
Natural	Language	Processing

Compositional	Semantics

Truth-Conditional	Semantics

Truth-Conditional	Semantics

▪ Linguistic	expressions:	
▪ “Bob	sings”	

▪ Logical	translations:	
▪ sings(bob)	
▪ Could	be	p_1218(e_397)	

▪ Denotation:	
▪ [[bob]]	=	some	specific	person	(in	some	context)	
▪ [[sings(bob)]]	=	???	

▪ Types	on	translations:	
▪ bob	:	e		 	 (for	entity)	
▪ sings(bob)	:	t	 (for	truth-value)

S

NP

Bob

VP

sings

sings(bob)

Truth-Conditional	Semantics
▪ Proper	names:	

▪ Refer	directly	to	some	entity	in	the	world	
▪ Bob	:	bob										[[bob]]W	à ???	

▪ Sentences:	
▪ Are	either	true	or	false	(given	
	 how	the	world	actually	is)	
▪ Bob	sings	:	sings(bob)	

▪ So	what	about	verbs	(and	verb	phrases)?	
▪ sings	must	combine	with	bob	to	produce	sings(bob)	
▪ The	λ-calculus	is	a	notation	for	functions	whose	arguments	are	not	yet	filled.	
▪ sings	:	λx.sings(x)	
▪ This	is	a	predicate	–	a	function	which	takes	an	entity	(type	e)	and	produces	a	truth	value	(type	t).		

We	can	write	its	type	as	e→t.	
▪ Adjectives?

S

NP

Bob
bob

VP

sings
λy.sings(y)

sings(bob)

Compositional	Semantics
▪ So	now	we	have	meanings	for	the	words	
▪ How	do	we	know	how	to	combine	words?	
▪ Associate	a	combination	rule	with	each	grammar	rule:	

▪ S	:	β(α)	→	NP	:	α			VP	:	β						(function	application)	
▪ VP	:	λx	.	α(x)	∧ β(x)	→	VP	:	α				and	:	∅			VP	:	β			(intersection)	

▪ Example:

S

NP VP

Bob VP and

sings

VP

dances
bob

λy.sings(y) λz.dances(z)

λx.sings(x) ∧ dances(x)

[λx.sings(x) ∧ dances(x)](bob)

sings(bob) ∧ dances(bob)

Denotation
▪ What	do	we	do	with	logical	translations?	
▪ Translation	language	(logical	form)	has	fewer	ambiguities	
▪ Can	check	truth	value	against	a	database	

▪ Denotation	(“evaluation”)	calculated	using	the	database	
▪ Or	the	opposite:	assert	truth	and	modify	a	database,	either	explicitly	or	implicitly	
eg	prove	a	consequence	from	asserted	axioms	

▪ Questions:	check	whether	a	statement	in	a	corpus	entails	the	(question,	answer)	
pair:	
▪ “Bob	sings	and	dances”	→ “Who	sings?”	+	“Bob”	

▪ Chain	together	facts	and	use	them	for	comprehension

Other	Cases

▪ Transitive	verbs:	
▪ likes	:	λx.λy.likes(y,x)	
▪ Two-place	predicates	of	type	e→(e→t).	
▪ likes	Amy	:	λy.likes(y,Amy)	is	just	like	a	one-place	predicate.	

▪ Quantifiers:	
▪ What	does	“Everyone”	mean	here?	
▪ Everyone	:	λf.∀x.f(x)	
▪ Mostly	works,	but	some	problems	

▪ Have	to	change	our	NP/VP	rule.	
▪ Won’t	work	for	“Amy	likes	everyone.”	

▪ “Everyone	likes	someone.”	
▪ This	gets	tricky	quickly!

S

NP VP

Everyone VBP NP

Amylikes
λx.λy.likes(y,x)

λy.likes(y,amy)

amy

λf.∀x.f(x)

[λf.∀x.f(x)](λy.likes(y,amy))

∀x.likes(x,amy)

Indefinites
▪ First	try	
▪ “Bob	ate	a	waffle”	:	ate(bob,waffle)	
▪ “Amy	ate	a	waffle”	:	ate(amy,waffle)	

▪ Can’t	be	right!	
▪ ∃ x	:	waffle(x)	∧ ate(bob,x)	
▪ What	does	the	translation	
	 of	“a”	have	to	be?	
▪ What	about	“the”?	
▪ What	about	“every”?

