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Translation Task

e Text is both the input and the output.
e Input and output have roughly the same information content.
e Output is more predictable than a language modeling task.

e Lots of naturally occurring examples.



Translation Examples



English-German News Test 2013 (a standard dev set)

Republican leaders justified their policy by the need
to combat electoral fraud.

Die Fuhrungskrafte der Republikaner

The Executives of the republican

rechtfertigen ihre Politik mit der

justify your politics With of the
Notwendigkeit , den Wahlbetrug zu

neéd J tAe eleciion fraud lo
bekampfen

| I
fight .



Variety in Translations?

Human
reference
translation

A commercial
system from
2002

Google Translate,

2020

A small planet, whose is as big as could destroy a middle sized city, passed by the
earth with a distance of 463 thousand kilometers. This was not found in advance.
The astronomists got to know this incident 4 days later. This small planet is 50m in
diameter. The astonomists are hard to find it for it comes from the direction of sun.

A volume enough to destroy a medium city small planet is big, flit earth within
463,000 kilometres of close however were not in advance discovered, astronomer
just knew this matter after four days. This small planet diameter is about 50 metre,
from the direction at sun, therefore astronomer very hard to discovers it.

An asteroid that was large enough to destroy a medium-sized city, swept across the
earth at a short distance of 463,000 kilometers, but was not detected early.
Astronomers learned about it four days later. The asteroid is about 50 meters in
diameter and comes from the direction of the sun, making it difficult for
astronomers to spot it.

From https://catalog.ldc.upenn.edu/LDC2003T17



Evaluation



BLEU Score

BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by
brevity penalty (harshly penalizes translations shorter than the reference). System proposes a

translation made up of n-grams ¢,.

If "of the" appears twice in hypothesis

Matched,i p E min Ch (tz), max Cj (tz) h but only at most once in a reference,
J
t.

then only the first is "correct"

MatChedi 4 "Clipped" precision of n-
H;

Pi - gram tokens
B = exp Il’liIl O n— L Brevity penalty only matters if the
? n hypothesis corpus is shorter than
the sum of (shortest) references.
1
4 4
BLEU T B I I P”' BLEU is a geometric mean of clipped precisions,
1=1 ‘ scaled down by the brevity penalty.




Evaluation with BLEU

In this sense, the measures will partially undermine the American democratic system.

In this sense, these measures partially undermine the democratic system of the United States.

BLEU = 26.52, 75.0/40.0/21.4/7.7 (BP=1.000, ratio=1.143, hyp_len=16, ref_len=14)

(Papineni et al., 2002) BLEU: a method for automatic evaluation of machine translation.



Corpus BLEU Correlations with Average Human Judgments

These are ecological
correlations over multiple
segments; segment-level
BLEU scores are noisy.

(variant of BLEU)

Commercial machine
translation providers seem
to all perform human
evaluations of some sort.

NIST Score

(Ma et al., 2019) Results of the
WMT19 Metrics Shared Task:
Segment-Level and Strong MT
Systems Pose Big Challenges
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Human Judgments

Figure from G. Doddington (NIST)



Human Evaluations

Direct assessment: adequacy & fluency

® Monolingual: Ask humans to compare machine translation to a
human-generated reference. (Easier to source annotators)

e Bilingual: Ask humans to compare machine translation to the source
sentence that was translated. (Compares to human quality)

e Annotators can assess segments (sentences) or whole documents.

e Segments can be assessed with or without document context.

Ranking assessment:
e Raters are presented with 2 or more translations.

e A human-generated reference may be provided, along with the
source.

* "In a pairwise ranking experiment, human raters assessing
adequacy and fluency show a stronger preference for human over
machine translation when evaluating documents as compared to
isolated sentences." (Laubli et al., 2018)

Editing assessment: How many edits required to reach human quality

(Laubli et al., 2018) Has Machine Translation Achieved Human Parity? A Case for Document-level Evaluation

English — German (deutsch)

dallftems | Expand ps all item:

V' Man gets prison after woman finds bullet in her skull Der Mann wird gefangen, nachdem die Frau in ihrem Schadel v
geschossen ist

Vv A Georgia man has been sentenced to 25 years in prison for shooting his Ein georgischer Mann wurde zu 25 Jahren Gefangnis verurteilt, v

girlfriend, who didn't realize she survived a bullet to the brain until she went to the
hospital for treatment of headaches.

weil er seinen Freund geschossen hat, der nicht gewusst hatte,
dass er eine Kugel ins Gehirn iiberlebte, bis er in das
Krankenhaus zur Behandlung

A News outlets report 39-year-old Jerrontae Cain was sentenced Thursday on
charges including being a felon in possession of a gun in the 2017 attack on 42
year-old Nicole Gordon

Nachrichtenagenturen-Bericht 39-jahrige Jerrontae Cain wurde @
am Donnerstag wegen Anklage verurteilt, darunter ein Felon im

Besitz einer Waffe beim Angriff auf 42-jahrige Nicole Gordon im

Jahr 2017.

0/10 blocks, 10 items left in block WMT21CTRA #285:Segment #341 English — German (deutsch)

Fakhfakh stepped down the same day the party filed a no-confidence motion against him.

How accurately does each of the candidate text(s) below convey the original semantics of the source text above?

Fakhfakh trat am selben Tag zuriick, an dem die Partei einen Mi ag gegen ihn einreis
Not at al
Fachfakh trat am selben Tag zuriick, als die Partei ein Misstrauensvotum gegen ihn einreichte.

Not at al

Reset Show/Hide diff.

Match sliders E!Iil

(Akhbardeh et al., 2021) Findings of the 2021 Conference on Machine Translation



Translationese and Evaluation

Translated text can: (Baker et al., 1993; Graham et al., 2019)

e be more explicit than the original source

be less ambiguous

be simplified (lexically, syntactically, and stylistically)

display a preference for conventional grammaticality

avoid repetition

exaggerate target language features

e display features of the source language

"If we consider only original source text (i.e. not translated from another language, or
translationese), then we find evidence showing that human parity has not been achieved."
(Toral et al., 2018)

(Baker et al., 1993) Corpus linguistics and translation studies: Implications and applications.
(Graham et al., 2019) Translationese in Machine Translation Evaluation.
(Toral et al, 2018) Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Machine Translation



How are We Doing? Example: WMT 2019 Evaluation

2019 segment-in-context direct assessment (Barrault et al, 2019):

v" German to English: many systems are tied x English to Gujarati: all systems are outper-
with human performance; formed by the human translator;

x English to Chinese: all systems are outper- x English to Kazakh: all systems are outper-
formed by the human translator; formed by the human translator;

x English to Czech: all systems are outper- % English to Lithuanian: all systems are outper-
formed by the human translator; formed by the human translator;

x English to Finnish: all systems are outper- v English to Russian: Facebook-FAIR is tied
formed by the human translator; with human performance.

v English to German: Facebook-FAIR achieves
super-human translation performance; sev-
eral systems are tied with human perfor-
mance;

(Barrault et al, 2019) Findings of the 2019 Conference on Machine Translation (WMT19)



Statistical Machine Translation
(1990 - 2015)



When | look at an article in Russian, | say:
“This is really written in English, but it has
been coded in some strange symbols. |
will now proceed to decode.”

