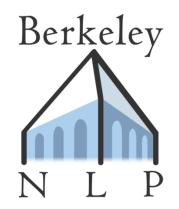
Natural Language Processing

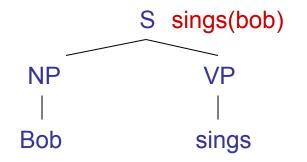


Compositional Semantics

Truth-Conditional Semantics

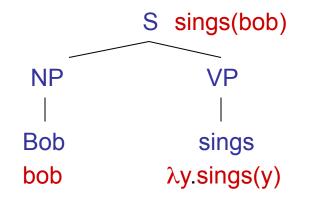
Truth-Conditional Semantics

- Linguistic expressions:
 - "Bob sings"
- Logical translations:
 - sings(bob)
 - Could be p_1218(e_397)
- Denotation:
 - [[bob]] = some specific person (in some context)
 - [[sings(bob)]] = ???
- Types on translations:
 - bob : e (for entity)
 - sings(bob) : t (for truth-value)

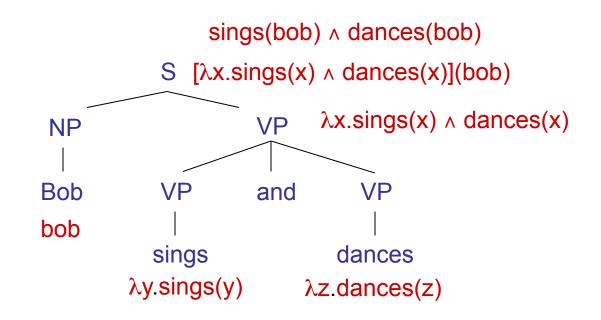


Truth-Conditional Semantics

- Proper names:
 - Refer directly to some entity in the world
 - Bob : bob $[[bob]] W \rightarrow ???$
- Sentences:
 - Are either true or false (given how the world actually is)
 - Bob sings : sings(bob)
- So what about verbs (and verb phrases)?
 - sings must combine with bob to produce sings(bob)
 - The λ -calculus is a notation for functions whose arguments are not yet filled.
 - sings : λx.sings(x)
 - This is a *predicate* a function which takes an entity (type e) and produces a truth value (type t).
 We can write its type as e→t.
 - Adjectives?



- So now we have meanings for the words
- How do we know how to combine words?
- Associate a combination rule with each grammar rule:
 - $S: \beta(\alpha) \rightarrow NP: \alpha \quad VP: \beta$ (function application)
 - $VP : \lambda x . \alpha(x) \land \beta(x) \rightarrow VP : \alpha$ and $: \emptyset \quad VP : \beta$ (intersection)
- Example:

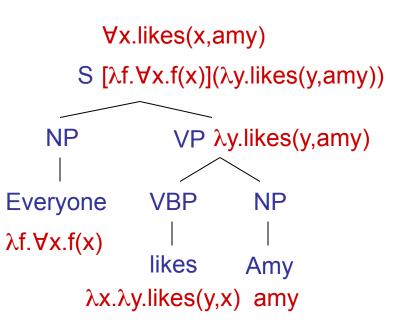


Denotation

- What do we do with logical translations?
 - Translation language (logical form) has fewer ambiguities
 - Can check truth value against a database
 - Denotation ("evaluation") calculated using the database
 - Or the opposite: assert truth and modify a database, either explicitly or implicitly eg prove a consequence from asserted axioms
 - Questions: check whether a statement in a corpus entails the (question, answer) pair:
 - "Bob sings and dances" → "Who sings?" + "Bob"
 - Chain together facts and use them for comprehension

Other Cases

- Transitive verbs:
 - likes : λx.λy.likes(y,x)
 - Two-place predicates of type e→(e→t).
 - likes Amy : λy.likes(y,Amy) is just like a one-place predicate.
- Quantifiers:
 - What does "Everyone" mean here?
 - Everyone : $\lambda f. \forall x. f(x)$
 - Mostly works, but some problems
 - Have to change our NP/VP rule.
 - Won't work for "Amy likes everyone."
 - "Everyone likes someone."
 - This gets tricky quickly!