S

NP VP

Bob VBD NP

a waffleate

Grounding

▪ Grounding	
▪ So	why	does	the	translation	likes	:	λx.λy.likes(y,x)	have	anything	to	do	

with	actual	liking?	
▪ It	doesn’t	(unless	the	denotation	model	says	so)	
▪ Sometimes	that’s	enough:	wire	up	bought	to	the	appropriate	entry	in	a	

database	

▪ Meaning	postulates	
▪ Insist,	e.g	∀x,y.likes(y,x)	→ knows(y,x)	
▪ This	gets	into	lexical	semantics	issues	

▪ Statistical	/	neural	version?

Tense	and	Events
▪ In	general,	you	don’t	get	far	with	verbs	as	predicates	
▪ Better	to	have	event	variables	e	

▪ “Alice	danced”	:	danced(alice)	
▪ ∃ e	:	dance(e)	∧ agent(e,alice)	∧ (time(e)	<	now)	

▪ Event	variables	let	you	talk	about	non-trivial	tense	/	aspect	structures	
▪ “Alice	had	been	dancing	when	Bob	sneezed”	
▪ ∃ e,	e’	:		 dance(e)	∧ agent(e,alice)	∧	
	 	 	 sneeze(e’)	∧ agent(e’,bob)	∧	
	 	 	 (start(e)	<	start(e’)	∧ end(e)	=	end(e’))	∧	
	 	 	 (time(e’)	<	now)	

▪ Minimal	recursion	semantics,	cf	“object	oriented”	thinking

Adverbs
▪ What	about	adverbs?	

▪ “Bob	sings	terribly”	

▪ terribly(sings(bob))?	

▪ (terribly(sings))(bob)?	

▪ ∃e	present(e)	∧ type(e,	
singing)	∧	agent(e,bob)	
∧ manner(e,	terrible)	?	

▪ Gets	complex	quickly…

S

NP VP

Bob VBP ADVP

terriblysings

Propositional	Attitudes
▪ “Bob	thinks	that	I	am	a	gummi	bear”	

▪ thinks(bob,	gummi(me))	?	
▪ thinks(bob,	“I	am	a	gummi	bear”)	?	
▪ thinks(bob,	^gummi(me))	?	

▪ Usual	solution	involves	intensions	(^X)	which	are,	roughly,	the	set	of	possible	worlds	
(or	conditions)	in	which	X	is	true	

▪ Hard	to	deal	with	computationally	
▪ Modeling	other	agents’	models,	etc	
▪ Can	come	up	in	even	simple	dialog	scenarios,	e.g.,	if	you	want	to	talk	about	what	your	bill	claims	

you	bought	vs.	what	you	actually	bought

Trickier	Stuff

▪ Non-Intersective	Adjectives	
▪ green	ball	:	λx.[green(x)	∧ ball(x)]	
▪ fake	diamond	:	λx.[fake(x)	∧ diamond(x)]	?	

▪ Generalized	Quantifiers	
▪ the	:	λf.[unique-member(f)]	
▪ all	:	λf.	λg	[∀x.f(x)	→ g(x)]	
▪ most?	
▪ Could	do	with	more	general	second	order	predicates,	too	(why	worse?)	

▪ the(cat,	meows),	all(cat,	meows)	
▪ Generics	

▪ “Cats	like	naps”	
▪ “The	players	scored	a	goal”	

▪ Pronouns	(and	bound	anaphora)	
▪ “If	you	have	a	dime,	put	it	in	the	meter.”	

▪ …	the	list	goes	on	and	on!

