Natural Language Processing

Compositional Semantics

Truth-Conditional Semantics

Truth-Conditional Semantics

- Linguistic expressions:
- "Bob sings"
- Logical translations:
- sings(bob)

- Could be p_1218(e_397)
- Denotation:
- [[bob]] = some specific person (in some context)
- [[sings(bob)]] = ???
- Types on translations:
- bob:e
- sings(bob):t

Truth-Conditional Semantics

- Proper names:
- Refer directly to some entity in the world
- Bob:bob [[bob]]w \rightarrow ???
- Sentences:
- Are either true or false (given how the world actually is)
- Bob sings : sings(bob)

- So what about verbs (and verb phrases)?
- sings must combine with bob to produce sings(bob)
- The λ-calculus is a notation for functions whose arguments are not yet filled.
- sings : λx.sings(x)
- This is a predicate - a function which takes an entity (type e) and produces a truth value (type t). We can write its type as $\mathrm{e} \rightarrow \mathrm{t}$.
- Adjectives?

Compositional Semantics

- So now we have meanings for the words
- How do we know how to combine words?
- Associate a combination rule with each grammar rule:
- $S: \beta(\alpha) \rightarrow N P: \alpha$ VP : β (function application)
- VP $: \lambda x . \alpha(x) \wedge \beta(x) \rightarrow V P: \alpha$ and $: \varnothing$ VP: β (intersection)
- Example:

Denotation

- What do we do with logical translations?
- Translation language (logical form) has fewer ambiguities
- Can check truth value against a database
- Denotation ("evaluation") calculated using the database
- Or the opposite: assert truth and modify a database, either explicitly or implicitly eg prove a consequence from asserted axioms
- Questions: check whether a statement in a corpus entails the (question, answer) pair:
- "Bob sings and dances" \rightarrow "Who sings?" + "Bob"
- Chain together facts and use them for comprehension

Other Cases

- Transitive verbs:
- likes: $\lambda x . \lambda y . l i k e s(y, x)$
- Two-place predicates of type $\mathrm{e} \rightarrow(\mathrm{e} \rightarrow \mathrm{t})$.
- likes Amy : λ y.likes(y,Amy) is just like a one-place predicate.
- Quantifiers:
- What does "Everyone" mean here?
- Everyone : $\lambda \mathrm{f} . \forall \mathrm{x} . \mathrm{f}(\mathrm{x})$
- Mostly works, but some problems
- Have to change our NP/VP rule.
- Won't work for "Amy likes everyone."
- "Everyone likes someone."
- This gets tricky quickly!

Indefinites

- First try
- "Bob ate a waffle" : ate(bob,waffle)
- "Amy ate a waffle" : ate(amy,waffle)
- Can't be right!
- ヨx:waffle(x) ^ ate(bob,x)
- What does the translation
of "a" have to be?
- What about "the"?
- What about "every"?

Grounding

- Grounding
- So why does the translation likes : $\lambda x . \lambda y$.likes (y, x) have anything to do with actual liking?
- It doesn't (unless the denotation model says so)
- Sometimes that's enough: wire up bought to the appropriate entry in a database
- Meaning postulates
- Insist, e.g $\forall x, y$.likes $(y, x) \rightarrow$ knows (y, x)
- This gets into lexical semantics issues
- Statistical / neural version?

Tense and Events

- In general, you don't get far with verbs as predicates
- Better to have event variables e
- "Alice danced" : danced(alice)
- ヨe:dance(e) \wedge agent(e,alice) $\wedge($ time $(e)<$ now $)$
- Event variables let you talk about non-trivial tense / aspect structures
- "Alice had been dancing when Bob sneezed"
- ヨe, e': dance(e) \wedge agent(e,alice) \wedge

```
sneeze(e') ^ agent(e',bob) ^
(start(e) < start(e') ^ end(e) = end(e')) ^
(time(e') < now)
```

- Minimal recursion semantics, cf "object oriented" thinking

Adverbs

- What about adverbs?
- "Bob sings terribly"
- terribly(sings(bob))?
- (terribly(sings))(bob)?
- ヨe present(e) ^ type(e, singing) \wedge agent(e,bob)

\wedge manner(e, terrible) ?
- Gets complex quickly...

Propositional Attitudes

- "Bob thinks that I am a gummi bear"
- thinks(bob, gummi(me)) ?
- thinks(bob, "I am a gummi bear") ?
- thinks(bob, ^gummi(me)) ?
- Usual solution involves intensions (^X) which are, roughly, the set of possible worlds (or conditions) in which X is true
- Hard to deal with computationally
- Modeling other agents' models, etc
- Can come up in even simple dialog scenarios, e.g., if you want to talk about what your bill claims you bought vs. what you actually bought

Trickier Stuff

- Non-Intersective Adjectives
- green ball: λx.[green(x) \wedge ball(x)]
- fake diamond : λx. $[$ fake $(\mathrm{x}) \wedge$ diamond $(\mathrm{x})]$? $\longrightarrow \lambda x$.[fake(diamond $(\mathrm{x}))$
- Generalized Quantifiers
- the: $\lambda \mathrm{f}$.[unique-member(f)]
- all : $\lambda \mathrm{f} . \lambda \mathrm{g}[\forall \mathrm{x} . \mathrm{f}(\mathrm{x}) \rightarrow \mathrm{g}(\mathrm{x})]$
- most?
- Could do with more general second order predicates, too (why worse?)
- the(cat, meows), all(cat, meows)
- Generics
- "Cats like naps"
- "The players scored a goal"
- Pronouns (and bound anaphora)
- "If you have a dime, put it in the meter."
- ... the list goes on and on!

