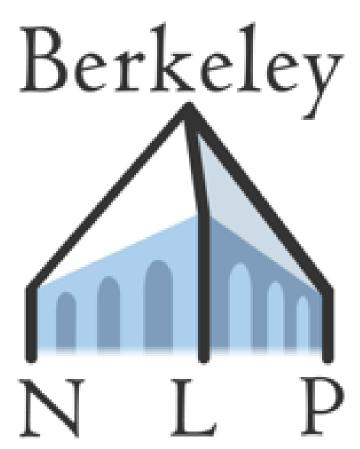
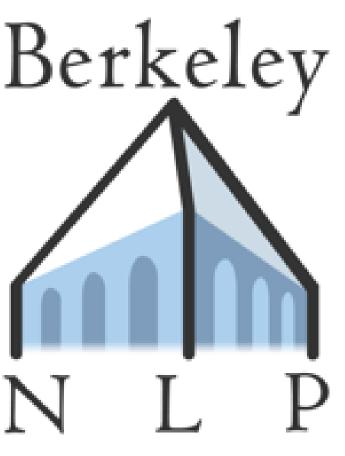
Neural Constituency Parsing



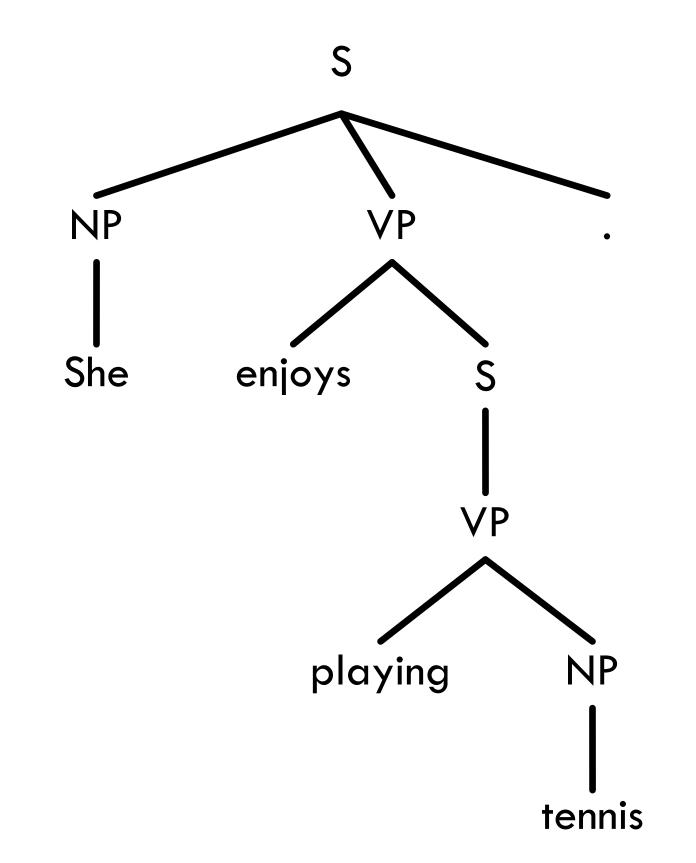


Dan Klein CS 288

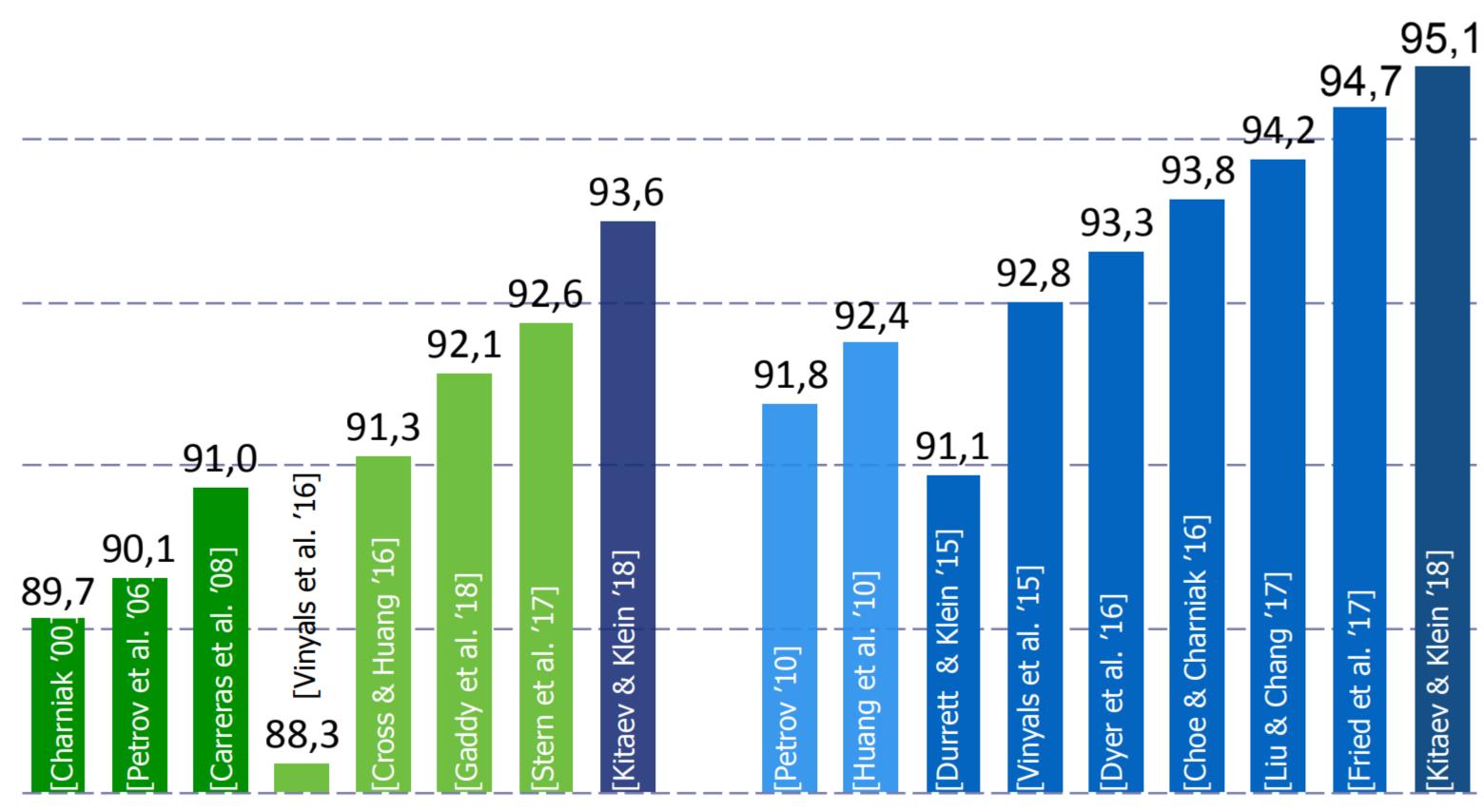
Syntactic Parsing

She enjoys playing tennis.

Syntactic Parsing



Historical Trends

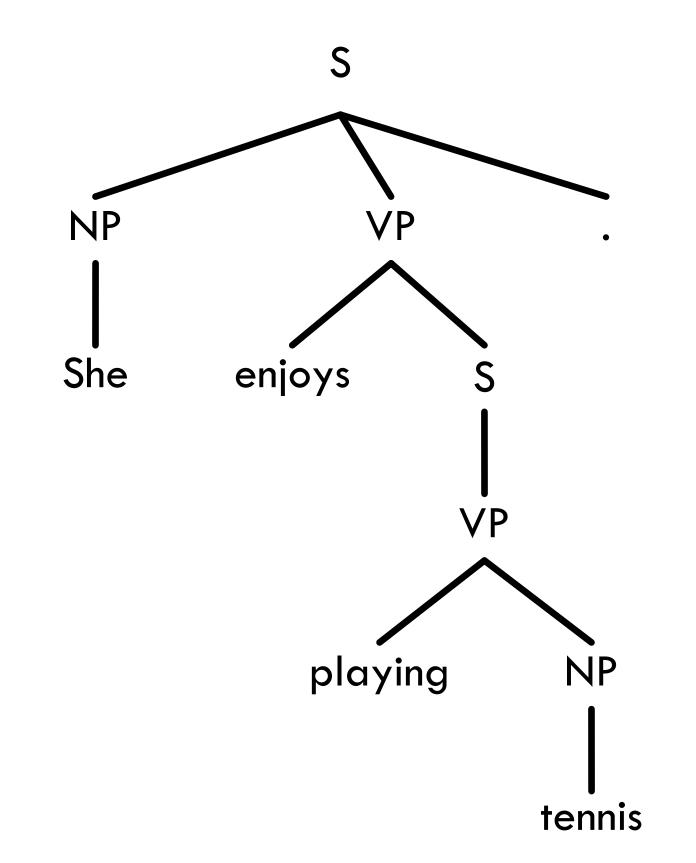


Single Parser

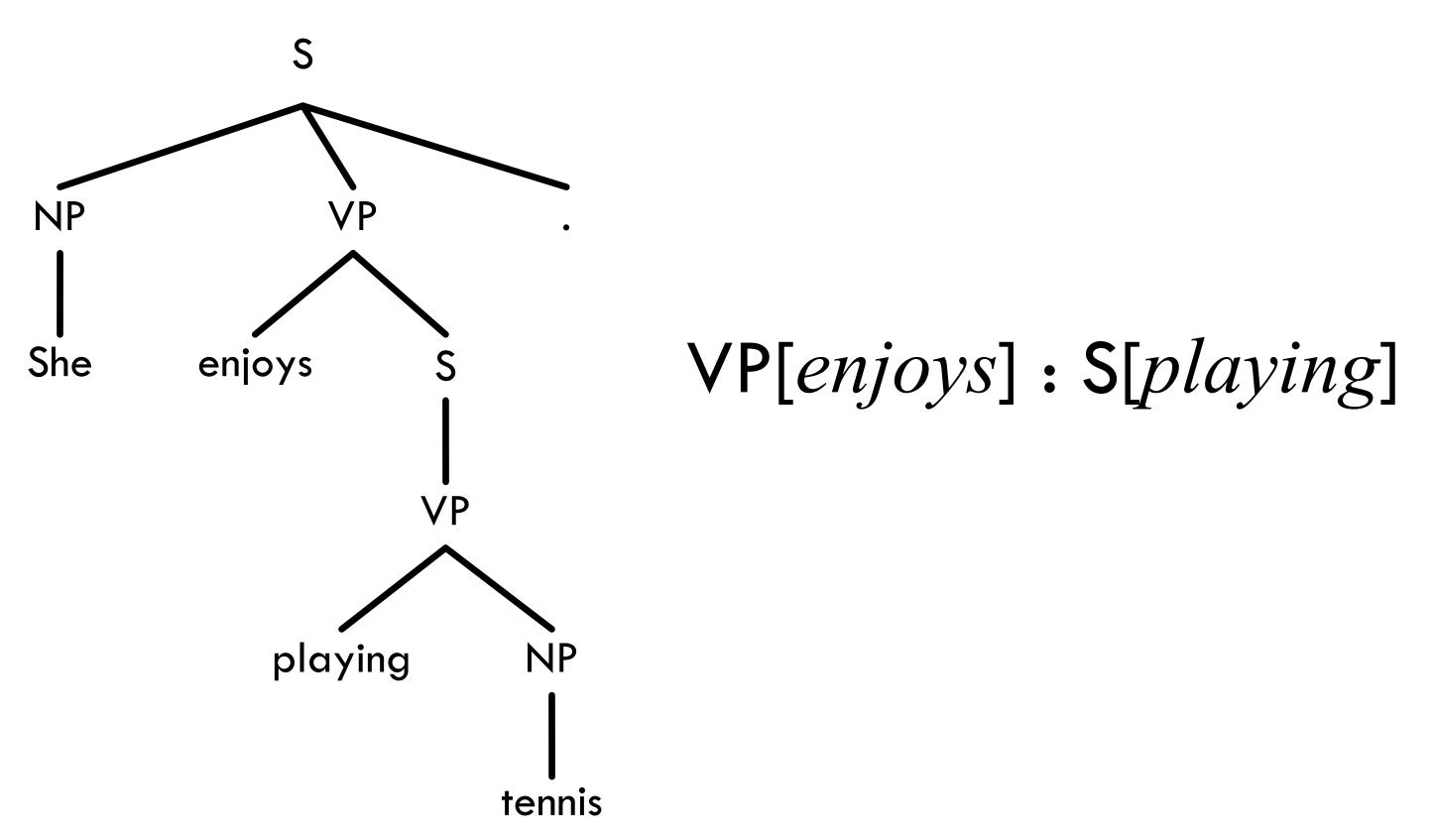
Multi-Modal / Additional Data

[Slide from Slav Petrov]

Output Correlations

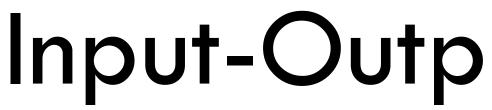


$S \rightarrow NP VP$



 $NP^{S} \rightarrow she$

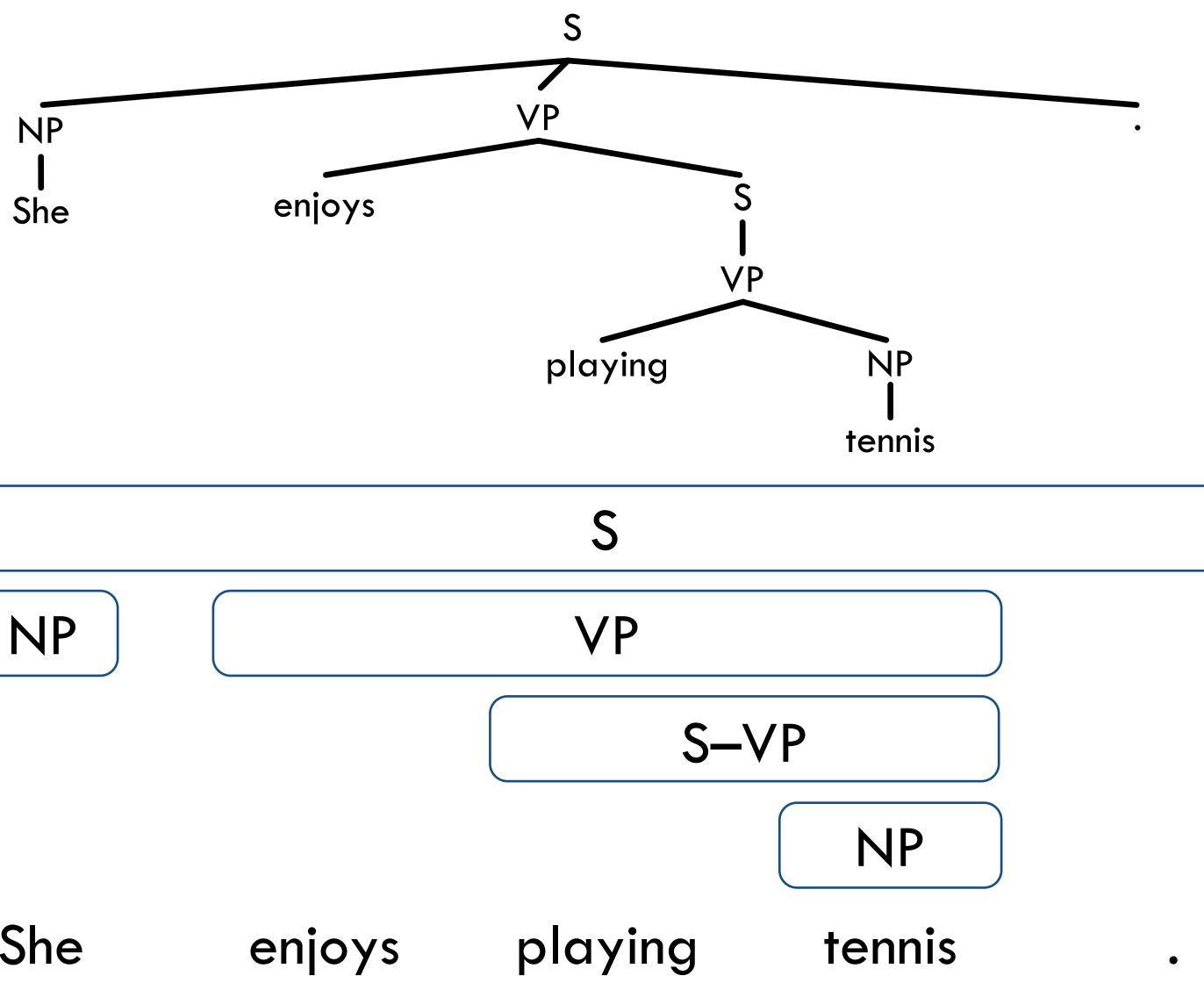
Grammars

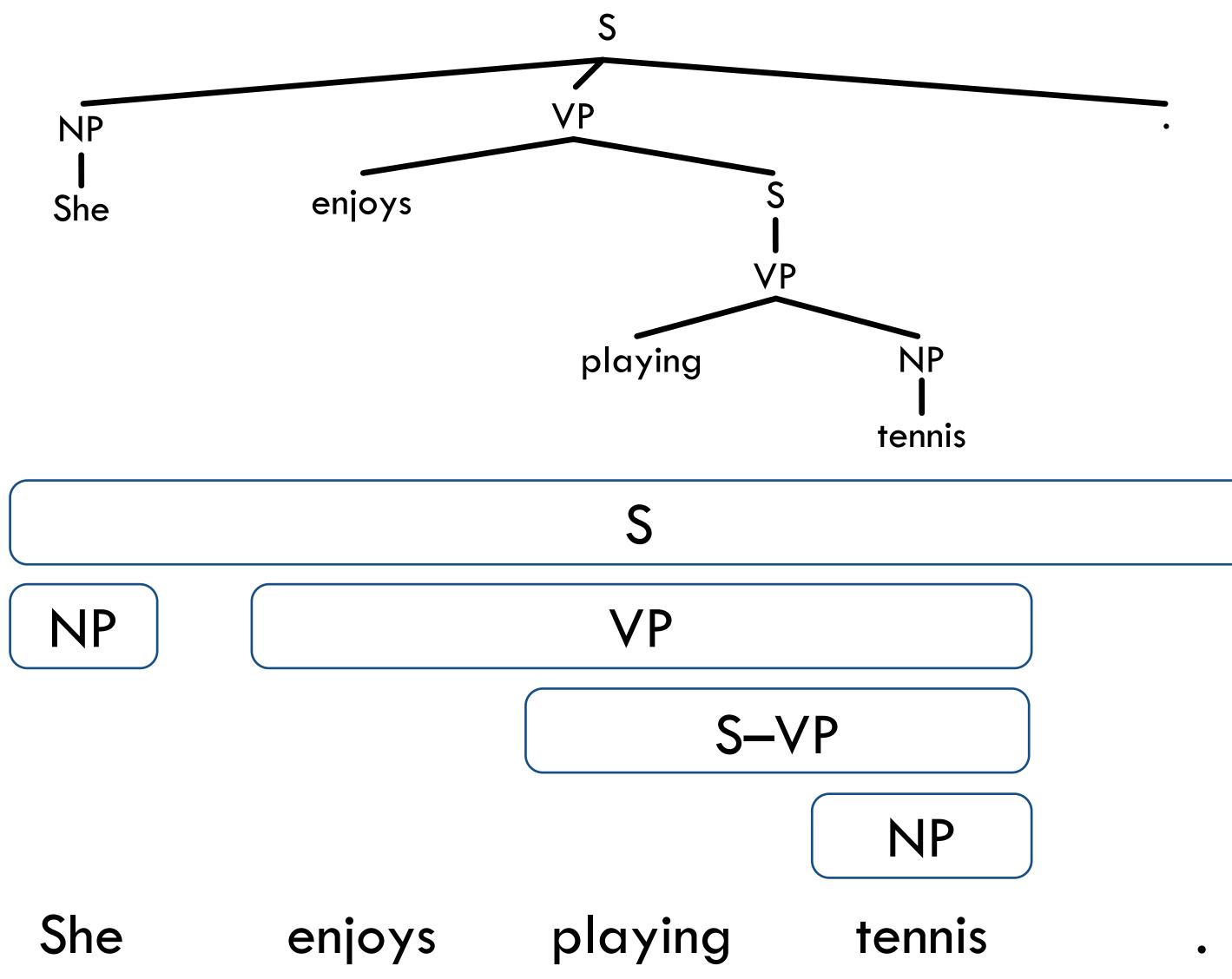


Input-Output Correlations

She enjoys playing tennis.

