Language Models

CS288 UC Berkeley

Recap: N-Gram Models

N-gram models make a Markov assumption $P(w_1 \dots w_n) = \prod P(w_i | w_{i-k} \dots w_{i-1})$

- e entire left context
- P(??? | The computer I had put into the machine room on the fifth floor just)
- $P(\text{please close the door}) = P(\text{please}|\text{START})P(\text{close}|\text{please}) \dots P(\text{STOP}|\text{door})$

Use statistics from data (examples here from Google N-Grams)

198015222 the first Counts Training

194623024 the same 168504105 the following 158562063 the world

14112454 the door

23135851162 the *

This is the maximum likelihood estimate, which needs modification N-gram models use such counts to compute probabilities on demand

$\hat{P}(\text{door}|\text{the}) = \frac{14112454}{23135851162}$ = 0.0006

Bigram Model

198015222	the first	
194623024	the same	
168504105	the following	
158562063	the world	
14112454	the door	
23135851162 the *		

P(door | the) = 0.0006

Increasing N-Gram Order

Trigram Model

197302 close the window 191125 close the door 152500 close the gap 116451 close the thread

87298 close the deal

3785230 close the *

P(door | close the) = 0.05

N-Gram Models: Challenges


```
. . .
0 please close the first
```

Sparsity

Please close the first door on the left.

3380 please close the door 1601 please close the window 1164 please close the new 1159 please close the gate

13951 please close the *

Smoothing

We often want to make estimates from sparse statistics:

- P(w | denied the)
- 3 allegations
- 2 reports
- 1 claims
- 1 request
- 7 total

Smoothing flattens spiky distributions so they generalize better:

- P(w | denied the) 2.5 allegations 1.5 reports 0.5 claims 0.5 request 2 other
- 7 total

Very important all over NLP, but easy to do badly

Please close the first door on the left.

4-Gram

3380 please close the door 1601 please close the window 1164 please close the new 1159 please close the gate

. . .

0

please close the first

13951 please close the *

0.0

Specific but Sparse

 $\lambda \widehat{P}(w|w_{-1}, w_{-2}) + \lambda' \widehat{P}(w|w_{-1}) + \lambda'' \widehat{P}(w)$

Back-off

3-Gram

197302 close the window 191125 close the door 152500 close the gap 116451 close the thread

close the first

3785230 close the *

0.002

2-Gram

198015222 the first 194623024 the same 168504105 the following 158562063 the world

. . .

. . .

23135851162 the *

0.009

Dense but General

Count in 22M Words	Future c* (Next 22M)
1	
2	
3	
4	
5	

"shaved" mass to a model of new events

 $P_{\mathsf{ad}}(w|w') = \frac{c(w)}{w}$

Discounting

- Observation: N-grams occur more in training data than they will later
 - Empirical Bigram Counts (Church and Gale, 91)

Absolute discounting: reduce counts by a small constant, redistribute

$$\frac{w',w)-d}{c(w')} + \alpha(w')\widehat{P}(w)$$

- Shannon game: "There was an unexpected delay?
- Context fertility: number of distinct context types that a word occurs in
 - What is the fertility of "delay"?
 - What is the fertility of "Francisco"?
 - Which is more likely in an arbitrary new context?

• Kneser-Ney smoothing: new events proportional to context fertility, not frequency [Kneser & Ney, 1995] $P(w) \propto |\{w': c(w', w) > 0\}|$

Fertility

Francisco?

Better Methods?

More Data?

[Brants et al, 2007]

searching for the best	192593
searching for the right	45805
searching for the cheapest	44965
searching for the perfect	43959
searching for the truth	23165
searching for the "	19086
searching for the most	15512
searching for the latest	12670
searching for the next	10120
searching for the lowest	10080
searching for the name	8402
searching for the finest	8171

Google N-grams

- 14 million $< 2^{24}$ words
- 2 billion < 2³¹ 5-grams
 770 000 < 2²⁰ unique counts
- 4 billion n-grams total

Entirely Unseen Words

- What about totally unseen words?
- Classical real world option: systems are actually closed vocabulary
 - ASR systems will only propose words that are in their pronunciation dictionary
 - MT systems will only propose words that are in their phrase tables (modulo special models for numbers, etc)
- Classical theoretical option: build open vocabulary LMs
 - Models over character sequences rather than word sequences
 - N-Grams: back-off needs to go down into a "generate new word" model
 - Typically if you need this, a high-order character model will do
- Modern approach: syllable-sized subword units (more later)

Representation Learning

What is a Representation? Bigram Vector Lookup Space ⁴³² cat • 1024 dog 6174 meowing eating

Vector Embeddings

- Embeddings map discrete words (eg |V|
 = 50k) to continuous vectors (eg d = 100)
- Why do we care about embeddings?
 - Neural methods want them
 - Nuanced similarity possible; generalize across words
- We hope embeddings will have structure that exposes word correlations (and thereby meanings)

- How can you fit 50K words into a 64-dimensional hypercube?
- Orthogonality: Can each axis have a global "meaning" (number, gender, animacy, etc)?
- Global structure: Can embeddings have algebraic structure (eg king – man + woman = queen)?

Structure of Embedding Spaces

Debiasing methods (as in Bolukbasi et al 16) are an active area of research

Bias in Embeddings

$$\vec{h} \approx \overrightarrow{\text{king}} - \overrightarrow{\text{queen}}$$

What can we Embed?

- Subwords
- Words
- N-grams
- Entire sentences
- Entire documents
- Things that aren't text (e.g., images)

Stuffing Meanings into Vector Spaces?

Cartoon: Greg Durrett

Distributional Similarity

- Key idea in clustering and embedding methods: characterize a word by the words it occurs with (cf Harris' distributional hypothesis, 1954)
 - "You can tell a word by the company it keeps." [Firth, 1957]
 - Harris / Chomsky divide in linguistic methodology

Vector Space Methods

- Treat words as points in Rⁿ (eg Shuetze, 93)
 - Form matrix of co-occurrence counts
 - SVD or similar to reduce rank (cf LSA)
 - Cluster projections
 - People worried about things like: log of counts, U vs UΣ
- Today we'd call this an embedding method (it's basically GLoVe — Pennington et al. 2014), but we didn't want embeddings in 1993

W

context counts

context counts

Cluster these 50-200 dim vectors instead.

Neural Language Models

Neural LMs: Three Key Ideas

- Word embeddings
 - Different words are not entirely unrelated events Words can be more and less similar, in complex ways
- Partially factored representations
 - Multiple semi-independent processes happen in parallel in language It's too expensive to track language in an unfactored way, and too inaccurate to assume everything of interest is independent
- Long distance dependencies
 - Information can be relevant without being local Different notions of locality are important at different times

Reminder: Feedforward Neural Nets

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

num_classes

A Feedforward N-Gram Model?

Early Neural Language Models

- Fixed-order feed-forward neural LMs
 - Eg Bengio et al 03
 - Allow generalization across contexts in more nuanced ways than prefixing
 - Allow different kinds of pooling in different contexts
 - Much more expensive to train

Bengio et al 03

Using Word Embeddings?

Using Word Embeddings

- Aproach 1: learn embeddings as parameters from data Often works pretty well
- Approach 2: initialize (e.g. using GloVe), keep fixed Fast because no need to learn or update parameters
- Approach 3: initialize (e.g. using GloVe), fine-tune
 - Works well for some tasks
- Modern approach: learning context embeddings
 - Will discuss later

What have we gained over N-Gram LMs?

What have we lost?

What have we not changed?

Limitations of Fixed-Window NN LMs?