Warren Weaver (1949)



Levels of Transfer: Vauquois Triangle (1968)

interlingua

semantics

phrases

words

SOURCE

syntax

semantics

______________ VP
Yg"lo haré mafana; MD/\\VP
I:'\’Nill do it tomorrow: e | A~
:. v PO | v | G ) =08
O L will do it
———-- -~ English (E) P(E|lo haré)
Y9,' lo hare;'manana T 55
I:will do it:tomorrow will do it :
"""" will do so 0.2
phrases /
Yo lo haré manana English (E) P(E | mafana )
words = / )% tomorrow 0.7
| will do it tomorrow :
morning 0.3
TARGET




Data-Driven Machine Translation

\

Target language corpus gives examples of well-formed

sentences

| will get to it later

See you later

He will do it

Parallel corpus gives translation examples

| will do it gladly

Yo lo haré de muy buen grado

Yo lo haré después

You will see later

Después lo veras

Model of
translation

| will do it later




Stitching Together Fragments

-------

‘ \
: "..,0’ S n.‘... S E
: N7 NPT VP i
: E /\ ’.’o. /\ |
| : | MD VP . MD VP |
! —7N ~ N\ :
| ; PRP | VB PRP ADV PRP VB ADV |
| E I .H-.n-..-l.-.-.n- ........................................ :
ol will do it gladly You will see__Iater |
Yo lo haré de muy buen grado Despuésilo veras
Machine translation system: .-~
S S
ADV ADV
Model of

Yo lo haré después | will do it later

translation




Evolution of the Noisy Channel Model

P(elf) < P(fle)- P(e)

P(e|f) o P(f|e)?m . P(e)®m

Chosen to minimize loss

P(elf) oc exp {sz - fz'(eyf)}

E.g., log P(e)




Word Alignment and Phrase Extraction



Extracting Translation Rules

S
- T
S ) S :
VP NP " VP "
/\ :“" /\ .....
VB NP {MD VP
PRP PRP: VB PRP _ADV :
| (I | | Ik
Thankyou , | iwill do it gladly:.

a —
Frequency statistics on
these rules serve as

features in a translation

model

Gracias

--------------------

-------------------

. will do it Apbv

VP
N LO HARE ADV




Counting Aligned Phrases

d’assister a la reunion et | | | to attend the meeting and
assister a la reunion || | attend the meeting

la reunion et | | | the meeting and
nous ||| we

nous

0

- 000000

ne

&
- 0000

-------- avons
pas
cru

000

bon
de

assister

- 000

¢ Relative frequencies are the most
important features in a phrase-based or
syntax-based model.

a
la

runion

et

e Scoring a phrase under a lexical model is
the second most important feature.

en
avons
inform
le

e Estimation does not involve choosing mamm.
among segmentations of a sentence into
phrases.

cojo
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consquence

deemed
it
inadvisable
to
attend
the
meeting - - . -
and
SO
cojo + - -
! [] 3

Slide by Greg Durrett



Translation Options

er geht ja hicht nach hause

( he ) ( IS ) C ves ) ( not ) ( after ) ( house )
( It ) ( are ) ( Is ) ( donot ) { o ) ( home )
( , It ) ( goes ) ( ,ofcourse ) ( doesnot ) ( accordngto ) ( chamber )
( , he ) ( go ) ( , Yy ¢ isnot ) C in ) ( athome )
( itis ) ¢ not ) ( home )
( he will be ) ( IS hot ) ( under house )
( it goes ) ( does not ) ( return home )
( he goes ) ( do not )y ( do not )

C E Y ( fo D)

( are Yy ( Tollowing )

( is after all )y ( not arter )

( does ) not to )

( not )

C IS not )

( are not )

¢ Is not a )

e Many translation options to choose from

— in Europarl phrase table: 2727 matching phrase pairs for this sentence
— by pruning to the top 20 per phrase, 202 translation options remain



er

Decoding: Find Best Path

geht

ja

nicht

nach

hause
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Phrase-Based Decoding
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the | 7 people including by some and the russian the | the astronauts )
it 7 people included by france and the | the russian international astronautical | of rapporteur .
this 7 out including the | from the french | and the russian the fifth i
these | 7 among including from the french and of the russian | of space members B
that | 7 persons | including from the of france | and to | russian of the | asrospace members .
7 include from the of france and russian astronauts . the
7 numbers include from france and russian | of astronauts who 2
7 populations include those from france and russian astronauts .
T deportees included come from france and russia in astronautical personnel :
7 philtrum | including those from france and russia A space member
including representatives from | france and the russia | astronaut
include | came from france and russia | by cosmonauts
include representatives from french and russia cosmonauts
include came from france and russia ’s COSMONAULS .
includes coming from french and [ russia ’s cosmonat |
french and mssian 's astronavigation [ member .
french and russia astronauts
and russia s special rapporteur
,and | russia rapporteur
, and russia rapporteur .

, and russia

or [ russia’s




Word Alignments



Word Alignment

Given a sentence pair, which words correspond to each other?

o

© c —
O L > W 5] > o)
E Do ® - T © £ c 1o

michael

assumes

that

; "

will

stay

in
the
house




Word Alignment?

-
- —
C C 9« C
£ 6 8 ©C
Qe =2 T© c

john
does

not

live

here

Is the English word does aligned to
the German wohnt (verb) or nicht (negation) or neither?



Word Alignment?