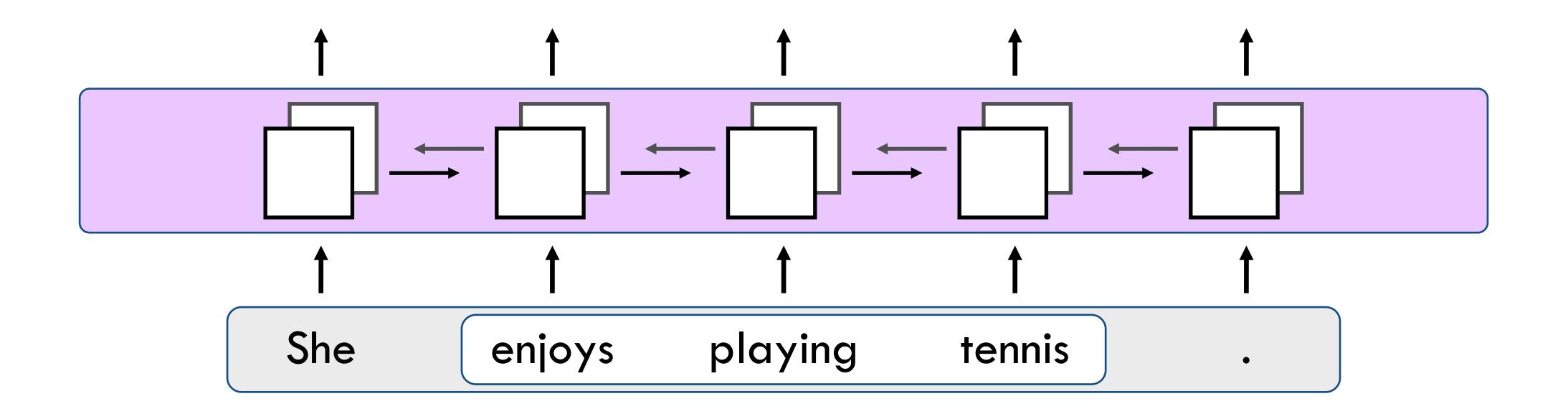
Span-Based Parsing



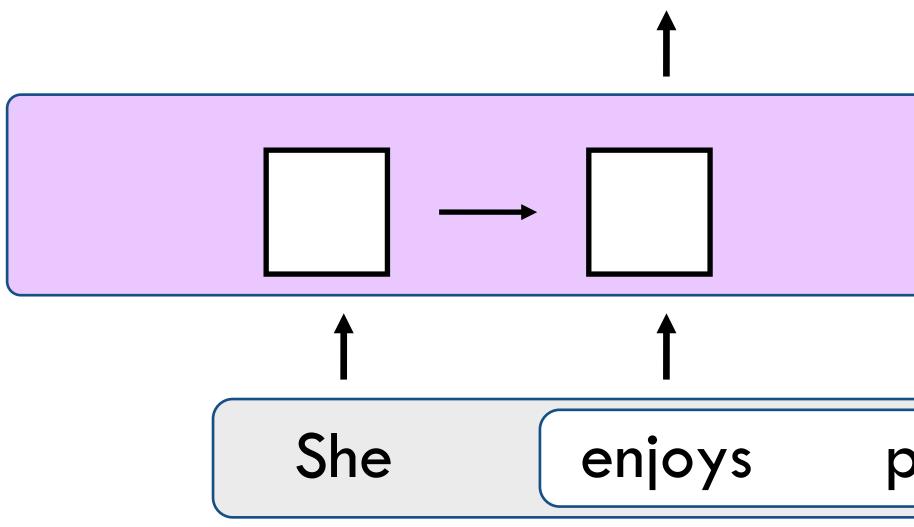


She enjoys

Parsing as Span Classification

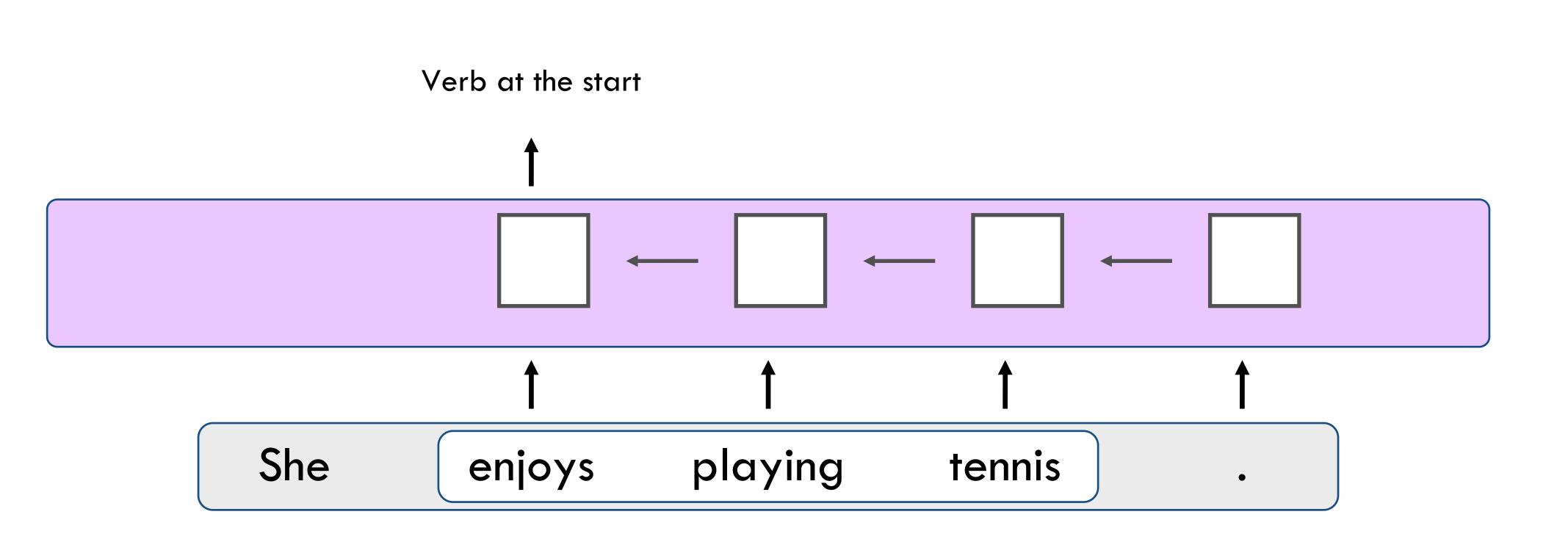


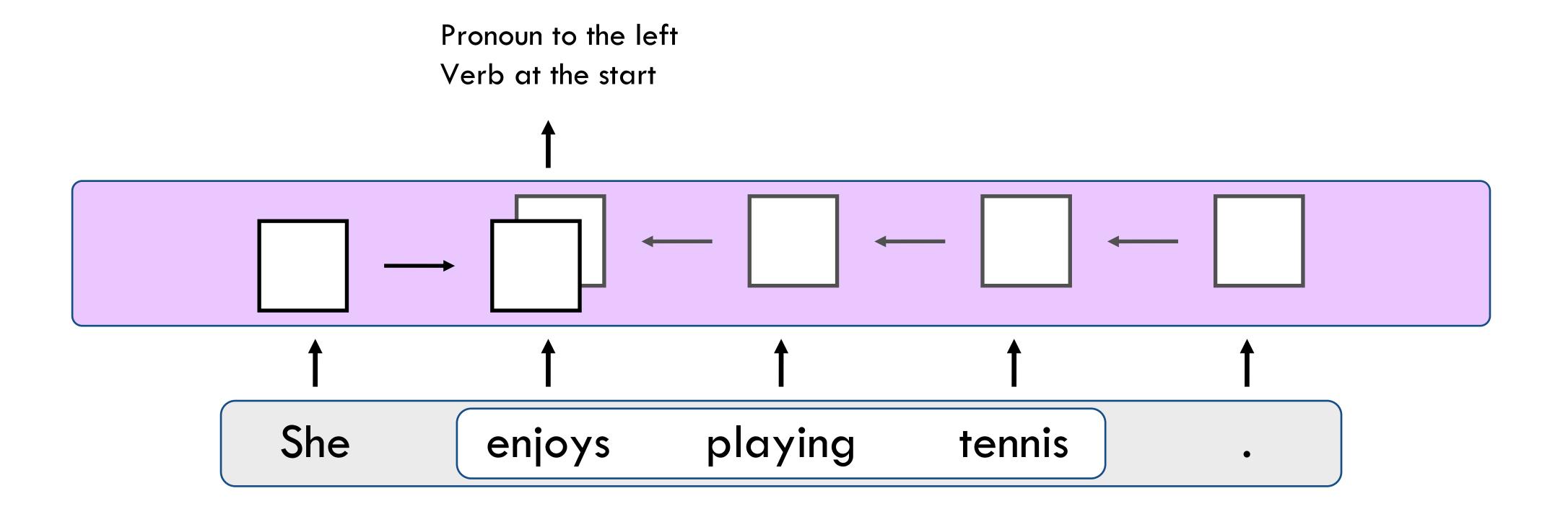
Pronoun to the left

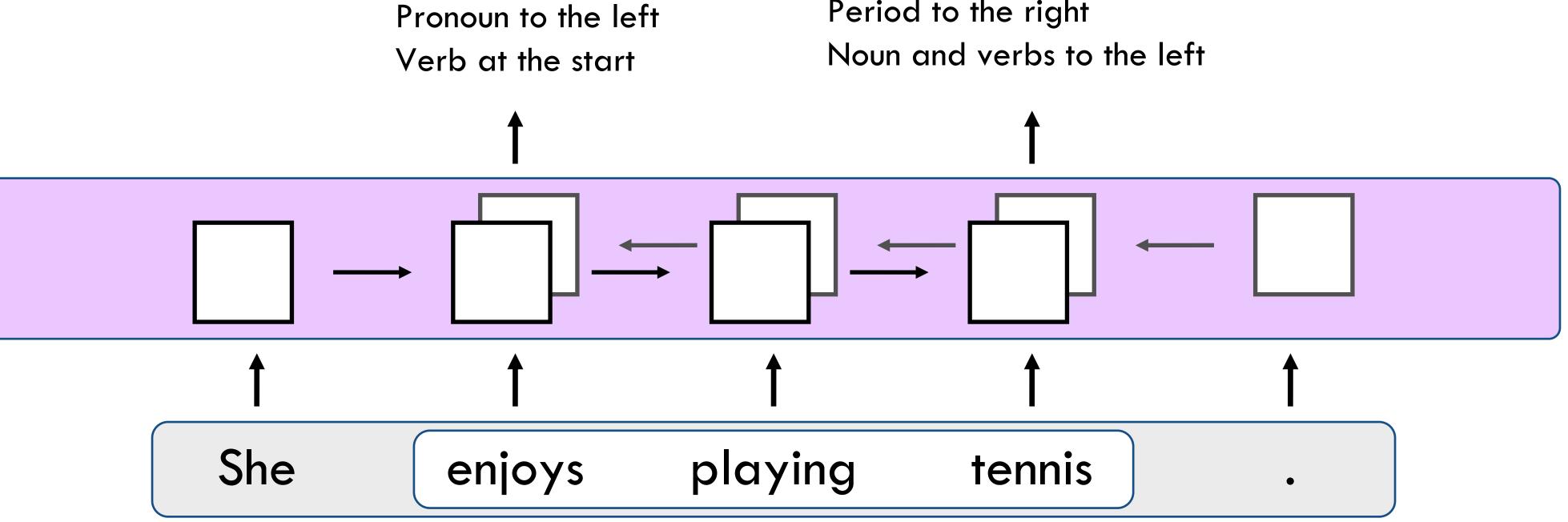


Routing with LSTMs

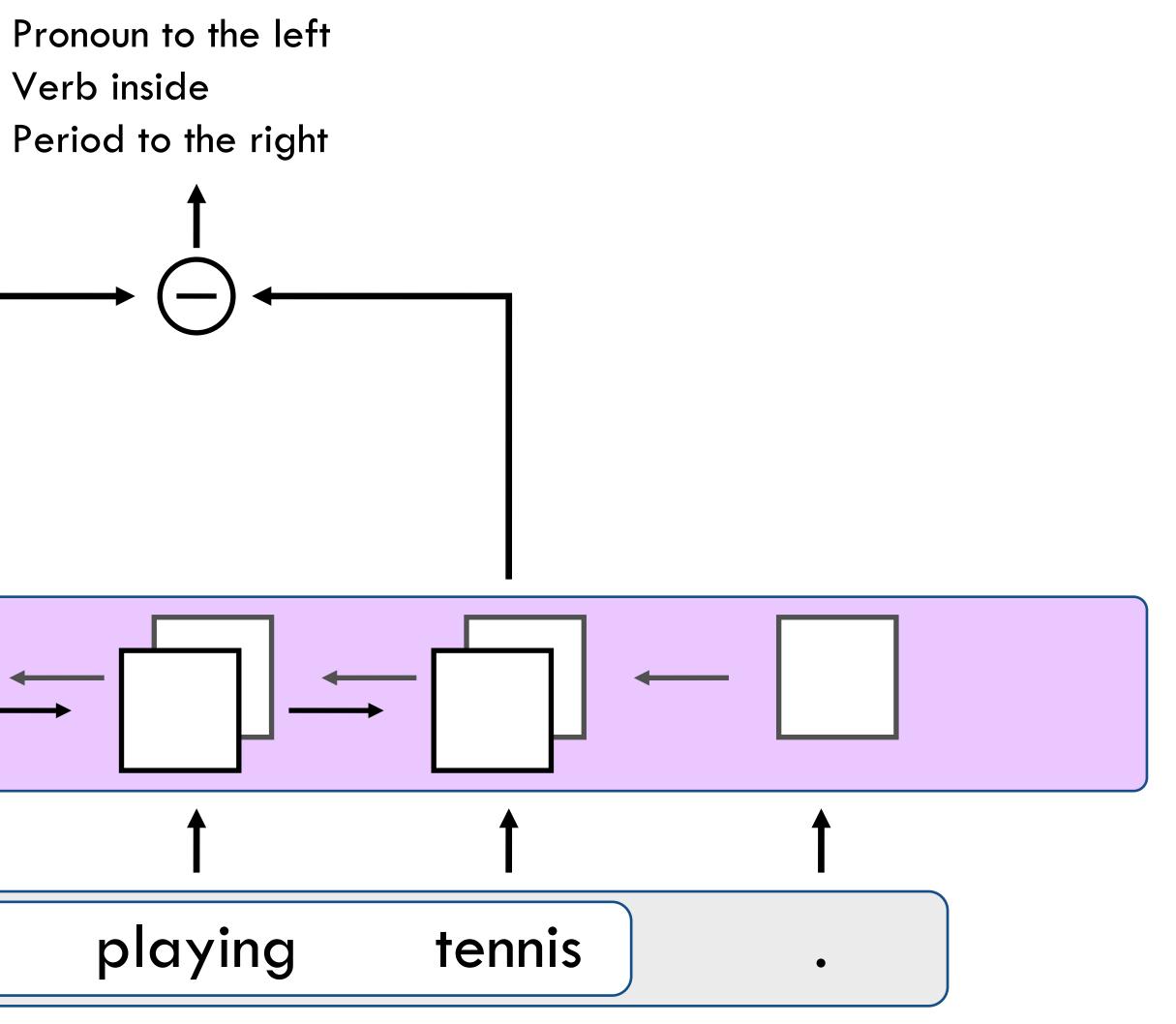