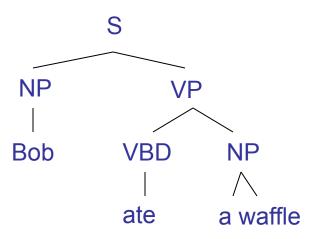


Indefinites

First try

- "Bob ate a waffle" : ate(bob,waffle)
- "Amy ate a waffle" : ate(amy,waffle)

- Can't be right!
 - 3 x : waffle(x) ^ ate(bob,x)
 - What does the translation
 - of "a" have to be?
 - What about "the"?
 - What about "every"?



Grounding

Grounding

- So why does the translation likes : λx.λy.likes(y,x) have anything to do with actual liking?
- It doesn't (unless the denotation model says so)
- Sometimes that's enough: wire up bought to the appropriate entry in a database
- Meaning postulates
 - Insist, e.g $\forall x, y. likes(y, x) \rightarrow knows(y, x)$
 - This gets into lexical semantics issues
- Statistical / neural version?

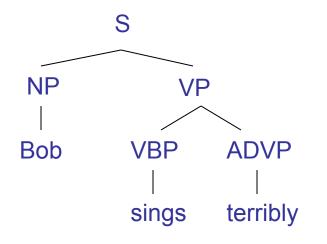
- In general, you don't get far with verbs as predicates
- Better to have event variables e
 - "Alice danced" : danced(alice)
 - J e : dance(e) ^ agent(e,alice) ^ (time(e) < now)</p>
- Event variables let you talk about non-trivial tense / aspect structures
 - "Alice had been dancing when Bob sneezed"
 - J e, e': dance(e) ^ agent(e,alice) ^

sneeze(e') ^ agent(e',bob) ^
(start(e) < start(e') ^ end(e) = end(e')) ^
(time(e') < now)</pre>

Minimal recursion semantics, cf "object oriented" thinking

Adverbs

- What about adverbs?
 - "Bob sings terribly"
 - terribly(sings(bob))?
 - (terribly(sings))(bob)?
 - ∃e present(e) ∧ type(e, singing) ∧ agent(e,bob)
 ∧ manner(e, terrible) ?
 - Gets complex quickly...



Propositional Attitudes

- "Bob thinks that I am a gummi bear"
 - thinks(bob, gummi(me)) ?
 - thinks(bob, "I am a gummi bear") ?
 - thinks(bob, ^gummi(me)) ?
- Usual solution involves intensions (^X) which are, roughly, the set of possible worlds (or conditions) in which X is true
- Hard to deal with computationally
 - Modeling other agents' models, etc
 - Can come up in even simple dialog scenarios, e.g., if you want to talk about what your bill claims you bought vs. what you actually bought

Trickier Stuff

- Non-Intersective Adjectives
 - green ball : $\lambda x.[green(x) \land ball(x)]$
 - fake diamond : λx .[fake(x) \wedge diamond(x)]?
- Generalized Quantifiers
 - the : λf.[unique-member(f)]
 - all : $\lambda f. \lambda g [\forall x.f(x) \rightarrow g(x)]$
 - most?
 - Could do with more general second order predicates, too (why worse?)
 - the(cat, meows), all(cat, meows)
- Generics
 - "Cats like naps"
 - "The players scored a goal"
- Pronouns (and bound anaphora)
 - "If you have a dime, put it in the meter."
- ... the list goes on and on!

 $\longrightarrow \lambda x.[fake(diamond(x))]$

Scope Ambiguities

Quantifier scope

- "All majors take a data science class"
- "Someone took each of the electives"
- "Everyone didn't hand in their exam"

Deciding between readings

- Multiple ways to work this out
 - Make it syntactic (movement)
 - Make it lexical (type-shifting)

Logical Form Translation

The task:

Input: List one way flights to Prague. Output: $\lambda x.flight(x) \wedge one_way(x) \wedge to(x, PRG)$

Challenging learning problem:

- Derivations (or parses) are not annotated
- Approach: [Zettlemoyer & Collins 2005]
- Learn a lexicon and parameters for a weighted Combinatory Categorial Grammar (CCG)

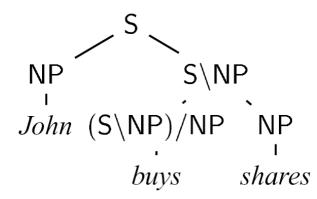
Combinatory Categorial Grammar (CCG)

- Weighted CCGs
- Learning lexical entries: GENLEX

CCG Parsing

- Combinatory Categorial Grammar
 - Fully (mono-) lexicalized grammar
 - Categories encode argument sequences
 - Very closely related to the lambda calculus
 - Can have spurious ambiguities (why?)