7

ngﬁ

S © &£ o
john
kicked
the
bucket

How do the idioms kicked the bucket and biss ins grass match up?
Outside this exceptional context, bucket is never a good translation for grass



Lexical Translation / Word Alignment Models



Unsupervised Word Alignment

Input: a bitext: pairs of translated sentences

we accept your view

nous acceptons votre opinion

Output: alignments: pairs of
translated words

When words have unique
sources, can represent as
a (forward) alignment
function a from French to
English positions

we -
accept -

your -

view -

nous
acceptons
votre
opinion



Word Alignment

e Even today models are often built on the IBM alignment models

e Create probabilistic word-level translation models

e The models incorporate latent (unobserved) word alignments

e Optimize the probability of the observed words

e Use the imputed alignments to reveal word-level correspondence

e Throw out the word-level translation models themselves



IBM Model 1: Allocation



IBM Model 1 (Brown 93)

= Alignments: a hidden vector called an alignment specifies which English source is responsible for each
French target word.

programs has, beens implementeds
a =
CL]_—2 ag =5 a5—6...—f‘a6—6“=--.._az\6
programme; 6ty applicationy

P(f,ale) = HP(%' = 1) P(fjlei)

= HI—I— . P(f;lei)

P(fle) =) P(f ale)



Example

das ist klein
e t(elf) e t(elf) e t(elf) e t(elf)
the 0.7 house 0.8 is 0.8 small | 0.4
that 0.15 building 0.16 s 0.16 little | 0.4
which | 0.075 home 0.02 exists | 0.02 short | 0.1
who 0.05 household | 0.015 has 0.015 minor | 0.06
this 0.025 shell 0.005 are 0.005 petty | 0.04

ple,alf) = 4—63 x t(the|das) x t(house|Haus) x t(is|ist) x ¢(small|klein)

=~ 07Tx08x%x0.8x04

= (0.0028¢




Expectation Maximization



EM Algorithm

e Incomplete data

— if we had complete data, would could estimate model
— if we had model, we could fill in the gaps in the data

e Expectation Maximization (EM) in a nutshell

1.
. assign probabilities to the missing data

2
3.
4. iterate steps 2-3 until convergence

initialize model parameters (e.g. uniform)

estimate model parameters from completed data



EM Algorithm

. la maison ... la maison blue ... la fleur ...

. the house ... the blue house ... the flower ...

e Initial step: all alighments equally likely

e Model learns that, e.g., la is often aligned with the



EM Algorithm

... la maison ... la maison blue ... la fleur ...

.. the house ... the blue house ... the flower ...

e After one iteration

e Alignments, e.g., between la and the are more likely



EM Algorithm

... la maison ... la maison bleu ... la fleur ...

M PX

.. the house ... the blue house ... the flower ...
o After another iteration

e It becomes apparent that alignments, e.g., between fleur and flower are more
likely (pigeon hole principle)



EM Algorithm

... la maison ... la maison bleu ... la fleur ...

| X |

.. the house ... the blue house ... the flower ...

e Convergence

¢ Inherent hidden structure revealed by EM



EM Algorithm

... la maison ... la maison bleu ... la fleur ...

| X |

.. the house ... the blue house ... the flower ...

Y

p(la|the) = 0.453
p(le|the) = 0.334
p(maison|house) = 0.876
p(bleu|blue) = 0.563

e Parameter estimation from the aligned corpus



IBM Model 1 and EM

EM Algorithm consists of two steps

Expectation-Step: Apply model to the data

— parts of the model are hidden (here: alignments)

— using the model, assign probabilities to possible values
Maximization-Step: Estimate model from data

— take assign values as fact
— collect counts (weighted by probabilities)
— estimate model from counts

Iterate these steps until convergence



Problems with Model 1

There’s a reason they designed

models 2-5! 1 - - - - 1le

Problems: alignments jump - m- - terme

around, align everything to rare ] @ - Z::ro"lalre

words T«

Experimental setup: - m()mm chargement

* Training data: 1.1M sentencesof -~ -~ - - (J( ) - sur
French-English text, Canadian -~ - - W)  demande
Hansards S 2

= Evaluation metric: alignment

©OT8 E wV T A

error Rate (AER) g eHAVvV gdA
. G P g o
= Evaluation data: 447 hand- - 9 d
aligned sentences © —



IBM Model 2: Global Monotonicity



Monotonic Translation?

Japan shaken by two new quakes

VO

Le Japon secoué par deux nouveaux séismes



Local Order Change

Japan is at the junction of four tectonic plates

Le Japon est au confluent de quatre plaques tectoniques



IBM Model 2

= Alignments tend to the diagonal (broadly at least)

P(f,ale) _Hp(a’j = i3, 1, J)P(fj|€z)
P(dist =1 — j— )

1 —a(i—id)

Z



EM for Models 1/2

= Model 1 Parameters:
Translation probabilities (1+2) P(fj|€i)
Distortion parameters (2 onl -
P @onl) paj =ilj,1,J)

= Startwith P(fjle;) uniform, including P(f;|null)
=  For each sentence:

= For each French position j
= Calculate posterior over English positions

P(a; =1lj, I, J)P(f;le;)

P(a; =i|f,e) = Sy P(a; =14|3,1, J)P(fjlel)

= (or just use best single alignment)
® Increment count of word f; with word e, by these amounts
= Also re-estimate distortion probabilities for model 2

= |terate until convergence



HMM Model: Local Monotonicity



Phrase Movement

On Tuesday Nowv. 4, earthquakes rocked Japan once again

Al

Des tremblements de terre ont a nouveau touché le Japon jeudi 4 novembre.



The HMM Model

= Model 2 preferred global monotonicity 1 HF Te)

= We want local monotonicity: nationale  0.469

national 0.418
= Most jumps are small

nationaux  0.054
= HMM model (Vogel 96) / nationales  0.029
P(f,ale) =[] P(ajla;—1)P(fjle;)
J
P(aj — aj_l)
-2-10123

= Re-estimate using the forward-backward algorithm
= Handling nulls requires some care

= What are we still missing?