playing tennis

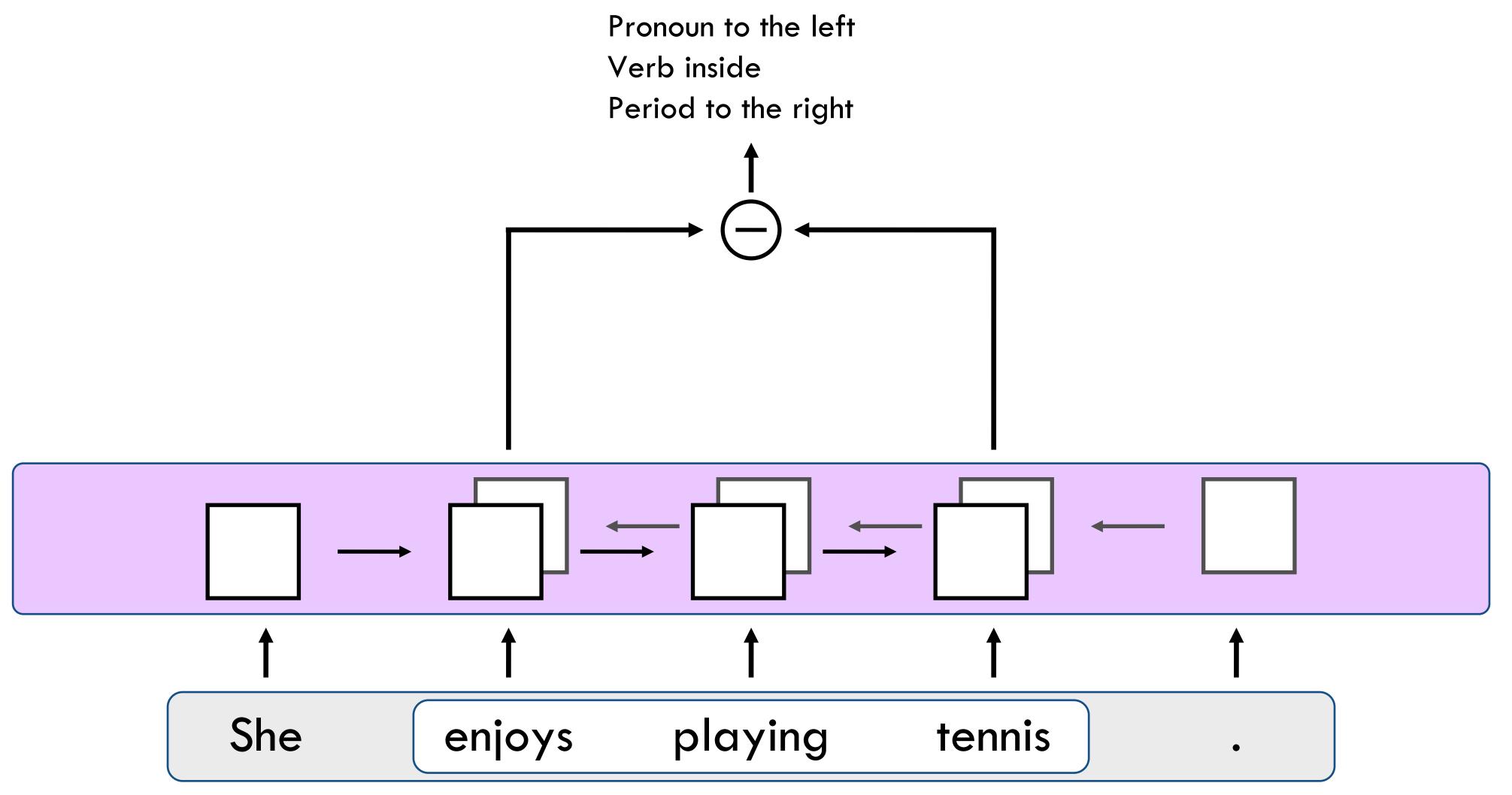


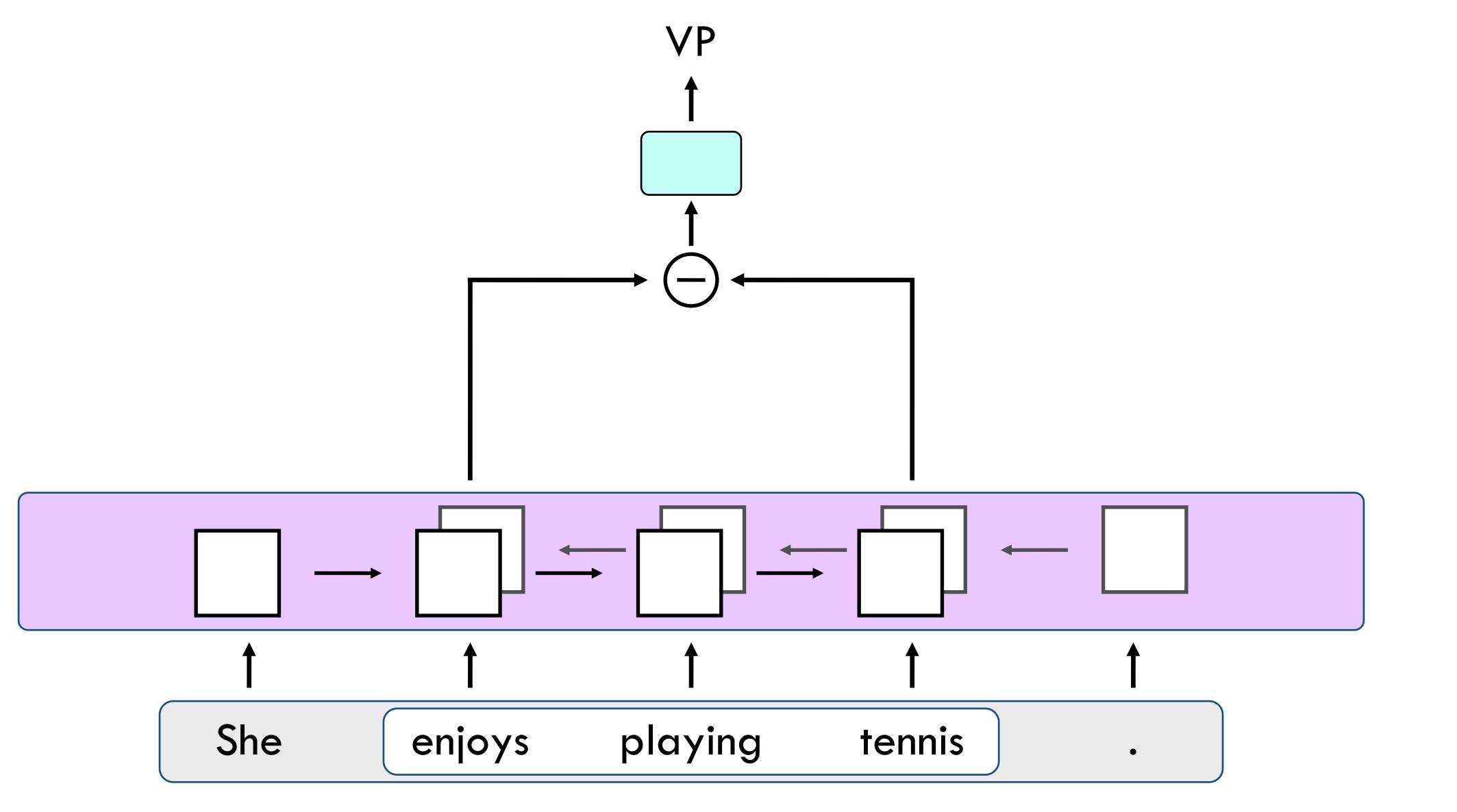


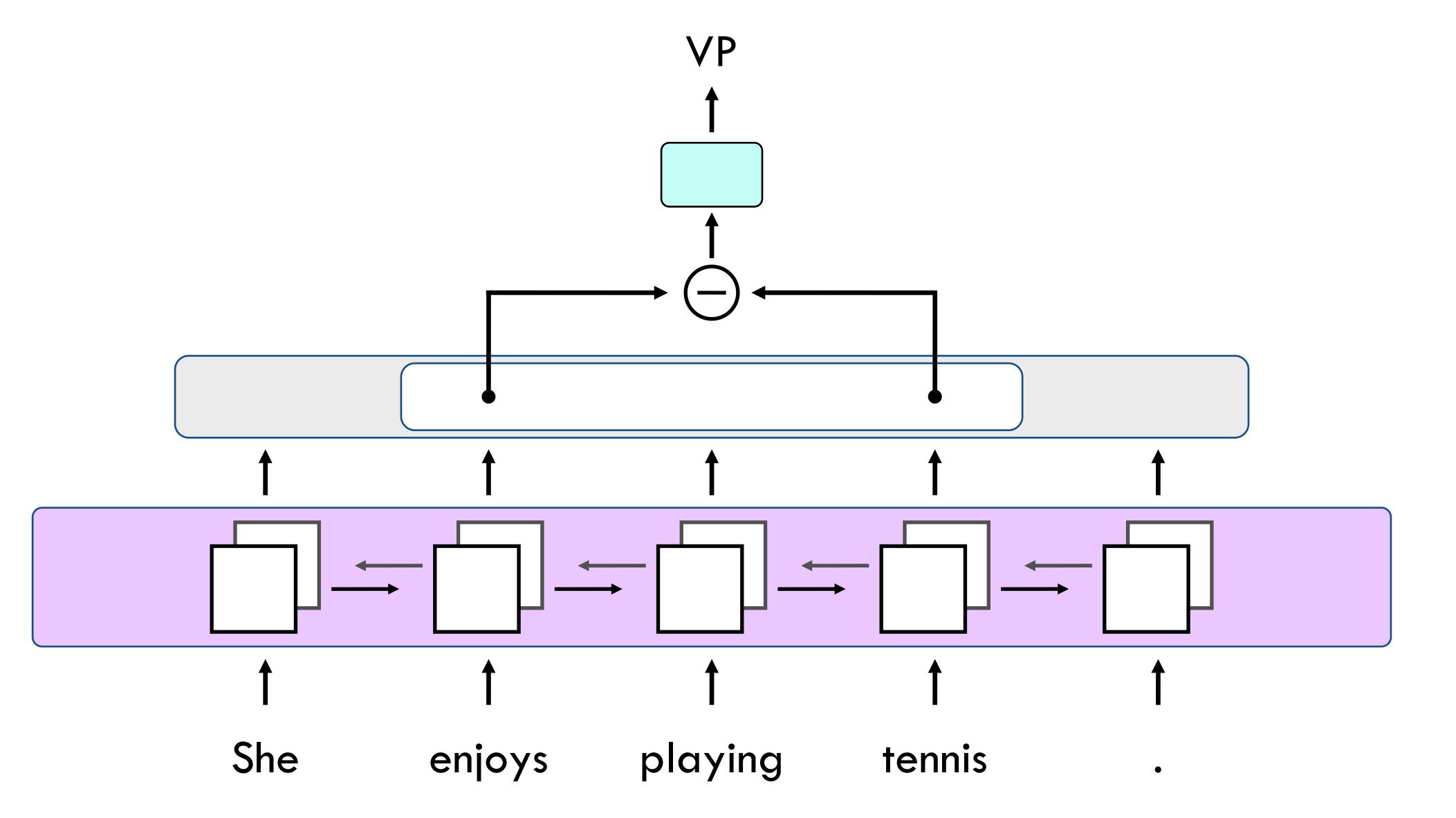


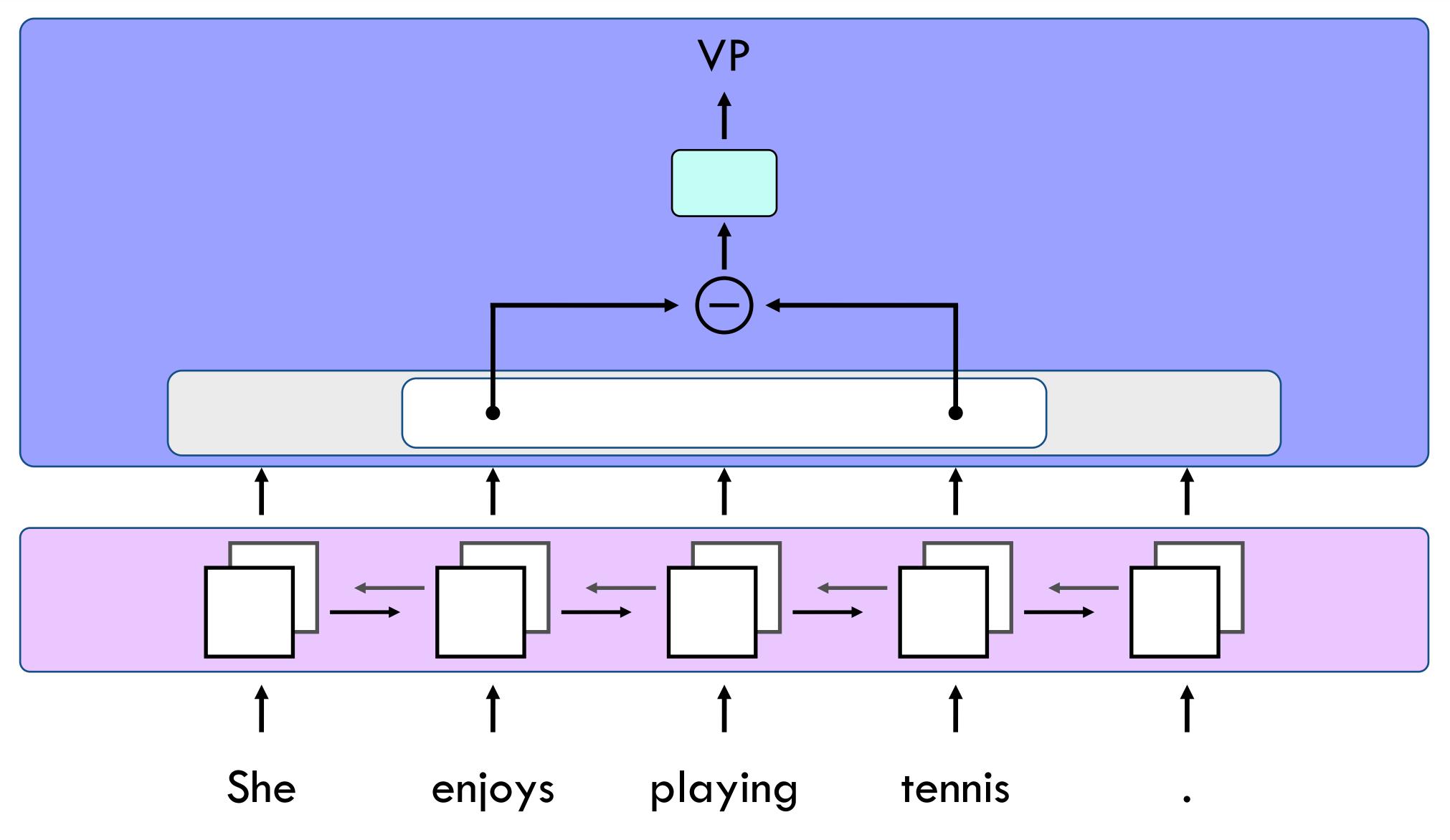
Period to the right

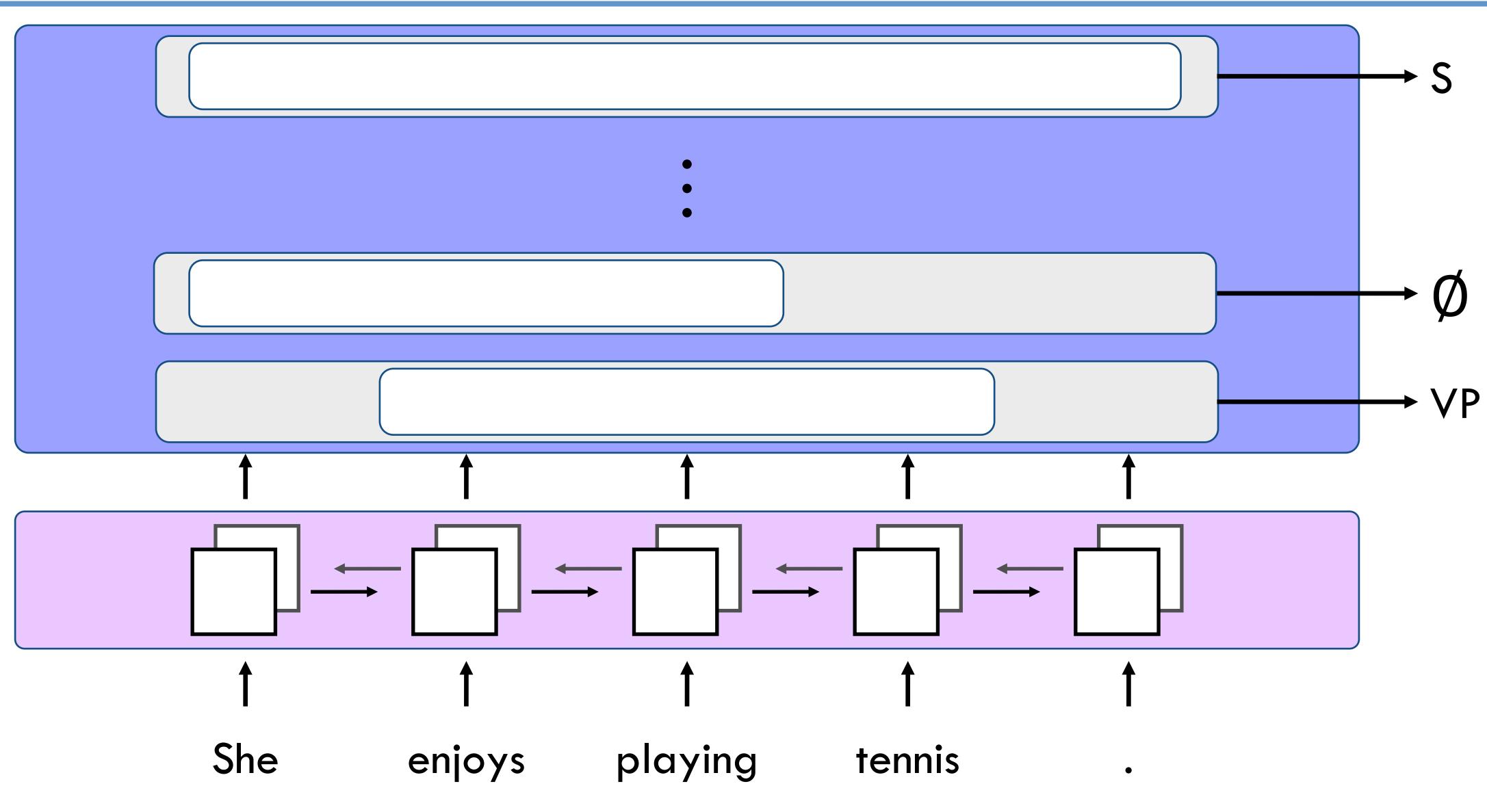




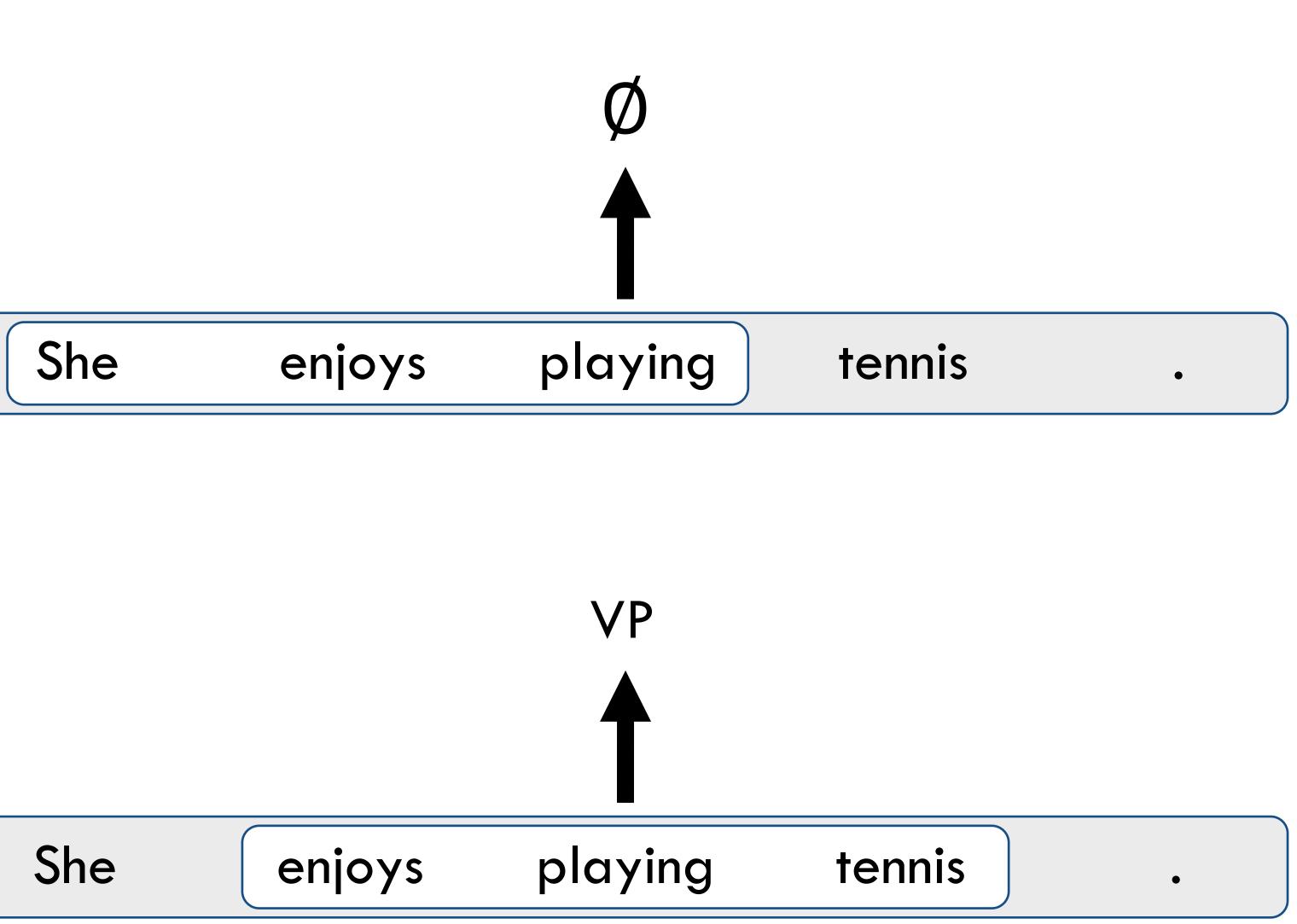


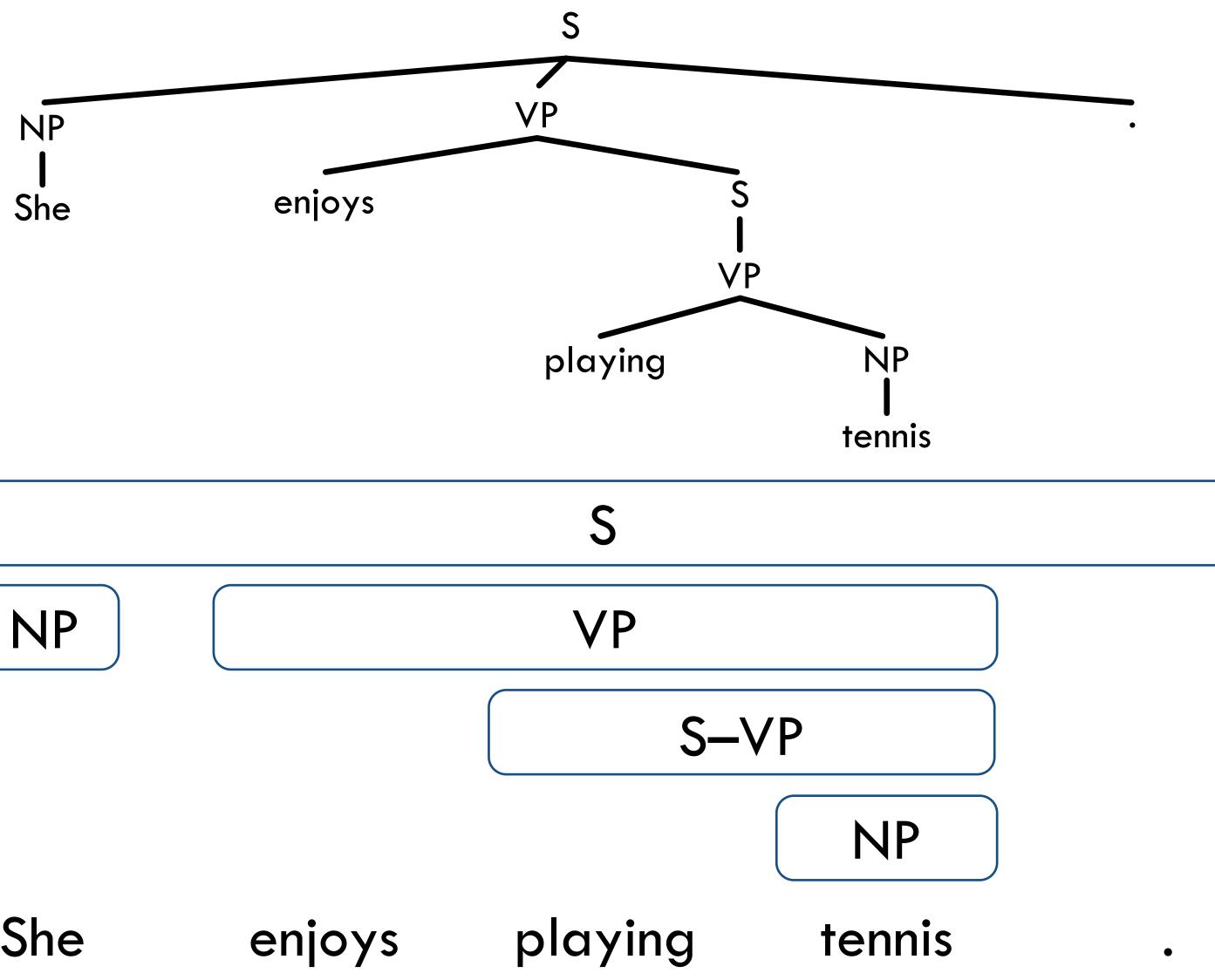