λx.[fake(diamond(x))

Scope	Ambiguities
▪ Quantifier	scope	
▪ “All	majors	take	a	data	science	class”	
▪ “Someone	took	each	of	the	electives”	
▪ “Everyone	didn’t	hand	in	their	exam”		

▪ Deciding	between	readings	
▪ Multiple	ways	to	work	this	out	

▪ Make	it	syntactic	(movement)	
▪ Make	it	lexical	(type-shifting)

Logical	Form	Translation

Mapping	to	LF:	Zettlemoyer	&	Collins	05/07	

The	task:	
	 			Input: List one way flights to Prague.
	 Output:		λx.flight(x)∧ one_way(x)∧ to(x,PRG)	

Challenging	learning	problem:	
▪ Derivations	(or	parses)	are	not	annotated	
▪ Approach:	[Zettlemoyer	&	Collins	2005]	
▪ Learn	a	lexicon	and	parameters	for	a	weighted	Combinatory	

Categorial	Grammar	(CCG)

[Slides from Luke Zettlemoyer]

Background

▪ Combinatory	Categorial	Grammar	(CCG)	

▪ Weighted	CCGs		

▪ Learning	lexical	entries:	GENLEX

CCG	Parsing

▪ Combinatory	
Categorial	Grammar	
▪ Fully	(mono-)	

lexicalized	grammar	
▪ Categories	encode	

argument	sequences	
▪ Very	closely	related	to	

the	lambda	calculus	
▪ Can	have	spurious	

ambiguities	(why?)

CCG	Lexicon

Words Category

flights N : λx.flight(x)

to (N\N)/NP : λx.λf.λy.f(x) ∧ to(y,x)

Prague NP : PRG

New York city NP : NYC

… …

Parsing	Rules	(Combinators)

Application	
▪ X/Y : f Y : a => X : f(a)

▪ Y : a X\Y : f => X : f(a)

Composition	
▪ X/Y : f Y/Z : g => X/Z : λx.f(g(x))

▪ Y\Z : f X\Y : g => X\Z : λx.f(g(x))

Additional	rules:	
▪ Type	Raising	
▪ Crossed	Composition

CCG	Parsing

to Pragueflights

N\N
λf.λx.f(x)∧to(x,PRG)

N
λx.flight(x)∧to(x,PRG)

Show me

N
λx.flight(x)

(N\N)/NP
λy.λf.λx.f(y)∧to(x,y)

NP
PRG

S/N
λf.f

S
λx.flight(x)∧to(x,PRG)

Weighted	CCG

Given	a	log-linear	model	with	a	CCG	lexicon	Λ,	a	
feature	vector	f,	and	weights	w.	
▪ The	best	parse	is:	

			

Where	we	consider	all	possible	parses y for	
the	sentence x given	the	lexicon Λ.

Lexical	Generation

Words Category

Show me S/N : λf.f

flights N : λx.flight(x)

to (N\N)/NP : λx.λf.λy.f(x) ∧ to(y,x)

Prague NP : PRG

... ...

Output Lexicon

Input Training Example
Sentence: Show me flights to Prague.
Logic Form: λx.flight(x)∧ to(x,PRG)

GENLEX:	Substrings	X	Categories

All	possible	substrings:	
 Show

 me
 flights

 … Show me
 Show me flights
 Show me flights to

 …

Categories	created	by	rules	that	
trigger	on	the	logical	form:
 NP : PRG	

 N : λx.flight(x)	
 (S\NP)/NP : λx.λy.to(y,x)	
 (N\N)/NP : λy.λf.λx. …

 …

X

Input Training Example

Sentence: Show me flights to Prague.
Logic Form: λx.flight(x)∧ to(x,PRG)

Output Lexicon

[Zettlemoyer & Collins 2005]

Inputs: Training set {(xi, zi) | i=1…n} of sentences and logical forms. Initial
lexicon Λ. Initial parameters w. Number of iterations T.

Training: For t = 1…T, i =1…n:
 Step 1: Check Correctness

• Let
• If L(y*) = zi, go to the next example

 Step 2: Lexical Generation
• Set
• Let
• Define λi to be the lexical entries in y^

• Set lexicon to Λ = Λ ∪ λi
 Step 3: Update Parameters

• Let
• If

• Set
Output: Lexicon Λ and parameters w.