Models 3+: Fertility



IBM Models 3/4/5

Mary did not slap the green witch
_/

Mary not slap slap slap the green witch n(3Islap)

J | \\\ P(NULL)

Mary not slap slap slap NULL the green witch

N N )/ /_ t(la|the)

Mary no daba una botefada a la verde bruja

L G

Mary no daba una botefada a la bruja verde

[from Al-Onaizan and Knight, 1998]



Examples: Translation and Fertility

the not
f tfle ¢ n(o|e) t  Hfle) ¢ n(¢ | e)
le 0.497 1 0.746 ne 0.497 2 0.735
la 0.207 0 0.254 pas  0.442 0 0.154
les 0.155 non  0.029 1 0.107
I 0.086 rien  0.011
ce 0.018
cette  0.011
farmers
f Hf |e) ¢ n(¢ e
agriculteurs  0.442 2 0.731
les 0.418 1 0.228
cultivateurs  0.046 0 0.039
producteurs  0.021




Example: Idioms

he is nodding
f N

il hoche la téte

nodding

F_flo] ¢ ___n@le
signe 0.164 4 0.342
la 0.123 3 0.293
téte 0.097 2 0.167
oui 0.086 1 0.163
fait 0.073 0 0.023
que 0.073

hoche 0.054

hocher 0.048

faire 0.030

me 0.024
approuve  0.019

qui 0.019

un 0.012

faites 0.011




Example: Morphology

should
f tf | e) ¢ n(¢ | e)
devrait 0.330 1 0.649
devraient 0.123 0 0.336
devrions 0.109 2 0.014

faudrait 0.073
faut 0.058
doit 0.058

aurait 0.041

doivent 0.024

devons 0.017

devrais 0.013




Phrase-Based Model

| Spass aml spiel

l

e Foreign input is segmented in phrases
e Each phrase is translated into English

e Phrases are reordered



Getting Phrases



Extracting Phrase Pairs

& c o

c — (@] (73] [72] o)

O L > w W 3 G_J

O © [8s ~ O Q = C O
michael
assumes
that
he
will
stay
in
the
house

extract phrase pair consistent with word alignment:

assumes that / geht davon aus , dass



Consistent

consistent 1inconsistent consistent

ok violated ok
one unaligned
alignment word is fine

point outside

All words of the phrase pair have to align to each other.



Phrase Pair Extraction

% o -

= (o] 73] v O

o < > W 144] 0 =

= 0 8 3 S . g © @

E oo ® -.T © £ £ B
michael
assumes
that
he
will
stay
in
the
house

Smallest phrase pairs:
michael — michael
assumes — geht davon aus / geht davon aus,
that — dass / , dass
he —er
will stay — bleibt
in the —im
house — haus

unaligned words (here: German comma) lead to multiple translations



Larger Phrase Pairs

g < ~

S E S 3 s 2

ESL3 I .85 E &3
michael
assumes
that
he
will
stay
in
the
house

michael assumes — michael geht davon aus / michael geht davon aus,
assumes that — geht davon aus, dass ; assumes that he — geht davon aus , dass er
that he — dasser /, dasser ; inthe house —im haus
michael assumes that — michael geht davon aus, dass
michael assumes that he — michael geht davon aus, dass er
michael assumes that he will stay in the house — michael geht davon aus, dass er im haus bleibt
assumes that he will stay in the house — geht davon aus , dass er im haus bleibt
that he will stay in the house — dass er im haus bleibt ; dass er im haus bleibt,
he will stay in the house — er im haus bleibt ; will stay in the house — im haus bleibt



Phrase Translation Table

e Main knowledge source: table with phrase translations and their probabilities

e Example: phrase translations for natuerlich

Translation | Probability ¢(¢|f)

of course 0.5
naturally 0.3
of course, 0.15

, of course, 0.05




Scoring Phrase Translations

e Phrase pair extraction: collect all phrase pairs from the data
e Phrase pair scoring: assign probabilities to phrase translations

e Score by relative frequency:

€) = ’
> 7, count(e, f;)



Real Example

e Phrase translations for den Vorschlag learned from the Europarl corpus:

English o(e|f) || English o(el f)
the proposal 0.6227 || the suggestions | 0.0114
's proposal 0.1068 || the proposed 0.0114
a proposal 0.0341 || the motion 0.0091
the idea 0.0250 || the idea of 0.0091
this proposal 0.0227 || the proposal, 0.0068
proposal 0.0205 || its proposal 0.0068
of the proposal | 0.0159 || it 0.0068
the proposals | 0.0159

— lexical variation (proposal vs suggestions)
— morphological variation (proposal vs proposals)
— included function words (the, a, ...)

— noise (it)



Neural Machine Translation

Berkeley

N L P

Dan Klein
UC Berkeley

Slides from Abigail See and John DeNero



1990s-2010s: Statistical Machine Translation

 SMT was a huge research field
* The best systems were extremely complex
* Hundreds of important details we haven’t mentioned here

Systems had many separately-designed subcomponents

Lots of feature engineering
* Need to design features to capture particular language phenomena

Require compiling and maintaining extra resources
 Like tables of equivalent phrases

Lots of human effort to maintain
» Repeated effort for each language pair!



Neural Machine Translation



(dramatic reenactment)
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What is Neural Machine Translation?

* Neural Machine Translation (NMT) is a way to do Machine
Translation with a single neural network

* The neural network architecture is called sequence-to-sequence
(aka seq2seq) and it involves two RNNs.



Conditional Sequence Generation

P(e|f) could just be estimated from a sequence model P(f, e)

<f> das Haus ist klein </f> the house is smal

</e>

Run an RNN over the whole sequence, which first computes P(f), then computes P(e, f).

Encoder-Decoder: Use different parameters or architectures encoding f and predicting e.

"Sequence to sequence" learning (Sutskever et al., 2014)

|

Y
Y
Y
Y

Y

Y

<EQS>

T

A B C <EQS>

(Sutskever et al., 2014) Sequence to sequence learning with neural networks.

s —> |—>x

|
|
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Encoder RNN

Neural Machine Translation (NMT)

The sequence-to-sequence model
Target sentence (output)

Encoding of the source sentence. A

NNY Jopoas(

4 A\
Provides initial hidden state he pie <END>
for Decoder RNN.
>
N\ :
po
[0y]
o
o
(0]
o
i a m’  entarté <START> he hit me  with a pie
\ J
Y
Source sentence (input) Decoder RNN is a Language Model that generates

target sentence, conditioned on encoding.

Encoder RNN produces
an encoding of the
source sentence.




Sequence-to-sequence is versatile!

* Sequence-to-sequence is useful for more than just MIT

* Many NLP tasks can be phrased as sequence-to-sequence:
* Summarization (long text = short text)
* Dialogue (previous utterances - next utterance)
» Parsing (input text - output parse as sequence)
» Code generation (natural language - Python code)



Neural Machine Translation (NMT)

* The sequence-to-sequence model is an example of a
Conditional Language Model.
* Language Model because the decoder is predicting the
next word of the target sentence y

» Conditional because its predictions are also conditioned on the source
sentence x

« NMT directly calculates P(y|z) :

P(y|lz) = P(y1|x) P(y2|y1,x) P(y3ly1, y2, ) ... P(yr|ya,- -, yr—1, )

\ J
Y

Probability of next target word, given
target words so far and source sentence x

* Question: How to train a NMT system?