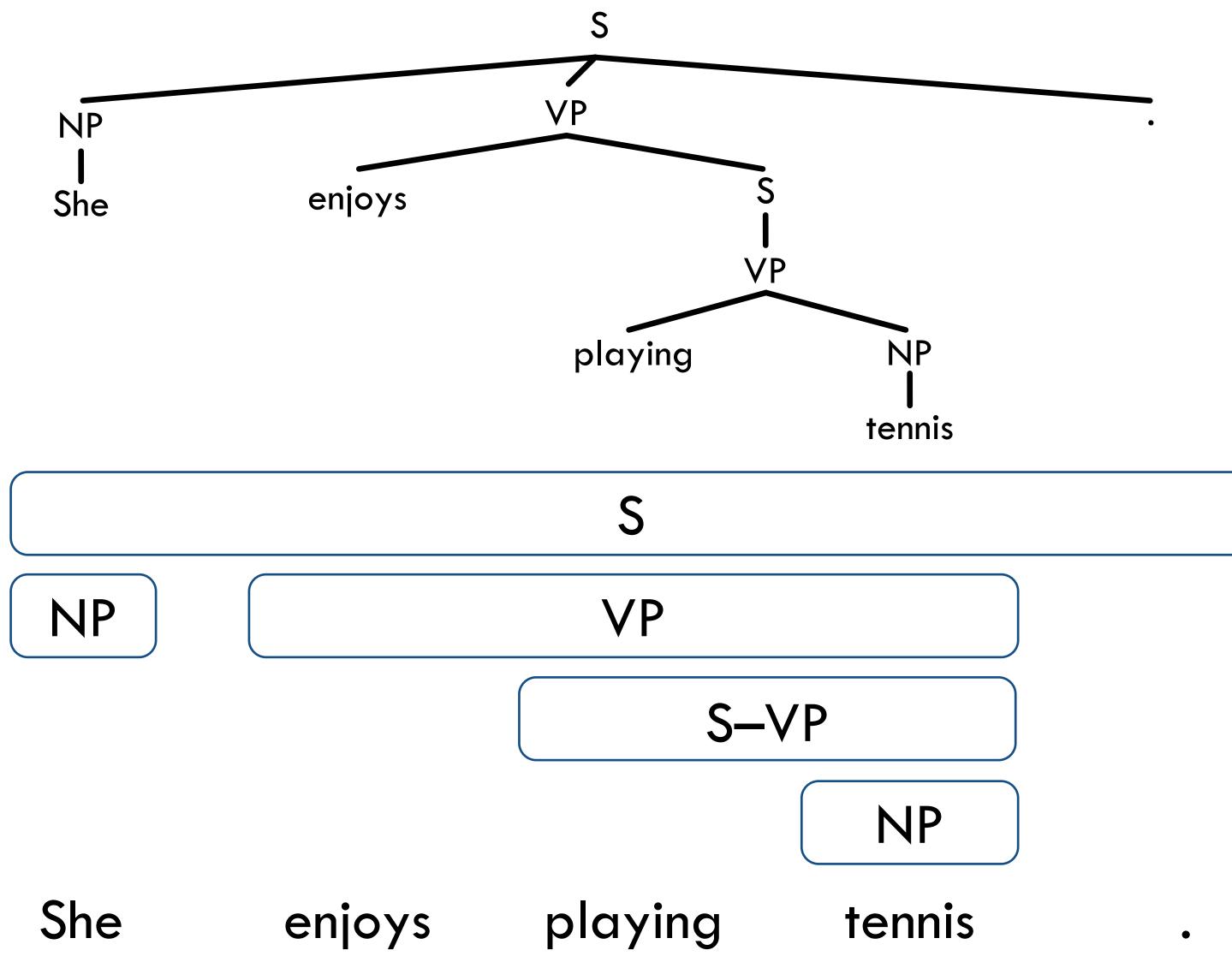




Non-Constituents

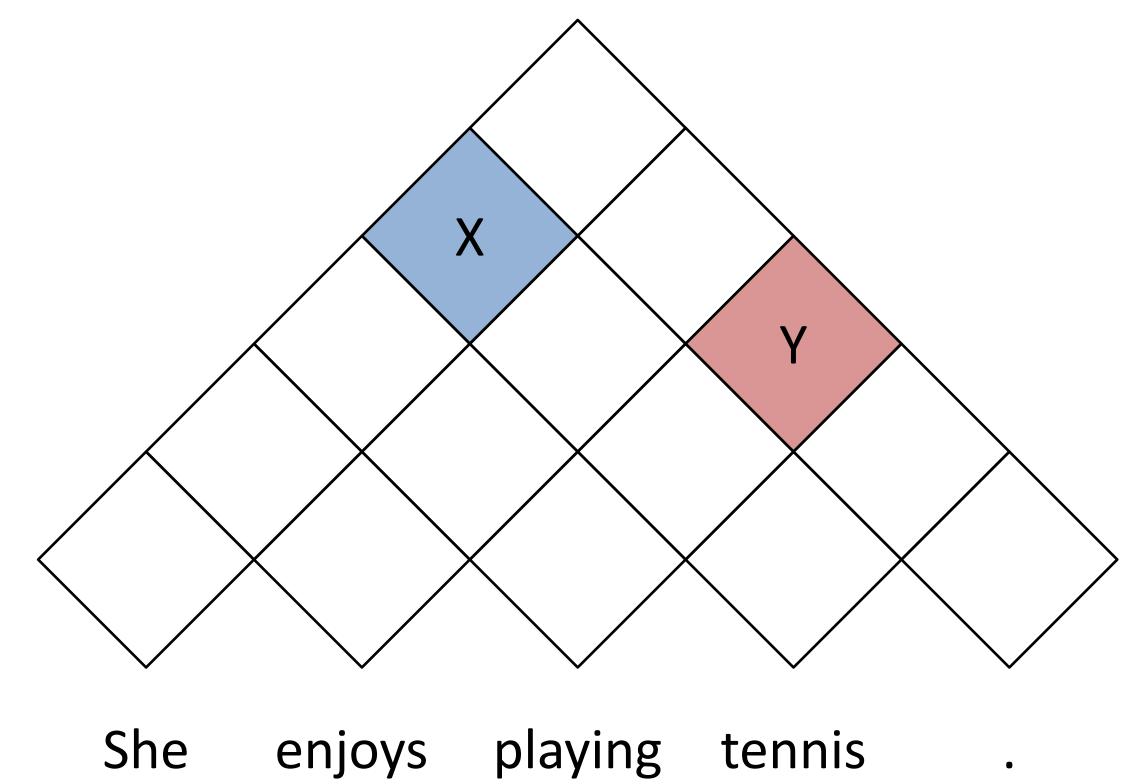






... But Will We Get a Tree Out?

Reconciliation

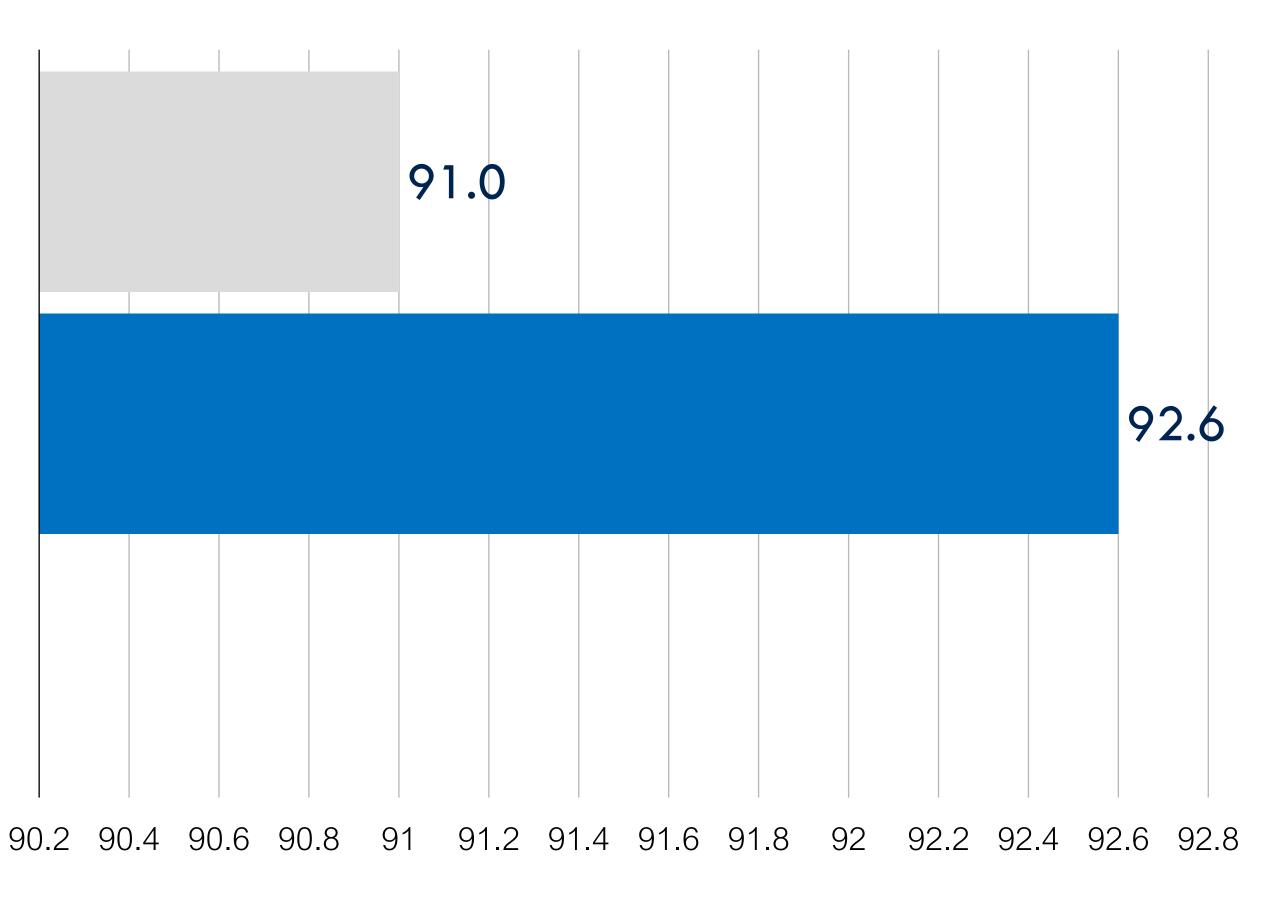


2

1

0

olaying tennis . 3 4 5



Grammar-Based [Carreras et al, 08]

LSTM-Based [Stern et al, 17]

F1 (English, dev)

Does It Work?