 $John \vdash \mathsf{NP} : john'$ $shares \vdash \mathsf{NP} : shares'$ $buys \vdash (\mathsf{S}\backslash\mathsf{NP})/\mathsf{NP} : \lambda x.\lambda y.buys'xy$ $sleeps \vdash \mathsf{S}\backslash\mathsf{NP} : \lambda x.sleeps'x$ $well \vdash (\mathsf{S}\backslash\mathsf{NP})\backslash(\mathsf{S}\backslash\mathsf{NP}) : \lambda f.\lambda x.well'(fx)$



Words	Category	
flights	N : $\lambda x.flight(x)$	
to	$(N\setminus N)/NP : \lambda x \cdot \lambda f \cdot \lambda y \cdot f(x) \wedge to(y, x)$	
Prague	NP : PRG	
New York city	NP : NYC	
•••	•••	

Parsing Rules (Combinators)

Application

- X/Y : f Y : a => X : f(a)
- Y: a $X \setminus Y$: f => X: f(a)

Composition

- X/Y : f Y/Z : g => X/Z : $\lambda x.f(g(x))$
- $Y \setminus Z$: f $X \setminus Y$: g => $X \setminus Z$: $\lambda x \cdot f(g(x))$

Additional rules:

- Type Raising
- Crossed Composition

Show me	flights	to	Prague		
S/N	N	(N\N) /NP	NP		
λ f.f	$\lambda {m x}$.flight(x)	$\lambda y. \lambda f. \lambda x. f(y) \land to(x, y)$	PRG		
		N\N			
	$\lambda f. \lambda x. f(x) \land to(x, PRG)$				
	Ν				
	$\lambda \boldsymbol{x}$.flight(x) \wedge to(x, PRG)				
		S			
	$\lambda x.fl$	ight(x)∧to(x,PRG)			

Given a log-linear model with a CCG lexicon Λ , a feature vector f, and weights w.

• The best parse is:

Where we consider all possible parses y for the sentence x given the lexicon Λ .

Input Training Example

Sentence:	Show me flights to Prague.
Logic Form:	λ x.flight(x) \land to(x,PRG)

Output Lexicon

Words	Category
Show me	S/N : $\lambda f.f$
flights	N : $\lambda x.flight(x)$
to	$(N \setminus N) / NP : \lambda x \cdot \lambda f \cdot \lambda y \cdot f(x) \wedge to(y, x)$
Prague	NP : PRG
• • •	•••

...

Input Training Example

Sentence: Logic Form:	Show me flights to Prague. $\lambda x.flight(x) \wedge to(x, PRG)$		
	Output	Lexicon	
All possible substring Show me flights Show me)	Categories created by rules that trigger on the logical form: NP : PRG N : $\lambda x.flight(x)$ (S\NP)/NP : $\lambda x.\lambda y.to(y,x)$	
Show me fligh Show me fligh		(N\N)/NP : $\lambda y . \lambda f . \lambda x$	

[Zettlemoyer & Collins 2005]

...

Inputs: Training set $\{(x_i, z_i) \mid i=1...n\}$ of sentences and logical forms. Initial lexicon Λ . Initial parameters *w*. Number of iterations *T*.

Training: For $t = 1 \dots T$, $i = 1 \dots n$:

Step 1: Check Correctness

- Let
- If $L(y^*) = z_i$, go to the next example
- Step 2: Lexical Generation
 - Set
 - Let
 - Define λ_i to be the lexical entries in y^{\wedge}
 - Set lexicon to $\Lambda = \Lambda \cup \lambda_i$

Step 3: Update Parameters

- Let
- If
 - Set

Output: Lexicon Λ and parameters w.