* Answer: Get a big parallel corpus...



Encoder RNN

Training a Neural Machine Translation system

= negative log = negative log = negative log
prob of “he” prob of “with” prob of <END>

|+ Jo +Js +H Jaly Js + Js 4| J7

RERRR

1 T
]=T;]t

jil 5;2 5;3 )74- yS y6 5\17

N n N

8 :

18] o o)
il a m’  entarté <START> he hit me  with a pie

\ J \ J
Y Y
Source sentence (from corpus) Target sentence (from corpus)

Seq2seq is optimized as a single system.
Backpropagation operates “end-to-end”.

NNY J8po2ag



NMT Decoding



Greedy decoding

 We saw how to generate (or “decode”) the target sentence by
taking argmax on each step of the decoder

pie <END>

<START> he

* This is greedy decoding (take most probable word on each step)
* Problems with this method?



Problems with greedy decoding

* Greedy decoding has no way to undo decisions!
* Input: il a m’entarté (he hit me with a pie)
- >he
* > hehit
- > hehita__ (whoops! no going back now...)

e How to fix this?



Exhaustive search decoding

* Ideally we want to find a (length T) translation y that maximizes
P(y|x) = P(y1lx) P(y2ly1, x) P(ysly1, y2, @) - . ., P(yrly1s- - yr—1,T)

T
= Hp(yt|yla s Y1, )
t=1

* We could try computing all possible sequences y

» This means that on each step t of the decoder, we're tracking Vt possible
partial translations, where Vis vocab size

+ This O(VT) complexity is far too expensivel



Beam search decoding

Core idea: On each step of decoder, keep track of the kK most
probable partial translations (which we call hypotheses)
* kis the beam size (in practice around 5 to 10)

A hypothesis ¥Y1,--..,Yt has a score which is its log probability:

t
score(y1,. .., y¢) = log Pum(y, - .., gelw) = Y _log Pum(uilyn, - -, yi-1, )

i=1
» Scores are all negative, and higher score is better
* We search for high-scoring hypotheses, tracking top k on each step

Beam search is not guaranteed to find optimal solution

But much more efficient than exhaustive search!



Beam search decoding: example

Beam size = k = 2. Blue numbers = score(yi, ..

<START>

Calculate prob
dist of next word

. ayt) — ZlogPLM(yi|y1;' . 73/1'—1756)

i=1



Beam search decoding: example

Beam size = k = 2. Blue numbers = score(y, ...

-0.7 =log P,(he|<START>)
he

<START>

-0.9 =log P (/| <START>)

/

Take top k words
and compute scores

) = log P (uily, - -

i=1

7y'é—1737)



Beam search decoding: example

Beam size =k = 2. Blue numbers = score(y1,...,4:) = > _log Pum(uilys, - - -

i=1

-1.7 =log P ,(hit| <START> he) + -0.7

-0.7

K

hit

struck

<START>

-2.9 = log P ,(struck|<START> he) + -0.7

-1.6 = log P, ,(was|<START> 1) +-0.9

was

K<

-0.9

got

-1.8 = log P,,,(got| <START> /) +-0.9

For each of the k hypotheses, find
top k next words and calculate scores

7%—175)



Beam search decoding: example

Beam size = k = 2. Blue numbers = score(y, ...

-0.7
he

<START>

-1.7

< hit
struck

-2.9

-1.6

< was
gOt

-1.8

Of these k% hypotheses,
just keep k with highest scores

) = log P (uily, - -

i=1

7%—1,5)



Beam search decoding: example

Beam size = k = 2. Blue numbers = score(ys,..., ) = > _log Pum(ilys, - - -, yi1, %)

i=1

2.8 =log P ,,(a| <START> he hit) + -1.7

1.7 g
0.7 hit <
he < me
struck -2.5 =log P, (me|<START> he hit) + -1.7
2.9
<START> -2.9 = log Py, (hit| <START> | was) + -1.6
-1.6 hit
was <
/ < struck

got

-0.9 -3.8 = log P (struck|<START> | was) + -1.6
-1.8

For each of the k hypotheses, find
top k next words and calculate scores




Beam search decoding: example

Beam size =k = 2. Blue numbers = score(ys,...,y:) = Y log Pom(uilys, - - - gi-1, )

i=1

-2.8
-1.7 a
0.7 hit <
he < me
struck 25
-2.9
<START> -2.9
L6 hit
was <
/ < struck
0.9 got -3.8
-1.8

Of these k? hypotheses,
just keep k with highest scores




Beam search decoding: example

Beam size = k = 2. Blue numbers = score(y, ...

-0.7
he

<START>

) = Y log Pum(uilys, - - -

i=1

4.0
tart
2.8 :

_ pie
1.7 o -
hit e

b me 3.3
struc 5 with

2.9

2.9 on
16 hit -3.5
was
struck
got 338
1.8

7y'i—1337)

For each of the k hypotheses, find
top k next words and calculate scores




Beam search decoding: example

Beam size =k = 2. Blue numbers = score(y1,...,4:) = > _log Pum(uilys, - - -

-0.7
he

<START>

i=1

4.0
tart
2.8 :

_ pie
1.7 o -
hit e

b me 3.3
struc 5 with

2.9

2.9 on
16 hit -3.5
was
struck
got 338
1.8

just keep k with highest scores

Of these k? hypotheses,

7y'i—13'lr)



Beam search decoding: example

Beam size = k = 2. Blue numbers = score(y, ...

-0.7
he

<START>

7yt) — Z]OgPLM(yi|y1a s o 7(%;1,37)

i=1

-4.0 4.8
tart in
2.8 : _
1.7 pie » with
) a
hit 3.4 4.5
h me 3.3 -3.7
struc 2.5 with k—l a
2.9
-2.9 on one
16 hit 3.5 4.3
was
struck
got 338
1.8

For each of the k hypotheses, find
top k next words and calculate scores




Beam search decoding: example

Beam size =k = 2. Blue numbers = score(ys,...,y:) = Y log Pom(uilys, - - - gi-1, )

=i

-4.0 -4.8
tart in
2.8 : :
1.7 pie » with
: a
0.7 it < -3.4 -4.5
he < me 3.3 3.7
struck 25 with R o
-2.9
<START> -2.9 on one
L6 hit 3.5 4.3
was <
/ < struck
0.9 got -3.8
-1.8

Of these k? hypotheses,
just keep k with highest scores




Beam search decoding: example

Beam size =k = 2. Blue numbers = score(y1,...,4:) = > _log Pum(uilys, - - -

-0.7
he

<START>

=i

-4.8

7,%;1,37)

in

A

with

-4.5
-3.7

4.0
tart
2.8 :

_ pie
1.7 o -
hit e

b me 3.3
struc 5 with

2.9

2.9 on
16 hit -3.5
was
struck
got 338
1.8

A 4

one

-4.3

-4.3

pie

tart

-4.6

-5.0

pie

tart

-5.3

For each of the k hypotheses, find
top k next words and calculate scores




Beam search decoding: example

7yt) — Z]OgPLM(yi|y1a s o 7,%;1,37)

Beam size = k = 2. Blue numbers = score(y, ...