Neural parsers no longer have much of the model structure provided to classical parsers.

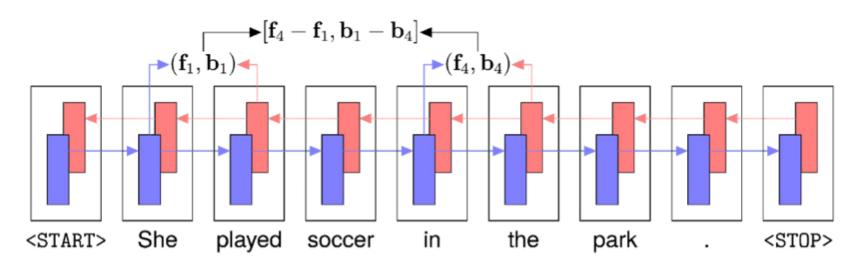
How do they perform so well without it?

Why don't we need a grammar?

Adjacent tree labels are redundant with LSTM features

If we can predict surrounding tree labels from our LSTM representation of the input, then this information doesn't need to be provided explicitly by grammar production rules

We find that for **92.3%** of spans, the label of the span's parent can predicted from the neural representation of the span

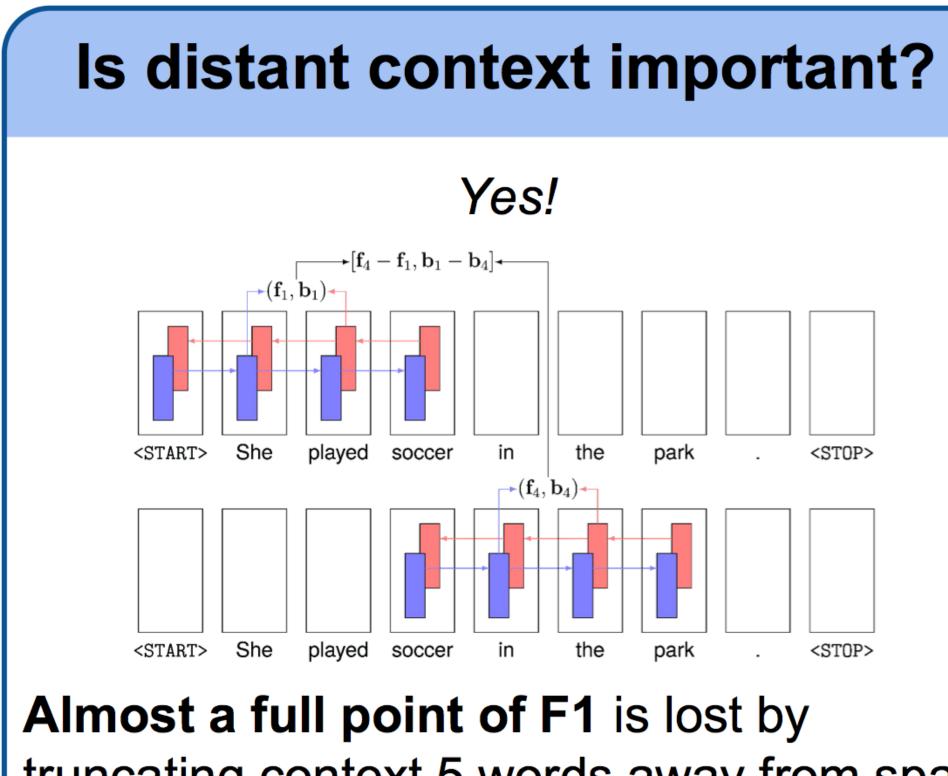


Do we need tree constraints?

Many neural parsers no longer model output correlations with grammar rules, but still use output correlations from tree constraints

Predicting span brackets independently gives **nearly identical performance** on PTB development set F1 and produces valid trees for **94.5%** of sentences

Not for F1



truncating context 5 words away from span endpoints and half a point with 10 words



What word representations do we need?

A character LSTM is sufficient

ord Only	91.44
ord and Tag	92.09
naracter LSTM Only	92.24
naracter LSTM and Word	92.22
naracter LSTM, Word, and Tag	92.24

What about lexicon features?

The character LSTM captures the same information

Heavily engineered lexicons used to be critical to good performance, but neural models typically don't use them

Word features from the Berkeley Parser (Petrov and Klein 2007) can be predicted with over **99.7%** accuracy from the character LSTM representation

Do LSTMs introduce useful inductive bias compared to feedforward networks?

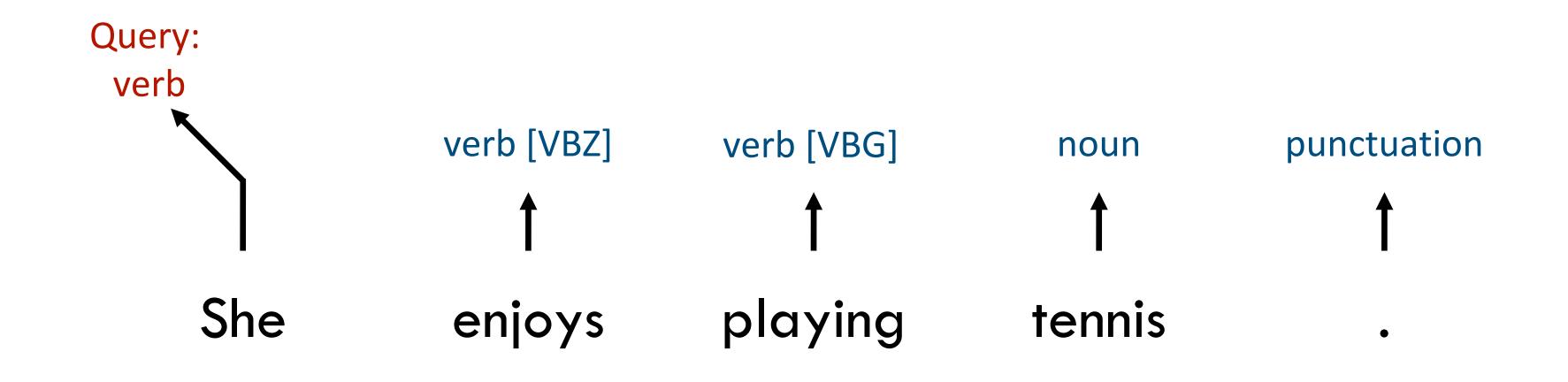
We compare a truncated LSTM with feedforward architectures that are given the same inputs

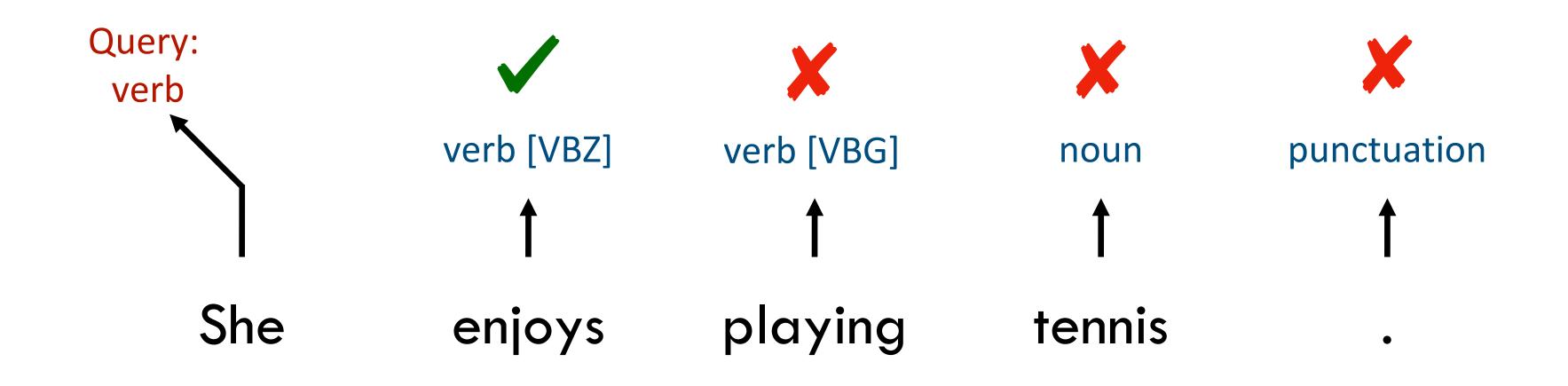
The LSTM outperformed the best feedforward by 6.5 F1

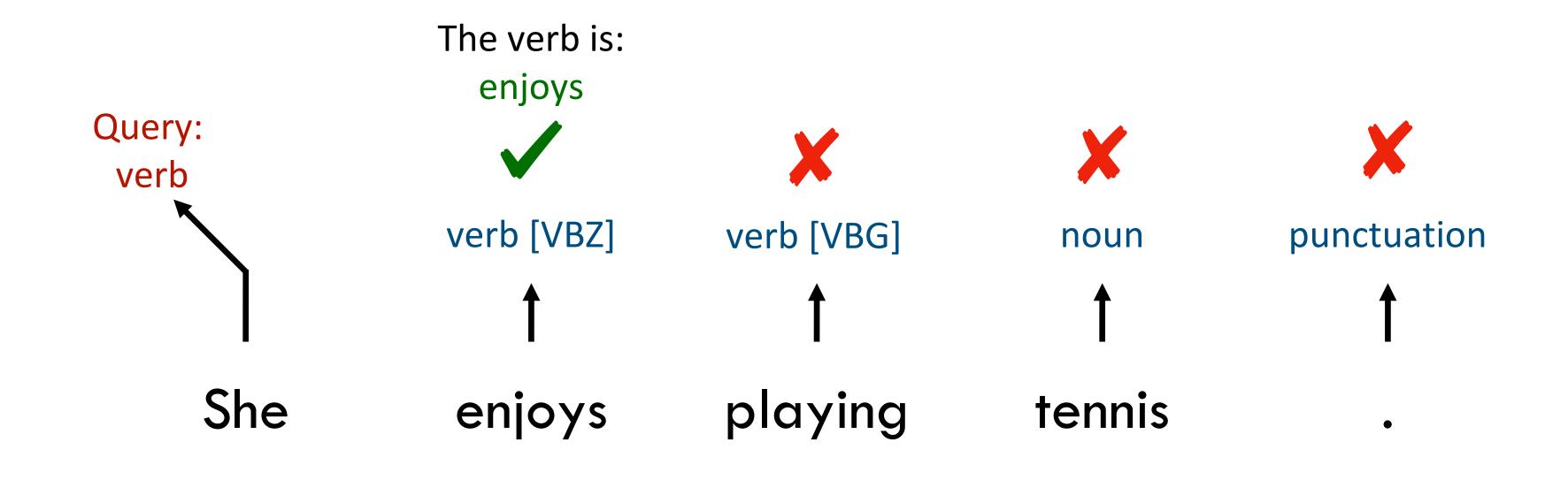
Yes!