Scope Ambiguities

- Quantifier scope
- "All majors take a data science class"
- "Someone took each of the electives"
- "Everyone didn't hand in their exam"
- Deciding between readings
- Multiple ways to work this out
- Make it syntactic (movement)
- Make it lexical (type-shifting)

Logical Form Translation

Mapping to LF: Zettlemoyer \& Collins 05/07

The task:

```
    Input: List one way flights to Prague.
    Output: \lambdax.flight(x)^ one_way(x)^ to(x,PRG)
```


Challenging learning problem:

- Derivations (or parses) are not annotated
- Approach: [Zettlemoyer \& Collins 2005]
- Learn a lexicon and parameters for a weighted Combinatory Categorial Grammar (CCG)

Background

- Combinatory Categorial Grammar (CCG)
- Weighted CCGs
- Learning lexical entries: GENLEX

CCG Parsing

- Combinatory Categorial Grammar
- Fully (mono-) lexicalized grammar
- Categories encode argument sequences
- Very closely related to the lambda calculus
- Can have spurious ambiguities (why?)

$$
\begin{aligned}
& \text { John } \vdash \mathrm{NP}: \text { john }^{\prime} \\
& \text { shares } \vdash \mathrm{NP}: \text { shares }^{\prime} \\
& \text { buys } \vdash(\mathrm{S} \backslash \mathrm{NP}) / \mathrm{NP}: \lambda x . \lambda y . \text { buys' }^{\prime} x y \\
& \text { sleeps } \vdash \mathrm{S} \backslash \mathrm{NP}: \lambda x . \text { sleeps }^{\prime} x \\
& \text { well } \vdash(\mathrm{S} \backslash \mathrm{NP}) \backslash(\mathrm{S} \backslash \mathrm{NP}): \lambda f . \lambda x . \text { well }^{\prime}(f x)
\end{aligned}
$$

CCG Lexicon

Words	Category
flights	$\mathrm{N}: \lambda x . f l i g h t(x)$
to	$(N \backslash N) / N P: \lambda x . \lambda f . \lambda y \cdot f(x) \wedge t o(y, x)$
Prague	$N P: P R G$
New York city	$N P: N Y C$
\ldots	\cdots

Parsing Rules (Combinators)

Application

Composition

- $X / Y: f \quad Y / Z: g \quad=>/ Z: \lambda x . f(g(x))$
- $Y \backslash Z$: $f \quad X \backslash Y$: $g=>X \backslash Z: \lambda x . f(g(x))$

Additional rules:

- Type Raising
- Crossed Composition

CCG Parsing

Show me	flights	to	Prague
S/N	N	($\mathrm{N} \backslash \mathrm{N}$) /NP	NP
$\lambda f . f$	$\lambda \mathrm{x} . \mathrm{flight}^{\text {(x) }}$	$\lambda y . \lambda f . \lambda x . f(y) \wedge t o(x, y)$	PRG
		$\mathbf{N} \backslash \mathbf{N}$ $\lambda f . \lambda x . f(x) \wedge t o(x, P R G)$	
		N	
$\lambda x . f l i g h t(x) \wedge t \bigcirc(x, P R G)$			
S			
$\lambda \mathrm{x} . \mathrm{flight}(\mathrm{x}) \wedge$ to (x, PRG)			

Weighted CCG

Given a log-linear model with a CCG lexicon Λ, a feature vector f, and weights w.

- The best parse is:

Where we consider all possible parses y for the sentence x given the lexicon Λ.

Lexical Generation

Input Training Example

```
Sentence:
Show me flights to Prague.
Logic Form: \(\lambda x . f l i g h t(x) \wedge\) to (x,PRG)
```

Output Lexicon

Words	Category
Show me	$\mathrm{S} / \mathrm{N}: \lambda \mathrm{f} \cdot \mathrm{f}$
flights	$\mathrm{N}: \lambda x \cdot f l i g h t(x)$
to	$(\mathrm{N} \backslash \mathrm{N}) / \mathrm{NP}: \lambda x \cdot \lambda f \cdot \lambda y \cdot f(x) \wedge$ to (y, x)
Prague	$\mathrm{NP}: P R G$
\ldots	\ldots

GENLEX: Substrings X Categories

Input Training Example

Sentence:	Show me flights to Prague.
Logic Form:	λx. flight $(x) \wedge$ to $(x, P R G)$
Output Lexicon	

All possible substrings:

```
```

Show

```
```

Show

```
```

Show
me
me
me
flights
flights
flights
show me
show me
show me
Show me flights
Show me flights
Show me flights
Show me flights to

```
```

 Show me flights to
    ```
```

 Show me flights to
    ```
```

 Show me
 Categories created by rules that trigger on the logical form:

NP : PRG
X
$N: \lambda_{x} . f l i g h t(x)$
(S $\backslash N P$) /NP : $\lambda_{x} \cdot \lambda y \cdot t o(y, x)$
$(N \backslash N) / N P: \lambda_{y} \cdot \lambda f \cdot \lambda_{x}$.

Inputs: Training set $\left\{\left(x_{i}, z_{i}\right) \mid i=1 \ldots n\right\}$ of sentences and logical forms. Initial lexicon Λ. Initial parameters w. Number of iterations T.
Training: For $t=1 \ldots T, i=1 \ldots n$:
Step 1: Check Correctness

- Let
- If $L\left(y^{*}\right)=z_{i}$, go to the next example

Step 2: Lexical Generation

- Set
- Let
- Define λ_{i} to be the lexical entries in y^{\wedge}
- Set lexicon to $\Lambda=\Lambda \cup \lambda_{i}$

Step 3: Update Parameters

- Let
- If
- Set

Output: Lexicon Λ and parameters w.