-0.7
he

<START>

=i

4.0 4.8
tart in
-2.8
_17 pie L Wlth -4'3
: ! -3.4 4.5 pie
hit ' ‘
me 3.3 3.7 tart
struck 25 with R o e
-2.9
-2.9 on one 5.0
-1.6 ] ]
hit -3.5 -4.3 pie
was
struck tart
got 3.3 5.3
-1.8

This is the top-scoring hypothesis!




Beam search decoding: example

Beam size = k = 2. Blue numbers = score(y, ...

-0.7
he

<START>

vue) = Y log Pum(uilys, - -, 9i1, )

i=1

4.0 4.8
tart in
-2.8
_1 7 pie > Wlth -4'3
' a pie
hit -34 4.5
me 3.3 3.7 tart
struck 25 with R o e
-2.9
-2.9 on one 5.0
-1.6 ] ]
hit -3.5 -4.3 pie
was
struck tart
got 3.3 5.3
-1.8

Backtrack to obtain the full hypothesis




Beam search decoding: stopping criterion

In greedy decoding, usually we decode until the model produces
a <END> token

* For example: <START> he hit me with a pie <END>

In beam search decoding, different hypotheses may produce
<END> tokens on different timesteps

» When a hypothesis produces <END>, that hypothesis is complete.

» Place it aside and continue exploring other hypotheses via beam search.

Usually we continue beam search until:
+ We reach timestep T (where T is some pre-defined cutoff), or
+ We have at least n completed hypotheses (where n is pre-defined cutoff)



Beam search decoding: finishing up

We have our list of completed hypotheses.

How to select top one with highest score?

Each hypothesis Y1, ..., Yt on our list has a score

t
score(y1, - .-, y) =log Pm(y1, - ., welz) = > log Pum(vilys, - - -, yi1, )

=1

Problem with this: longer hypotheses have lower scores

Fix: Normalize by length. Use this to select top one instead:

t
1
; ZlOgPLM(yZ’yla cee )yi—lyx)

=1



Attention



Encoder RNN

Sequence-to-sequence: the bottleneck problem

Encoding of the
source sentence.

Target sentence (output)

A
4 A\

he hit me with a pie <END>

i a m’  entarte <START> he hit me  with a pie

\ J
Y

Source sentence (input)

Problems with this architecture?

NNY J8podeg



Encoder RNN

Sequence-to-sequence: the bottleneck problem

Encoding of the
source sentence.
This needs to capture alf Target sentence (output)
information about the A

~

i a m’  entarte <START> he hit me  with a pie

\ J
Y

Source sentence (input)

NNY d2p0da(



Attention

* Attention provides a solution to the bottleneck problem.

* Coreidea: on each step of the decoder, use direct connection to
the encoder to focus on a particular part of the source sequence

* First we will show via diagram (no equations), then we will show
with equations



Attention

Encoder

Sequence-to-sequence with attention

dot product

scores

N

(0000

alaa

il a m’  entarté <START>

\ J
Y

Source sentence (input)

NNY d=2p028(



Attention

Encoder

Sequence-to-sequence with attention

dot product

scores

il a m’  entarté <START>
\ J

Source sentence (input)

NNY d=2p028(



Attention

Encoder

Sequence-to-sequence with attention

scores

dot product

il a m’  entarté <START>
\ J

Source sentence (input)

NNY d=2p028(



Attention

Encoder

Sequence-to-sequence with attention

dot product

scores

il a m’  entarté <START>
\ J

Source sentence (input)

NNY d=2p028(



Attention
distribution

Attention

Encoder

Sequence-to-sequence with attention

scores

RNN

On this decoder timestep, we're

mostly focusing on the first
{ / encoder hidden state (”he”)

Take softmax to turn the scores
into a probability distribution

il a m’  entarté <START>

\

J

Y
Source sentence (input)

NNY Jepodeg



Attention

Attention

Encoder

Sequence-to-sequence with attention

Attention 4 Use the attention distribution to take a
output weighted sum of the encoder hidden
.S states.
+ = Sor
= { H The attention output mostly contains
% T T T information from the hidden states that
received high attention.
v
o
o)
a
=
=
o~

il a m’  entarté <START>

\ J
Y

Source sentence (input)

NNY d=2p028(



Attention

Attention

Encoder

Sequence-to-sequence with attention

Attention he

output

T Concatenate attention output
<+«— with decoder hidden state, then
use to compute ¥; as before

distribution

scores

RNN

il a m’  entarté <START>

\ J
Y

Source sentence (input)

NNY d=2p028(



Attention

Attention

Encoder

Sequence-to-sequence with attention

Attention hit

output T
c
e,
4=
>
=
[ S
[y
2
e
(%]
o
0
Q
v
p
pd
oc

il a m’  entarté <START> he
\ J

Y
Source sentence (input)

NNY d=2p028(



Attention
distribution

Attention

Encoder

Sequence-to-sequence with attention

scores

RNN

Attention me
output

il a m’  entarté <START> he hit

\ J

Source sentence (input)

NNY d=2p028(



Attention

Attention

Encoder

Sequence-to-sequence with attention

Attention with
output T
c
0
4=
3
e
—
4
0
©
1]
(<)
—
0
Q
wv)
=
2
o=

il a m’  entarté <START> he hit me
\ J

Source sentence (input)

NNY d=2p028(



Sequence-to-sequence with attention

Attention

Decoder RNN
—

0000

0000

0000

0000

0000

uolynquisIp
uolusY

{

S2J00S
uoIUSNY

——
NNY
Japooug

me with

hit

<START> he

entarté

ml

it

Y

Source sentence (input)




Machine Translation

Berkeley

N L P

Dan Klein
UC Berkeley

Many slides from John DeNero and Philip Koehn



Attention

Attention

Encoder

Sequence-to-sequence with attention

Attention
output
C
0
2
-]
0
=
[y
W0
o)
wv
@
| -
0
Q
(73]
prd
pd
o

il a m’  entarté <START> he hit me with
\ J

Y
Source sentence (input)

c000

NNY d=2p028(



Attention: in equations

«  We have encoder hidden states %, ..., hy € R"
« Ontimestep t, we have decoder hidden state s; € R"
«  We get the attention scores e’ for this step:

e! =[sthy,...,shy] € RY

* We take softmax to get the attention distribution ot for this step (thisis a
probability distribution and sums to 1)

o' = softmax(e’) € RY

« Weuse o' totake a weighted sum of the encoder hidden states to get the
attention output a; N

a; — Za,’éhi c R*
i=1
» Finally we concatenate the attention output a; with the decoder hidden
state s; and proceed as in the non-attention seq2seq model

la; 5] € R?"