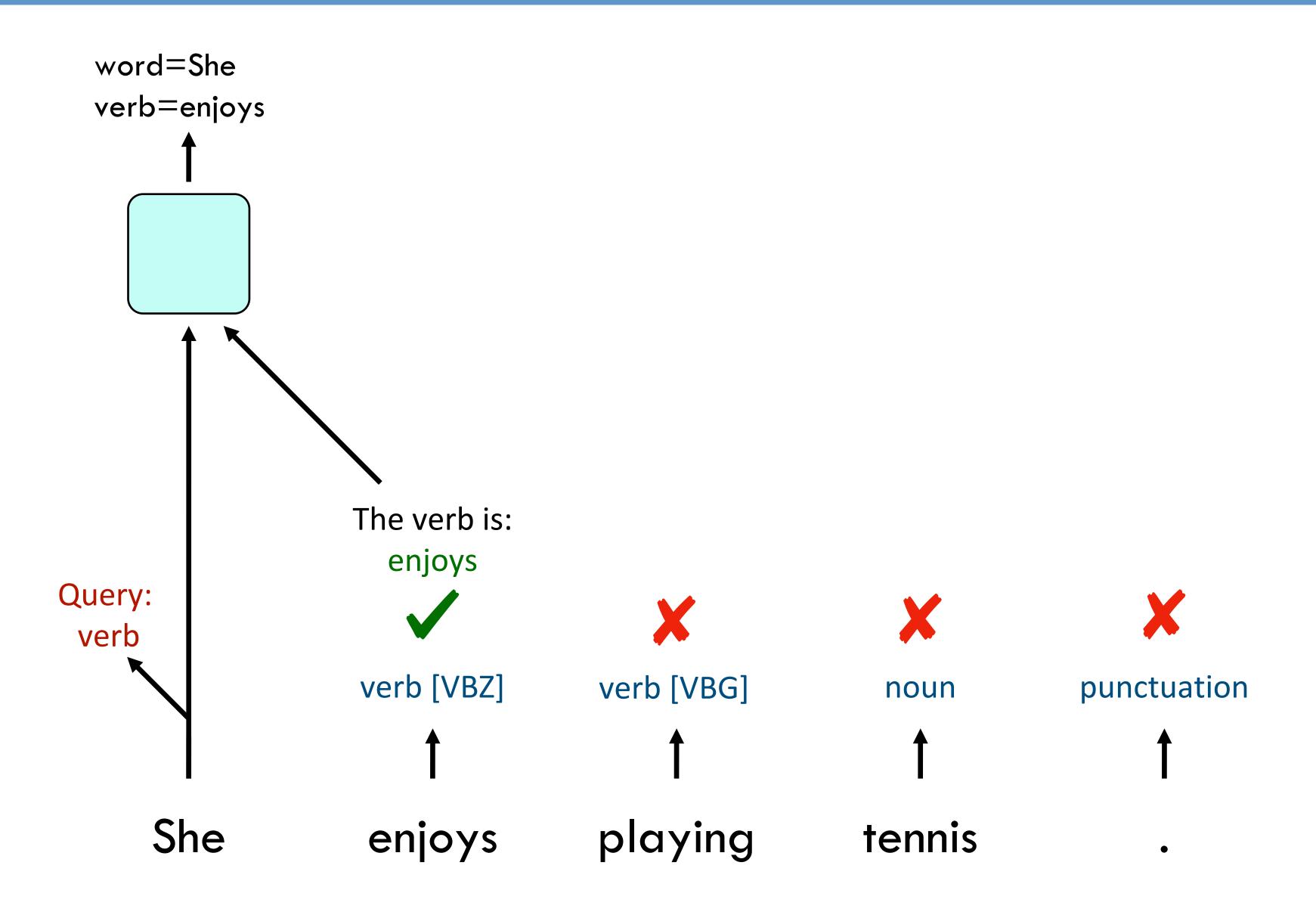
olaying tennis

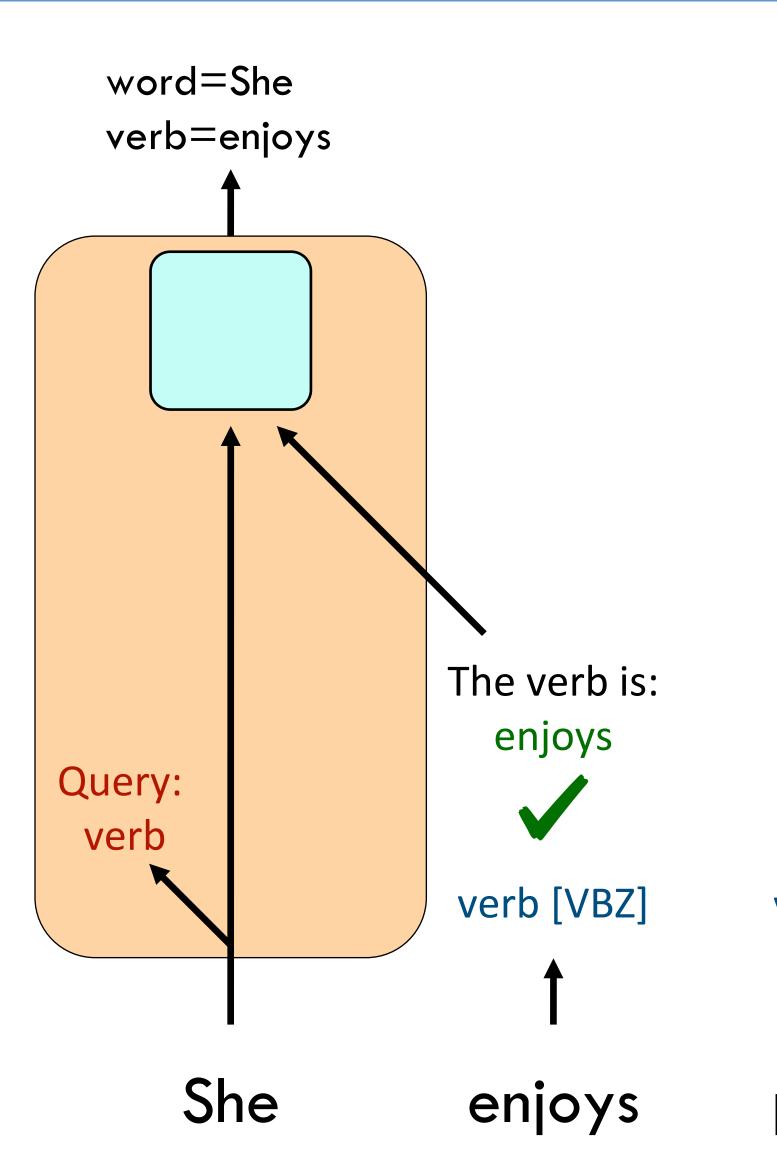
ullet

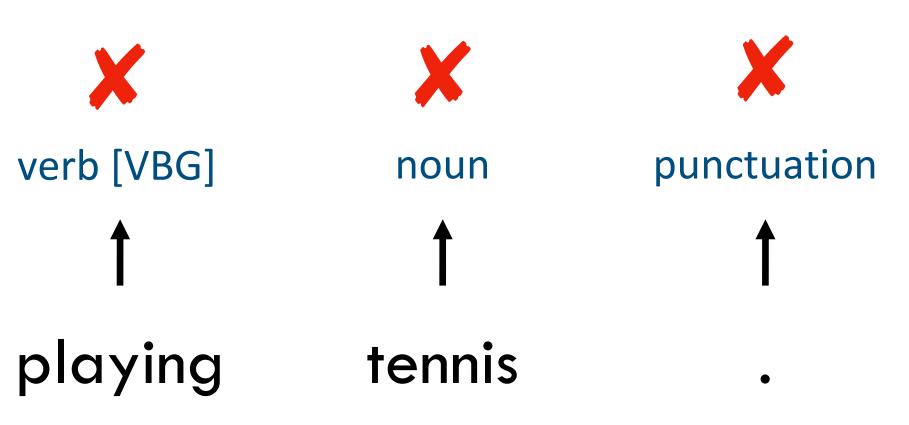


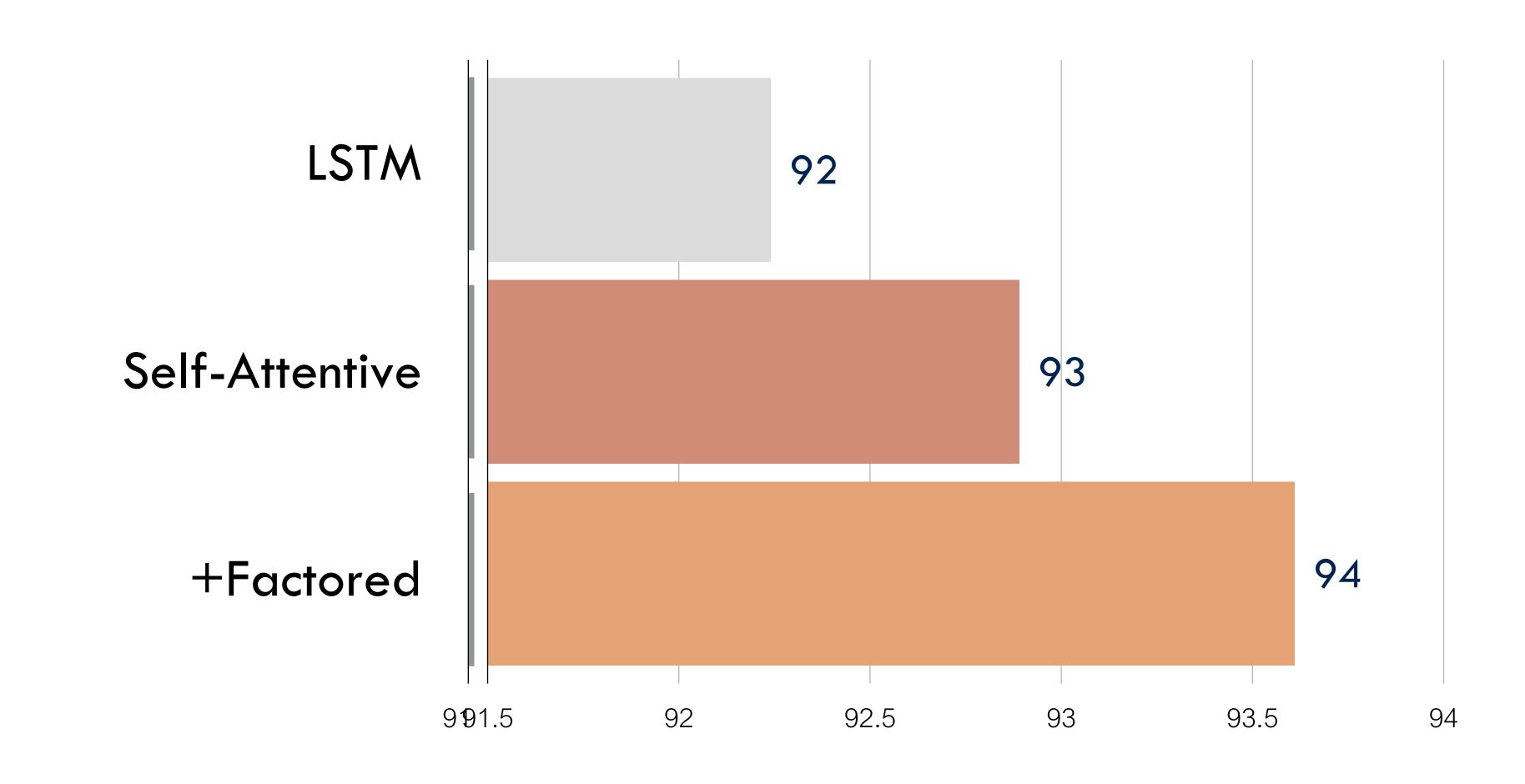








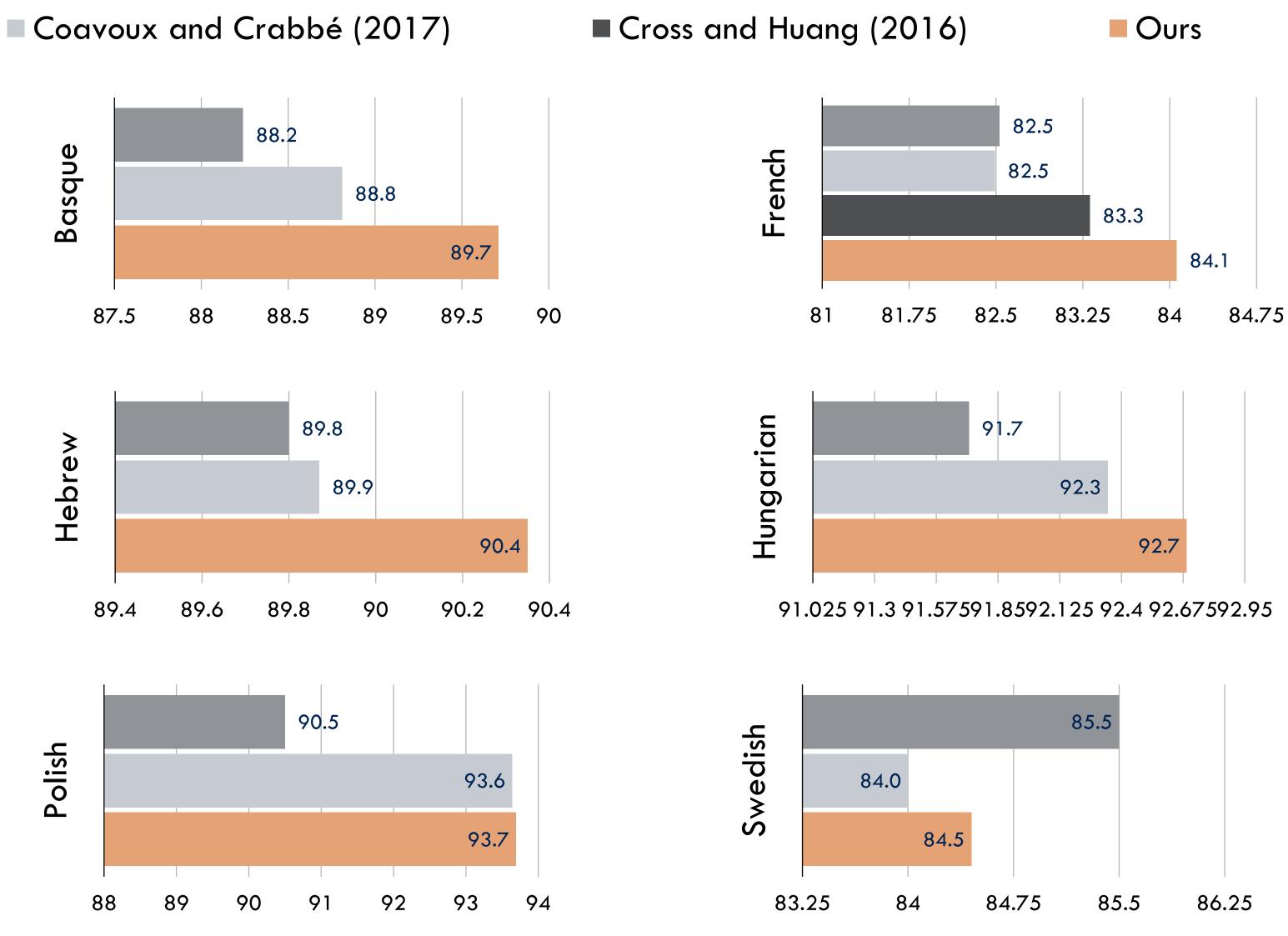


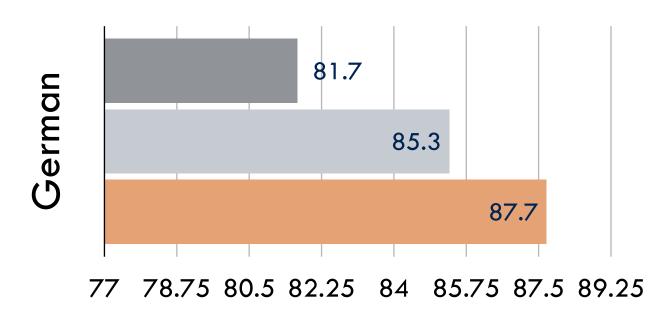


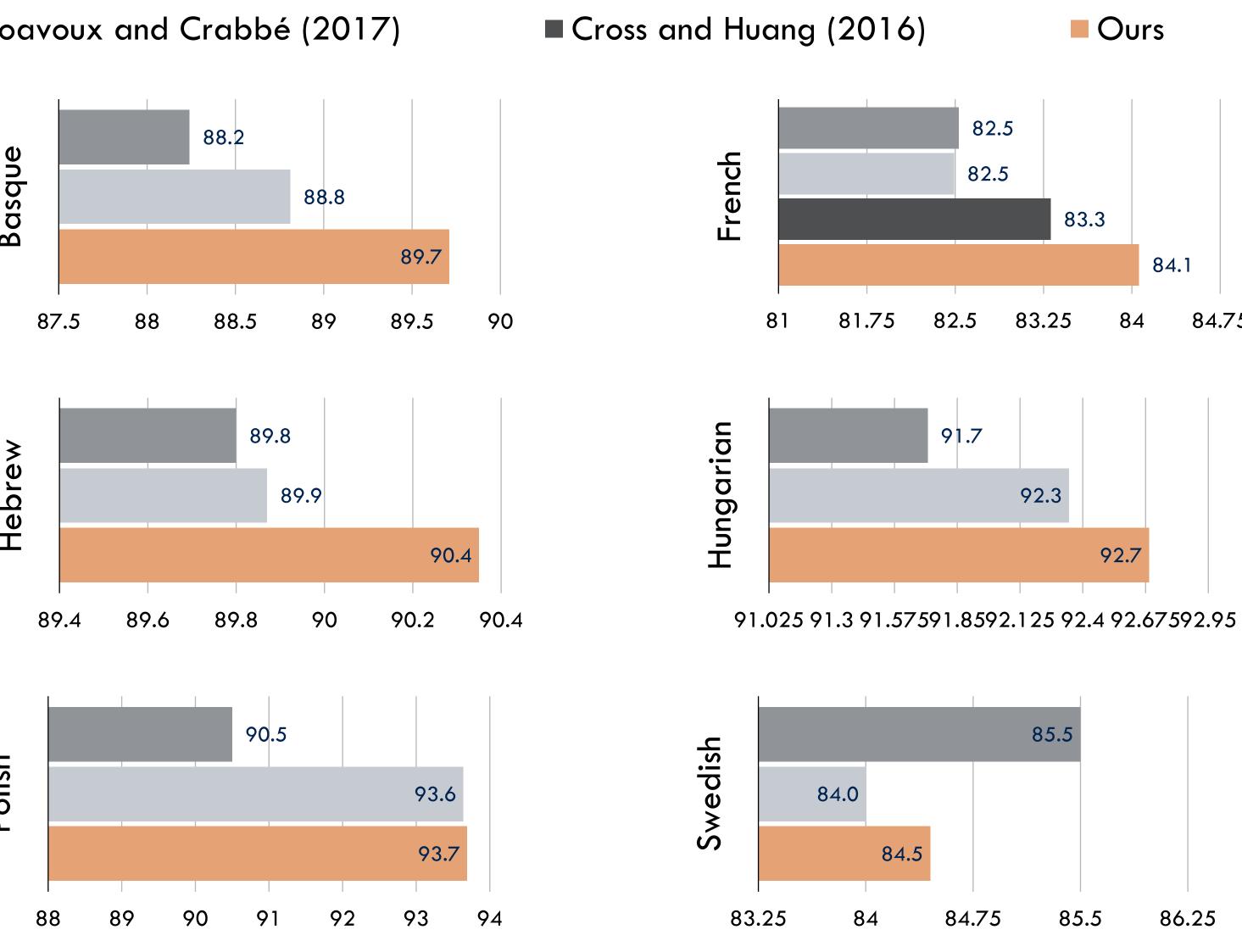
F1 (English, dev)

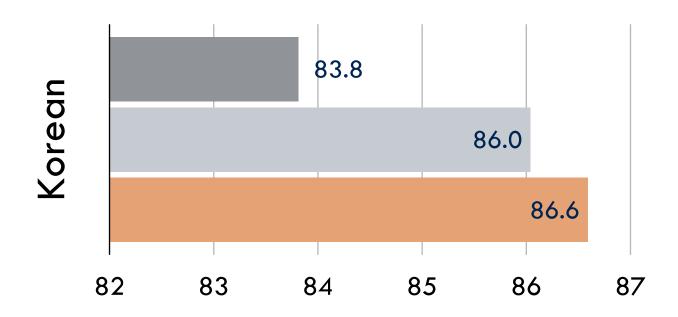
What Helps?

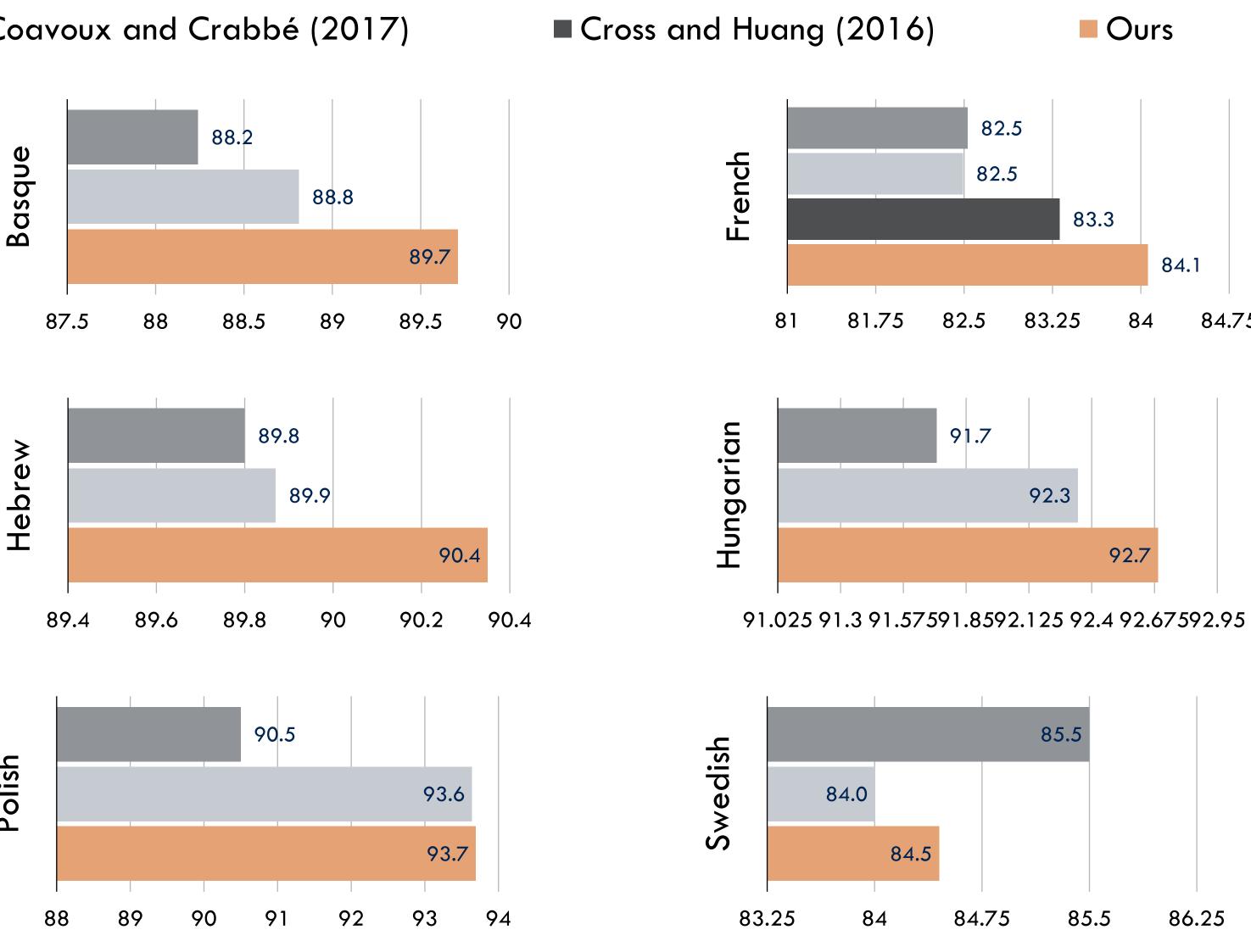
■ Björkelund et al. (2014) 81.3 Arabic 82.9 85.6 78.75 81.25 82.5 83.75 85 86.25 80











