▪ Tokens	t	in	sequence	comprise	the	surface	form	of	the	code	
▪ The	current	derivation	tree	constrains	the	set	of	rules	r	that	can	
be	applied	and	tokens	t	that	can	be	generated	

▪ At	decoding	time,	simply	mask	out	rules	and	tokens	that	cannot	
be	generated E.g., Yin and Neubig 2017, ACL

Constrained	Decoding

From Yin and Neubig 2017, ACL

Generated	AST Production	Rule	Actions

Abstract	Syntax	Networks

▪ Generate	AST,	but	learn	and	use	custom	decoders	(“modules”)	
for	different	parts	of	the	grammar

Rabinovich et al. 2017, ACL

Training	at	Scale
▪ With	enough	training	data,	modern	neural	architectures	can	
capture	underlying	code	structure	without	requiring	injection	of	
inductive	biases	

▪ It’s	also	easy	to	generate	arbitrary	amounts	of	code	for	training	
▪ However,	provides	no	guarantees	
▪ Without	explicit	copying	mechanisms:	
▪ Possible	for	the	model	to	learn	biases	in	its	vocabulary	
▪ No	guarantees	it	will	properly	use	new	variables	and	functions		

▪ Ability	to	generalize	to	completely	new	programming	languages	
and	new	structures?

General-Purpose		
Code	Generation

Code	Generation

▪ Before:	tasks	with	clear	
denotations	

▪ What	about	general-purpose	
code	generation?

WikiTableQuestions,	Pasupat	and	Liang	2015,	ACL

Artzi	and	Zettlemoyer	2013,	TACL

NLVR,	Suhr	et	al.	2017,	ACL

Code	Generation

▪ Before:	tasks	with	clear	
denotations	

▪ What	about	general-purpose	
code	generation?

OpenAI	Codex,	2021

Code	Generation

▪ Before:	tasks	with	clear	
denotations	

▪ What	about	general-purpose	
code	generation?	
▪ Denotation:	program	output?

OpenAI	Codex,	2021

Code	Generation

▪ Before:	tasks	with	clear	
denotations	

▪ What	about	general-purpose	
code	generation?	
▪ Denotation:	program	output?	
▪ Less	alignment	between	NL	
and	LF

OpenAI	Codex,	2021

Code	Generation

▪ Before:	tasks	with	clear	
denotations	

▪ What	about	general-purpose	
code	generation?	
▪ Denotation:	program	output?	
▪ Less	alignment	between	NL	
and	LF	

▪ What	is	a	“denotation”	isn’t	
always	clear… OpenAI	Codex,	2021

Evaluation

▪ Code	doesn’t	always	produce	a	single,	evaluable	output	
▪ Instead:	write	test	cases,	report	pass@k	
▪ Labor-intensive:	requires	programming	expertise	for	annotation	
(HumanEval	only	contains	164	problems)

HumanEval,	Chen	et	al.	2021

Evaluation

▪ Any	automated	benchmark	has	to	focus	on	a	subset	of	problems	
▪ Going	beyond	solving	programming	puzzles

DS-1000,	Lai	et	al.	2022	
▪ Sample	real	problems	
from	StackOverflow	

▪ Collect	reference	
solutions	and	setting	up	
environment	for	testing	

▪ Expert-written	test	cases	
▪ Evaluate	adherence	to	
surface	form	constraints	
(e.g.,	that	a	library	must	
be	used)

Approaches

CodeT5,	Wang	et	al.	2021

▪ Multi-task	learning:	masking,	tagging,	generation	
▪ Train	on	a	large	amount	of	code,	some	annotated	with	natural	
language

Automated	Software	Development?

MetaGPT,	Hong	et	al.	2023

Modularity

Neural	Module	Networks

Andreas	et	al.	2015

▪ Task:	visual	question	answering	
▪ Cast	it	as	a	semantic	parsing	task	
▪ What	is	a	denotation?	

▪ Tie	predicates	in	LF	to	composable	neural	modules

“Is there a red shape
above a circle?”

Neural	Module	Networks

Andreas	et	al.	2015,	Hu	et	al.	2017

▪ Determine	layout	from	sentence	
▪ Option	1:	deterministic	layouts	—	requires	gold	annotation	
▪ Get	dependency	parse	for	input	question	
▪ Construct	layout	of	modules	given	this	parse	

▪ Option	2:	latent	layouts	—	requires	RL	
▪ Compose	modules	and	run	inference	/	training	(end-to-end)

Neural	Module	Networks

Andreas	et	al.	2015,	Hu	et	al.	2017

▪ Benefits:	interpretability	and	controllability	
▪ You	know	what	modules	are	being	used	
▪ You	know	how	they	are	composed	
▪ You	know	the	intermediate	outputs	of	each	module	

▪ Problems	
▪ Requires	formalizing	the	set	of	modules	
▪ Doesn’t	work	very	well,	empirically

Code	as	a	Reasoning	Bottleneck

▪ Taking	advantage	of	general-purpose	code	models	
▪ Formal	representation	is	given	to	us!	
▪ Need	very	little	paired	data	(use	in-context	learning)	
▪ Still	interpretable	and	controllable	
▪ Some	drawbacks:	
▪ Still	requires	choosing	a	few	modules	
▪ Particular	choice	of	in-context	examples	and	modules	can	
limit	reasoning

Code	as	a	Reasoning	Bottleneck

VisProg,	Gupta	and	Kembhavi	2023,	CVPR	
Subramanian	et	al.	2023,	ACL	

ViperGPT,	Surís	et	al.	2023

Code	as	a	Reasoning	Bottleneck

VisProg,	Gupta	and	Kembhavi	2023,	CVPR	
Subramanian	et	al.	2023,	ACL	

ViperGPT,	Surís	et	al.	2023

Code	as	a	Reasoning	Bottleneck

VisProg,	Gupta	and	Kembhavi	2023,	CVPR	
Subramanian	et	al.	2023,	ACL	
ViperGPT,	Surís	et	al.	2023