Impact of Attention on Long Sequence Generation

BLEU score

30 T T T T T
25
15 F :
10 Hl — RNNsearch-50 ................ L i \\\ SR TREEPRE i
----- RNNsearch-30 | g s, i
5 - - RNNGHC-5O ................ ",-‘ ....... ............... _
-+ - RNNenc-30 1
0 | i i I |
10 20 30 40 50 60

Sentence length

(Badhanau et al., 2015) Neural Machine Translation by Jointly Learning to Align and Translate



Attention is great

» Attention significantly improves NMT performance
* It's very useful to allow decoder to focus on certain parts of the source

* Attention solves the bottleneck problem
+ Attention allows decoder to look directly at source; bypass bottleneck

* Attention helps with vanishing gradient problem
» Provides shortcut to faraway states

» Attention provides some interpretability
» By inspecting attention distribution, we can see

hit
me
with

pie

what the decoder was focusing on i

m

+ We get (soft) alignment for freel a

» This is cool because we never explicitly trained m’
an alignment system entarté

* The network just learned alignment by itself




Attention vs Alignment

die
Beziehungen
zwischen
Obama

und
Netanjahu
sind

seit

Jahren
angespannt

Attention activations above 0.1

English-German

g § « FF;\ 3
%Eg-cggﬁ’g E
T 258552 888 ¢&8¢8
56 16
89
72126
96
79
98
42111]38
20,
84
11 14 23

the

relationship

between
Obama
and
Netanyahu
has

been
stretched

for
years

das
Verhaltnis

<]

; g
S8 52 %
81
72
87
93
95

seit

German-English

(Koehn & Knowles 2017) Six Challenges for Neural Machine Translation

Jahren

~

14

38

19

gespannt




Attention is a general Deep Learning technique

* We've seen that attention is a great way to improve the
sequence-to-sequence model for Machine Translation.

* However: You can use attention in many architectures
(not just seq2seq) and many tasks (not just MT)

» More general definition of attention:

* Given a set of vector values, and a vector guery, attention is a
technique to compute a weighted sum of the values,
dependent on the query.

* We sometimes say that the query attends to the values.

* For example, in the seq2seq + attention model, each decoder
hidden state (query) attends to all the encoder hidden states
(values).




Attention is a general Deep Learning technique

More general definition of attention:

Given a set of vector values, and a vector qguery, attention is a
technique to compute a weighted sum of the values, dependent on
the query.

Intuition:

* The weighted sum is a selective summary of the information
contained in the values, where the query determines which
values to focus on.

* Attention is a way to obtain a fixed-size representation of an
arbitrary set of representations (the values), dependent on
some other representation (the query).




There are several attention variants

« We have some values hq,...,hy € R* and a guery s € R%
* Attention always involves: There are
1. Computing the attention scores e € RN < multiple ways
to do this

2. Taking softmax to get attention distribution o:

o = softmax(e) € RY

3. Using attention distribution to take weighted sum of values:

N
a—= Zaihi € R*

=1
thus obtaining the attention output a (sometimes called the
context vector)



Attention variants

There are several ways you can compute e € RY fromhq,..., Ay € R%
and s € R%:

» Basic dot-product attention: e; = sThi eR

* Note: this assumes d; = d»
» This is the version we saw earlier

« Multiplicative attention: e; = s’ Wh; € R
« Where W € R%*% is a weight matrix

« Additive attention: e; = v’ tanh(W1h; + Wss) € R

« Where W; € R4>d1_ W, € R4s*d2 gre weight matrices and v € R%
is a weight vector.

* d, (the attention dimensionality) is a hyperparameter

More information:
“Deep Learning for NLP Best Practices”, Ruder, 2017. ) ]
“Massive Exploration of Neural Machine Translation Architectures”, Britz et al, 2017,



Transformers



Transformer

In lieu of an RNN, use ONLY
attention!

High throughput &
expressivity: compute queries,
keys and values as (different)
linear transformations of the
input.

Attention weights are queries
e keys; outputs are sums of
weighted values.

Attention(Q, K, V) =
QK"
Vdy

1%

softmax(

Input

Embedding
Queries

Keys

Values

Score

Divide by 8 ( d;. )
Softmax

Softmax
X
Value

Sum

Thinking

x [T T 1]

Machines

x. [

a. [T
([T

v. [0

(Vaswani et al., 2017) Attention is All You Need

Figure: http://jalammar.github.io/illustrated-transformer/




Transformer Architecture

e Layer normalization ("Add & Norm" cells)
helps with RNN+attention architectures as
well.

e Positional encodings can be learned or
based on a formula that makes it easy to
represent distance.

EN-DE

ByteNet [18] 2313
Deep-Att + PosUnk [39]

GNMT + RL [38] 24.6
ConvS2S [9] 25.16
MoE [32] 26.03
Deep-Att + PosUnk Ensemble [39]

GNMT + RL Ensemble [38] 26.30
ConvS2S Ensemble [9] 26.36
Transformer (base model) 2713
Transformer (big) 284

Output
Probabilities

Linear

(
| Add & Norm h\

Feed
Forward
, \
r-'- :
Add & Norm Muilti-Head
Feed Attention
Forward T 7 J Nx
N ——
Nix
f-l Add & Norm I Masked
Multi-Head Multi-Head
Attention Attention
A _t
\— Y © —
Positional D @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(Vaswani et al., 2017) Attention is All You Need

(shifted right)



Some Transformer Concerns

Problem: Bag-of-words representation of the input.
Remedy: Position embeddings are added to the word embeddings.

Problem: During generation, can't attend to future words.
Remedy: Masked training that zeroes attention to future words.

Problem: Deep networks need to integrated lots of context.
Remedies: Residual connections and multi-head attention.