Results: Multilingual

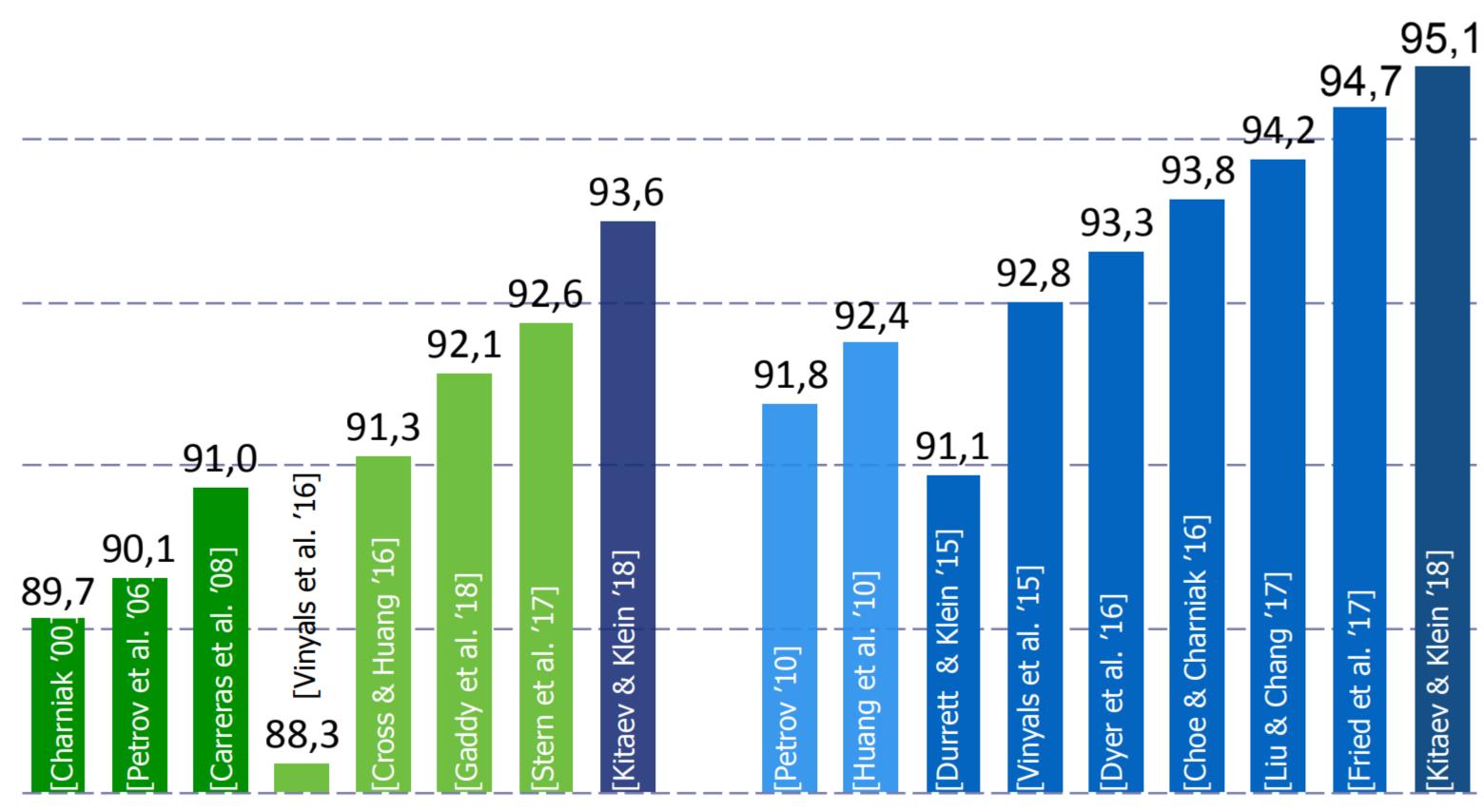
Problem: Input has more variation than output

Need to handle:

- Rare words not seen during training • Word forms in morphologically rich languages
- Contextual paraphrase / lexical variation

Pre-Training

Historical Trends

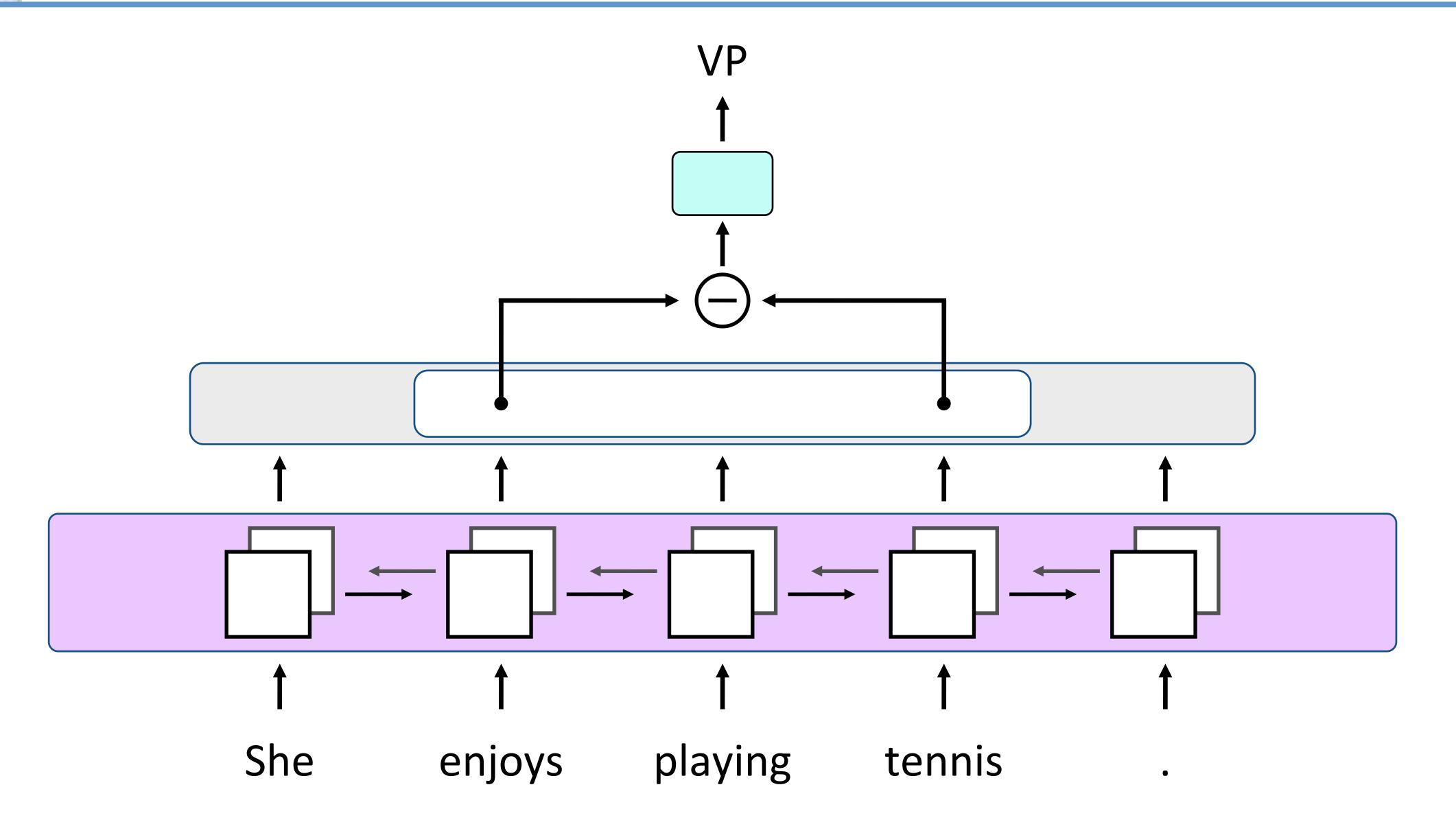


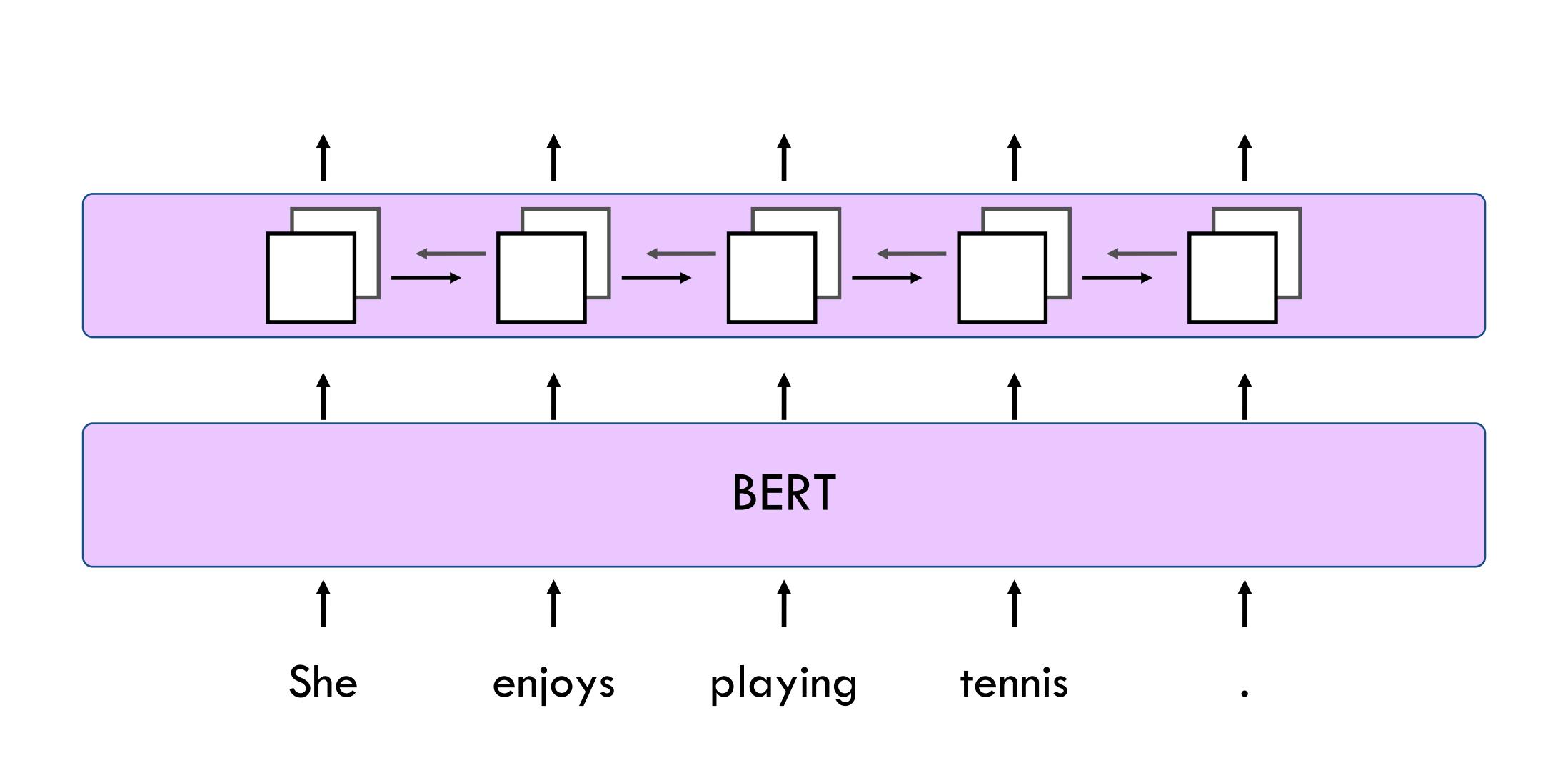
Single Parser

Multi-Modal / Additional Data

[Slide from Slav Petrov]

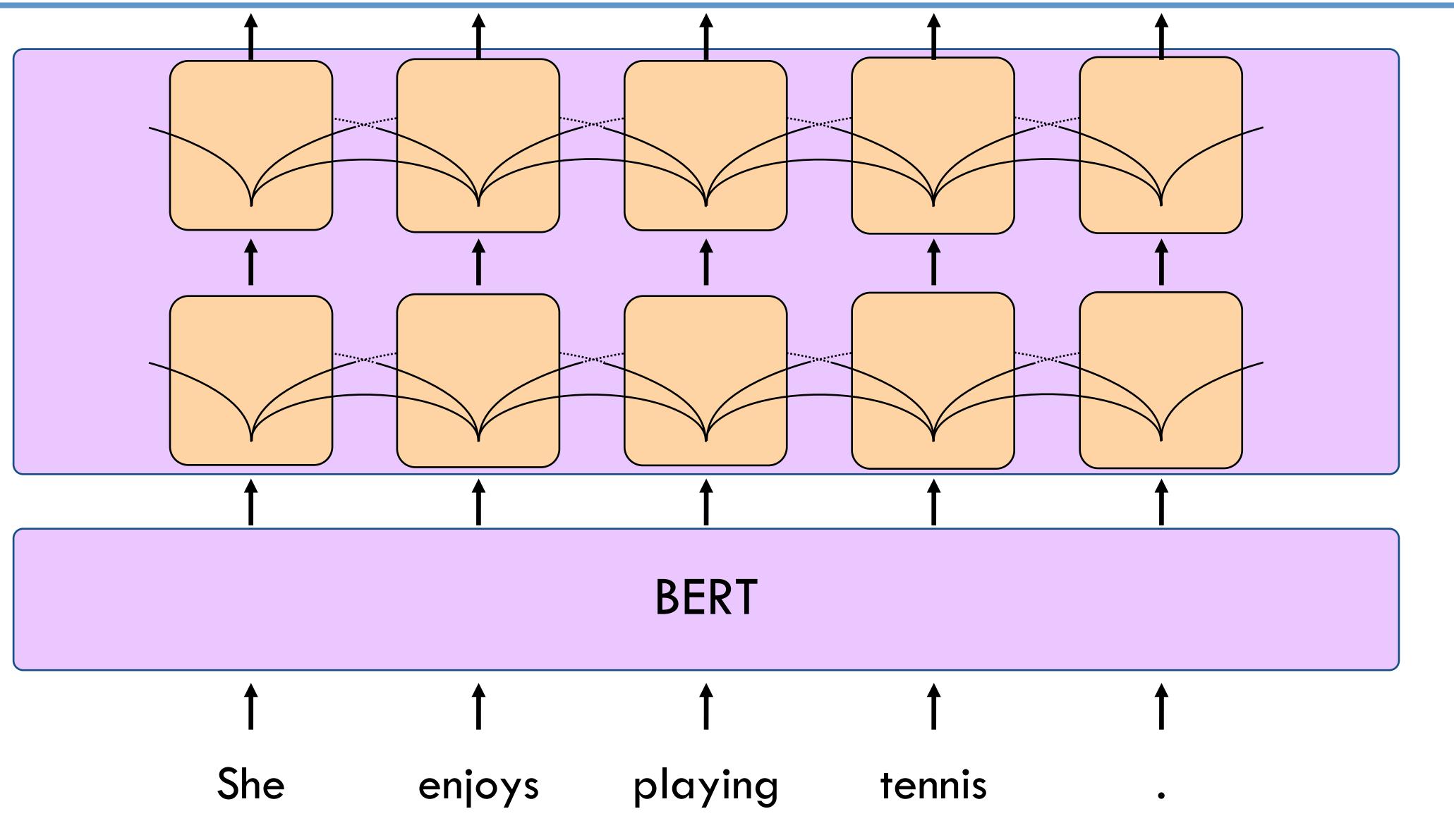
Parsing as Span Classification





Pretraining

Architecture



No pre-training

Pre-training

[Kitaev & Klein 2018]

Encoder Architectures

92.08 F1

[Gaddy+ 2018]

93.55 F1

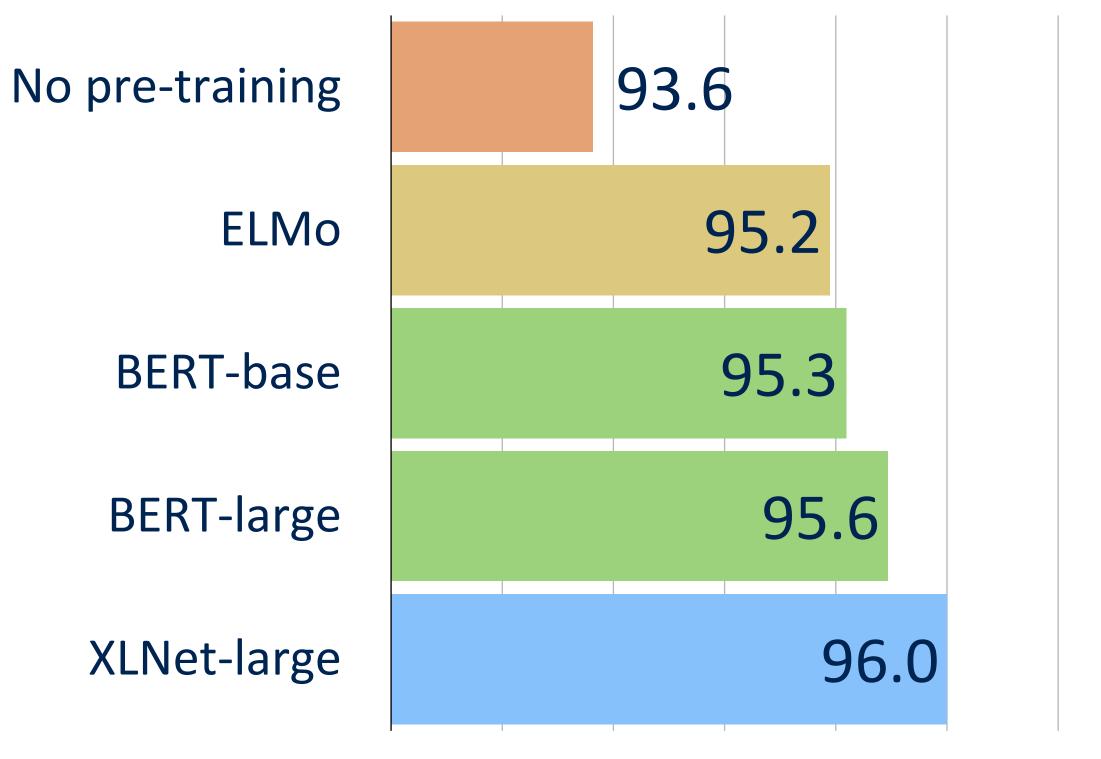
[Kitaev & Klein 2018]

95.13 F1 (with ELMo)

95.60 F1 with BERT)

[Kitaev et al 2019]

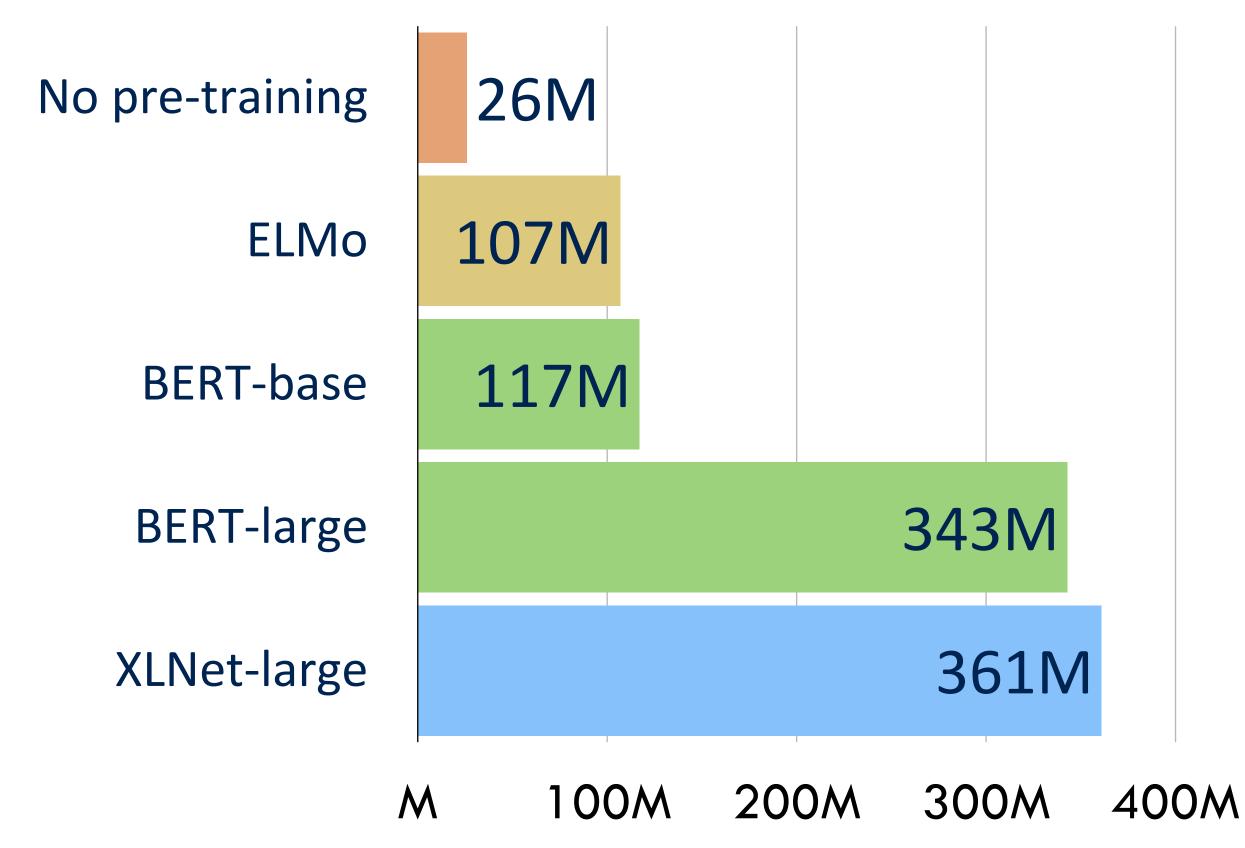
F1 Score (English)



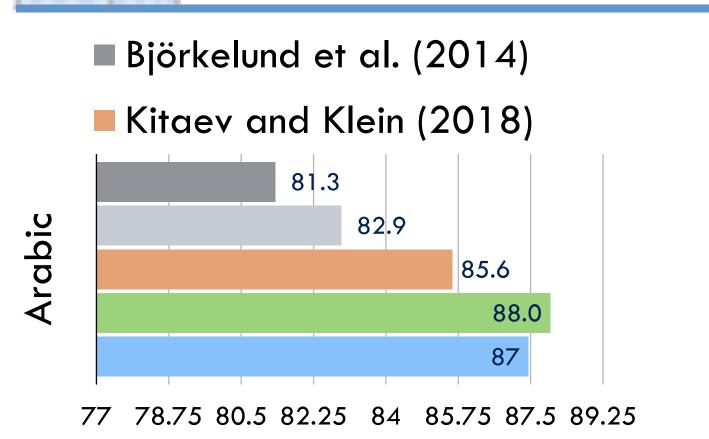
92.25 93 93.7594.595.25 96 96.75

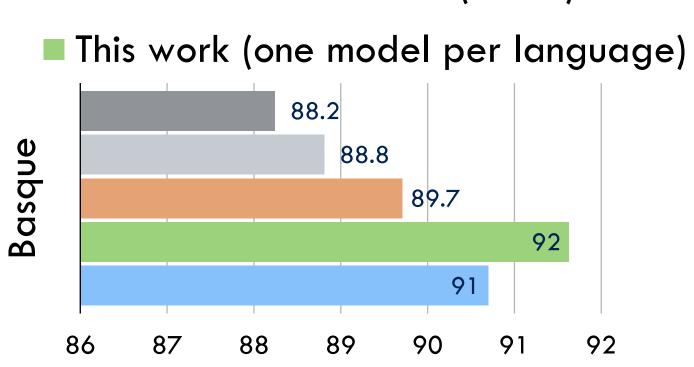
Encoder Architectures

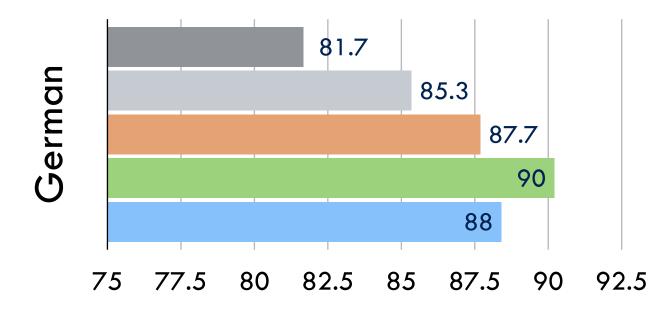
Number of Parameters

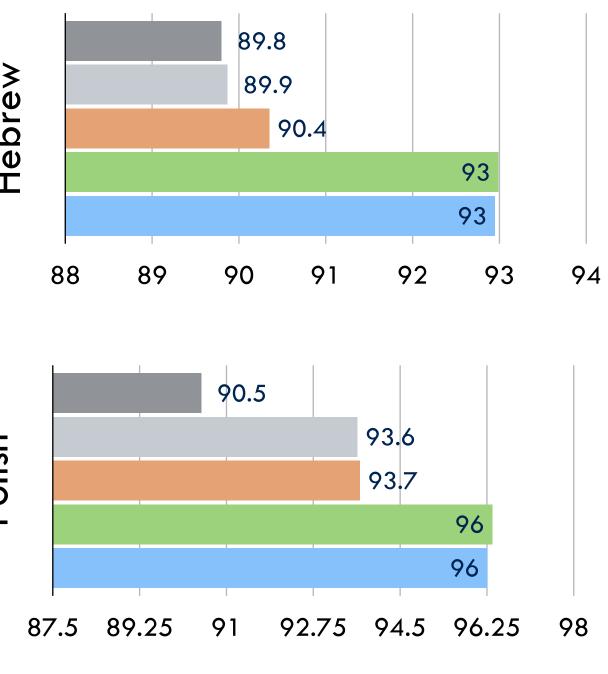


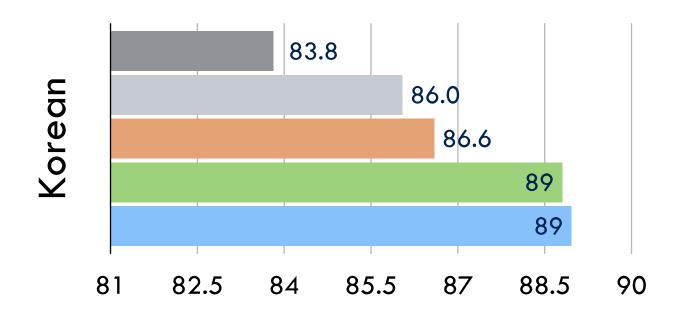
Results: Multilingual

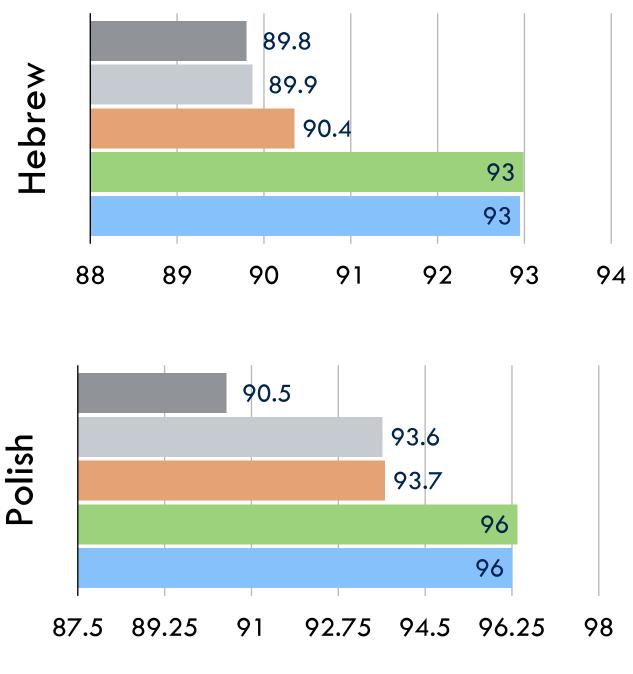




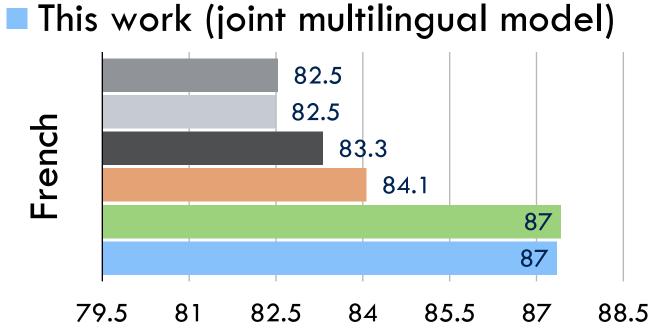


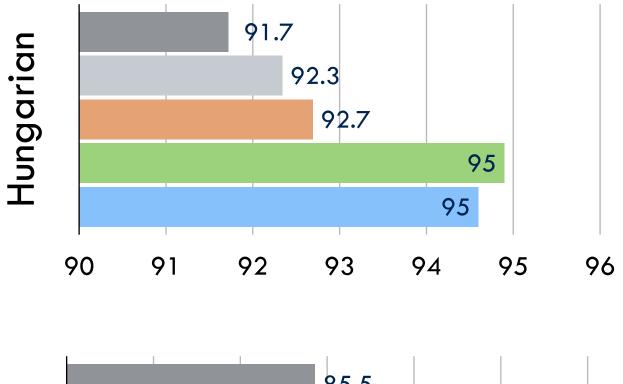


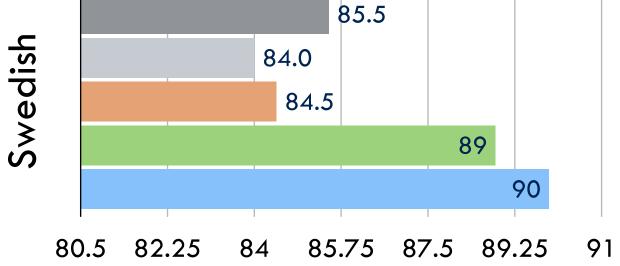




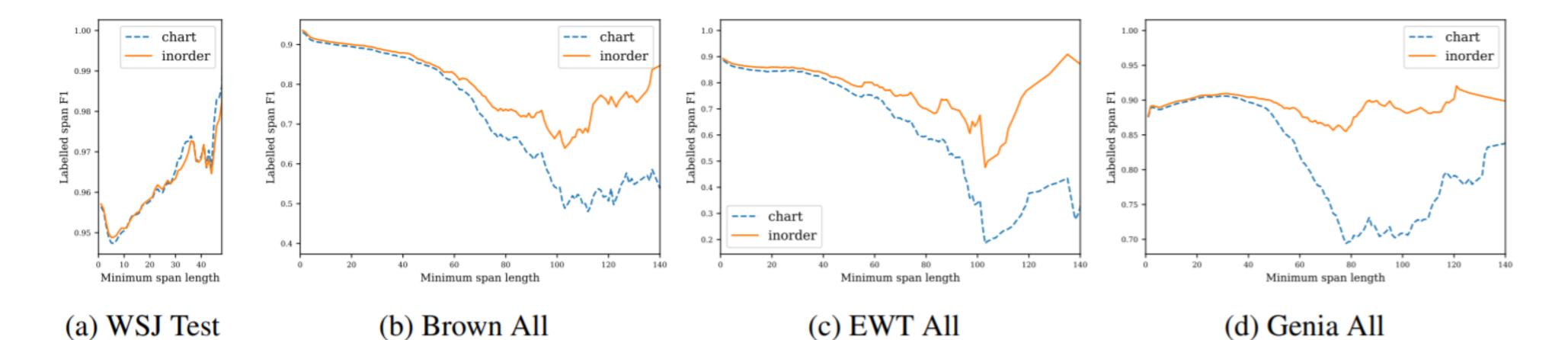
- Coavoux and Crabbé (2017)
- Cross and Huang (2016)







Does Structure Help?



parser with BERT (orange) and the Chart parser with BERT (cyan) start to diverge for longer spans.

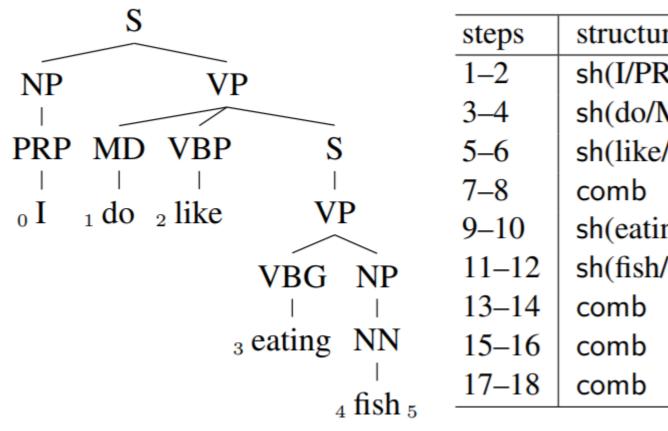
Figure 1: Labelled bracketing F1 versus minimum span length for the English corpora. F1 scores for the In-Order

Out of Domain Parsing

	Berkeley		BLLIP		In-Order		Chart	
	F 1	Δ Err.						
WSJ Test	90.06	+0.0%	91.48	+0.0%	91.47	+0.0%	93.27	+0.0%
Brown All	84.64	+54.5%	85.89	+65.6%	85.60	+68.9%	88.04	+77.7%
Genia All	79.11	+110.2%	79.63	+139.1%	80.31	+130.9%	82.68	+157.4%
EWT All	77.38	+127.6%	79.91	+135.8%	79.07	+145.4%	82.22	+164.2%

Neural parsers improve out-of-domain numbers, but not more than in-domain numbers

Other Neural Constituency Parsers



- Back to at least Henderson 1998!
- Recent directions:
 - Shift-Reduce, eg Cross and Huang 2016
 - SR/Generative, eg Dyer et al 2016 (RNNG)
 - In-Order Generative, eg Liu and Zhang 2017

ral action	label action	stack after	bracket
RP)	label-NP	0_1	₀ NP ₁
MD)	nolabel	$0 \square 1 \square 2$	
e/VBP)	nolabel	$0 \square 1 \square 2 \square 3$	
	nolabel	$0 \square 1 \square 3$	
ing/VBG)	nolabel	$0 \square 1 \square 3 \square 4$	
/NN)	label-NP	$0 \square 1 \square 3 \square 4 \square 5$	$_4NP_5$
	label-S-VP	$_0 \bigtriangleup_1 \bigtriangleup_3 \bigtriangleup_5$	₃ S ₅ , ₃ VP ₅
	label-VP	$0 \bigtriangleup_1 \bigtriangleup_5$	$_1$ VP ₅
	label-S	$0 \bigtriangleup_5$	$_{0}S_{5}$