Problem: Optimization is hard.
Remedies: Large mini-batch sizes and layer normalization.



Training Data



Bitexts

Where do bitexts come from?

= Careful, low level / literal translations:
organizational translation processes (eg
parliamentary proceedings), multilingual
newsfeeds, etc =

oAl X
lw--vwz 3 e g wnel <Al ] e peinie
= / g .:J‘.,’.,,yu,..'” i
e
Ly s
sore iy .1.-:»“;\3 i A ..\,.‘\1‘5'"%‘.*_.1\‘.
A Y A R iz - )
ey r.-‘m u e, i d;;\‘: b sy
v <l

= Discovered translations (ad hoc translations on
webpages, etc)

u\fn|r

s s,
LA e T e

* Loose translations (multilingual Wikipedia, etc)

et

= Synthetic data (distillation, backtranslation, etc -

ST ARTS
lﬂihw‘u..nﬂnu
el R e el
-Jk:ialll-l,-ull\lvi‘n'w.:-u Rl i
£ ALY
i 'u*.n’.‘}w.mmnm B
e AT sy
et i
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Back Translations

Synthesize an en-de parallel corpus by using a de-en system to translate monolingual de sentences.
e Better generating systems don't seem to matter much.

e Can help even if the de sentences are already in an existing en-de parallel corpus!

system EN—DE DE—EN
dev test | dev test
baseline 224 268 | 264 28.5
+synthetic 258 316|299 36.2
+ensemble 27.5 33.1 | 31.5 375
+r2l reranking | 28.1 34.2 | 32.1 38.6

Table 2: English<>German translation results
(BLEU) on dev (newstest2015) and test (new-
stest2016). Submitted system in bold.

(Sennrich et al., 2015) Improving Neural Machine Translation Models with Monolingual Data
(Sennrich et al., 2016) Edinburgh Neural Machine Translation Systems for WMT 16



Subwords

The sequence of symbols that are embedded should be common enough that an embedding
can be estimated robustly for each, and all symbols have been observed during training.

Solution 1: Symbols are words with rare words replaced by UNK.
e Replacing UNK in the output is a new problem (like alignment).

e UNK in the input loses all information that might have been relevant from the rare input word
(e.g., tense, length, POS).

Solution 2: Symbols are subwords.
e Byte-Pair Encoding is the most common approach.

e Other techniques that find common subwords aren't reliably better (but are somewhat more
complicated).

® Training on many sampled subword decompositions improves out-of-domain translations.

(Sennrich et al., 2016) Neural Machine Translation of Rare Words with Subword Units
(Kudo, 2018) Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates



vocab = {'l ow </w>' : 5, 'lower</w>':2,
'newest</w>:6, 'widest</w>':3}
def get stats(vocab):
pairs = collections.defaultdict(int)
for word, freq in vocab.items():
symbols = word.split()
for i1 in range(len(symbols)-1):
pairs[symbols[i],symbols[i+1]] += freq
return pairs

def merge vocab(pair, v_in):
v_out = {}
bigram = re.escape(' '.join(pair))
p = re.compile(r'(?<!\S)' + bigram + r'(2!\S)")
for word in v_in:
w out = p.sub(''.join(pair), word)

v out[w out] = v in[word] sor i in range(num merges):
- - - pairs = get_stats(vocab)
17631:111:11 \7__()111: best = max(pairs, key=pairs.get)

vocab = merge vocab(best, vocab)

(Sennrich et al., 2016) Neural Machine Translation of Rare Words with Subword Units



BPE Example

system sentence

source health research institutes
reference Gesundheitsforschungsinstitute
word-level (with back-off) | Forschungsinstiiuie

character bigrams Fo|rs|ch|un|gs|in|st|it|ut|io|ne|n
BPE Gesundheits|forsch|ungsin|stitute

Example from Rico Sennrich



Advantages of NMT

Compared to SMT, NMT has many advantages:

* Better performance
* More fluent
* Better use of context
* Better use of phrase similarities

* Asingle neural network to be optimized end-to-end
* No subcomponents to be individually optimized

* Requires much less human engineering effort
* No feature engineering
* Same method for all language pairs



Disadvantages of NMT?

Compared to SMT:

* NMTis less interpretable
* Hard to debug

* NMT is difficult to control

* For example, can’t easily specify rules or guidelines for
translation

 Safety concerns!



Neural Machine Translation went from a fringe research activity in
2014 to the leading standard method in 2016

* 2014: First seq2seq paper published

« 2016: Google Translate switches from SMT to NMT

* This is amazing!
* SMT systems, built by hundreds of engineers over many
years, outperformed by NMT systems trained by a handful of
engineers in a few months



So is Machine Translation solved?

* Nope!
* Many difficulties remain:

Out-of-vocabulary words

Domain mismatch between train and test data

Maintaining context over longer text

Low-resource language pairs

Further reading: “Has Al surpassed humans at translation? Not even close!”
https://www.skynettoday.com/editorials/state _of nmt




So is Machine Translation solved?

* Nope!
* Using common sense is still hard

English~ U ‘D Plng Spanish~ I_D ‘D

paper jam Mermelada de papel

Open in Google Translate Feedback




So is Machine Translation solved?

* Nope!
* NMT picks up biases in training data

Malay - detected ~ 4y & English~ |_D o)
Dia bekerja sebagai jururawat. She works as a nurse.
Dia bekerja sebagai pengaturcara. - He works as a programmer.

4

Didn’t specify gender

Source: https://hackernoon.com/bias-sexist-or-this-is-the-way-it-should-be-ce1f7c¢8c683c




So is Machine Translation solved?

* Nope!
* Uninterpretable systems do strange things

Somali ~ - English ~ I_D *D
Translate from Irish

ag ag ag ag ag ag ag ag ag ag ag ag As the name of the LORD was written
ag ag ag ag ag ag ag ag ag ag ag ag in the Hebrew language, it was written
ag in the language of the Hebrew Nation
Open in Google Translate Feedback

Picture source: https://www.vice.com/en uk/article/jSnpeg/why-is-google-translate-spitting-out-sinister-religious-prophecies
Explanation: https://www.skynettoday.com/briefs/google-nmt-prophecies




Summary

We learned some history of Machine Translation (MT)

* Since 2014, Neural MT rapidly
replaced intricate Statistical MT

* Sequence-to-sequence is the
architecture for NMT (uses 2 RNNs)

» Attention is a way to focus on | )

particular parts of the input /\_ 4
* Improves sequence-to-sequence a lot!



